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Abstract— A large population of agents seeking to regulate
their state to values characterized by a low density is consid-
ered. The problem is posed as a mean-field game, for which
solutions depend on two partial differential equations, namely
the Hamilton-Jacobi-Bellman equation and the Fokker-Plank-
Kolmogorov equation. The case in which the distribution of
agents is a sum of polynomials and the value function is
quadratic is considered. It is shown that a set of ordinary differ-
ential equations, with two-point boundary value conditions, can
be solved in place of the more complicated partial differential
equations associated with the problem. The theory is illustrated
by a numerical example.

I. INTRODUCTION

A population of dynamic agents, assumed to be indis-
tinguishable, is considered. We assume that each agent’s
dynamics is given by a linear stochastic differential equation
(SDE) driven by a Brownian motion and under the influence
of a control and an adversarial disturbance. Furthermore, the
population can be described by a density distribution and
each of the agents seeks to select its control to minimise a
certain cost functional, which may in general be functions
of the state and of the density distribution, which is referred
to as a mean-field term. This problem, which includes both
the individual agent and the behaviour of the population is
known as a mean-field game.
Related literature on mean-field games. The theory of
mean-field games was introduced by Lasry and Lions in
[18] and by M.Y. Huang, P. E. Caines and R. Malhamé
in [15], [13], [14]. The framework provided by mean-field
differential games is particularly useful in the study of
differential games with a large number of players. In essence,
by using tools from differential game theory, mathemati-
cal physics, and H∞-optimal control, mean-field dynamical
games provide a modeling framework that allows to study the
interaction between a mass of players and each individual.
Such problems arise in several application domains such
as economics, physics, biology, and network engineering,
to mention a few [3], [4], [7], [12], [14], [17], [20], [23].
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Vergata”, Via del Politecnico, 1 00133 Roma, Italy, a.astolfi@ic.ac.uk

Obtaining the solution of a mean-field game boils down to
solving a system of two coupled partial differential equa-
tions (PDEs), namely the Hamilton-Jacobi-Bellman (HJB)
equation and the Fokker-Planck-Kolmogorov (FPK) equa-
tion, which describes the density of the players [18], [22].
Closed-form solutions to these PDEs in terms of mean-field
equilibria cannot generally be found, unless the problem has
a linear-quadratic structure, see [5].

We consider a population of “crowd-averse” dynamic
agents, i.e. the agents are such that they seek to regulate
their state to values characterized by a low density, thus
avoiding “crowded” states. Similar problems arise naturally
in social sciences: the states represent opinions, the dynamics
represent the propagation of these opinions, and crowd-
averse attitudes capture the agents’ willingness to escape
consensus and seek dissensus (in the space of opinions).
The crowd-averse behaviour is described by a cost functional
which involves quadratic penalty on control and mean-field
term involving the density of the players. We analyse the
case where the initial distribution is a sum of polynomial
terms and the value function is quadratic. Similar problems
have been considered in [8], [9]. In this paper, a general
problem in which the distribution is a sum of polynomial
terms, which can be interpreted as a Taylor approximation
of the distribution, is considered.
Main result. The main result of the paper is that the PDEs
associated with the mean-field game are transformed into
two sets of ordinary differential equations (ODEs) with two-
point boundary value conditions. The first set of equations
is obtained from the HJB equation, and the second set is
derived from the FPK equation. Thus a pair of coupled PDEs
is transformed into two sets of ODEs, for which solutions
can be readily obtained.

The remainder of the paper is structured as follows. In
Section II we introduce the problem for which the main
motivation is discussed in section III. The main results
are presented in Section IV followed by stochastic stability
analysis in Section V. In Section VI a numerical example
illustrating the theory is given. Finally in Section VII we
provide some conclusions and directions for future work.

Notation. We denote with (Ω,F ,P) a complete probabil-
ity space. Let B be a finite-dimensional Brownian motion
defined on this probability space. Let F = (Ft)t≥0 be its
natural filtration augmented by all the P−null sets (sets of
measure-zero with respect to P). We use ∂x and ∂2xx to
denote the first and second partial derivatives with respect
to x, respectively.



II. PROBLEM SET-UP

Consider a game with an infinite number of homogeneous
players. The players are often referred to as agents and since
they are homogeneous, they are indistinguishable. For each
player let x0 be its initial state, which is realised according
to the probability distribution m0. The state of the player at
time t, denoted by xt ∈ R, evolves according to a controlled
stochastic process over a finite horizon T > 0, i.e. it satisfies
the dynamics

dxt = [αxt + βut]dt+ σ [xtdBt + ζtdt] , (1)

where ut ∈ R is the control input, Bt ∈ R is a Brownian
motion, which is independent of the initial state x0 and
independent across players and time. The constants α ∈ R,
β ∈ R and σ ∈ R are parameters, and ζt ∈ R is an
adversarial disturbance.

A macroscopic description of the game is obtained by
considering probability density functions on the state space:{

m : R× [0,+∞[→ [0,+∞[, (x, t) 7→ mt(x)∫
Rmt(x)dx = 1 for every t,

Define now the average state distribution at time t as

m̄t :=
∫
R xmt(x)dx.

In the following we assume that the density distribution is
polynomial in the state.

Assumption 1: The density is given by
mt(x) = a0t +

∑n
j=1

1
j ajtx

j , in R× [0, T ]

m0(x) = d(x) = a00 +
∑n
j=1

1
j aj0x

j ,

aj0 given for all j = 0, . . . , n.

(2)

Note that the sum of polynomial terms in Assumption 1
can be interpreted as the Taylor approximation of a general
distribution mt(x).

Each agent is given a cost functional with penalty on the
final state g(·), stage cost function c(·), and quadratic penalty
on the unknown disturbance, i.e.

J(x0, u,m, ζ) = E
(
g(xT )

+
∫ T
0
c(xt, ut, z̄t)dt− γ2

∫ T
0
|ζt|2dt

)
.

(3)

We consider the stage cost

c(xt, ut,m) = a0t + a1tx+
1

2
a2tx

2 +
b

2
u2t .

The first three terms represents the mean-field cost and is the
quadratic approximation of the density distribution, whereas
b
2u

2
t , with b > 0, accounts for a penalty on the control

energy. The penalty on the final state is g(xT ,mT (xT )) =
a0T +a1Tx+ 1

2a2Tx
2, namely it is a penalty on the quadratic

approximation of the state density distribution at the end of
the horizon.

Remark 1: The cost function (3) is such that each of the
agents are crowd-averse in the sense that they seek to regulate
their states to the regions of low density. Note, however, that

the agents only consider the density in the state they are in:
this is known as local interaction. It may happen that all
agents attempt to regulate their state to the same low-density
state.

The robust mean-field game problem is defined as follows.
Problem 1: (Robust mean-field game problem) Let B

be a one-dimensional Brownian motion defined on (Ω,F ,P).
Let x0 be independent of B and with density m0(x). Let m∗t
be the optimal mean-field trajectory. The robust mean-field
problem in R and (0, T ] is given by{

inf
{ut}t

sup
{ζt}t

J(x, u,m∗, ζ)

dxt = [αxt + βut + σζt] dt + σxtdBt.

III. MOTIVATIONS

Problems similar to the one defined in Section II arise
in different fields. However, the main motivation for the
problem studied is opinion dynamics in social networks.
Crowd-averse attitudes in this setting imply that the players
tend to have very different opinions. This is in contrast to the
“opposite” phenomena of “emulation”, “mimicry” or “herd
behavior”.

Example 1: (Social networks) Opinion dynamics have
received a significant amount of attention by many scientists.
This is the study of the propagation of opinions. The main
goal is to describe the time evolution of the beliefs of a
large population of agents as a consequence of repeated in-
teractions among the agents: in many cases these interactions
may be over a social network, see for example [10, Sect. III]
and [2]. In continuous opinion dynamics models, beliefs or
opinions are represented by states, which may be scalars or
vectors, that evolve according to some averaging process.
These processes model the attractive nature of social influ-
ence; each opinion moves towards a convex combinations
of (a subset of) other agents’ current beliefs. Assuming that
the underlying social network is connected, many models
are such that asymptotic convergence to a consensus of the
opinions can be proven. However, there are some exceptions.
For example, in the models by [16] the authors introduce
homophily in the form of “bounded confidence”, namely the
case in which agents are not influenced by beliefs that are
“far” from their own. This is somewhat similar to what has
been considered in [1], where competing stubborn agents
are considered. Here, stubborn agents are agents that do
not change their opinions but try to influence the opinions
of others and these could, for example, represent leaders,
political parties or media sources. For example, in [11],
scaling limits results are provided: these show that, if the
population of agents is homogeneous, the empirical belief
distribution converges, as the population size grows large,
towards the solution of a certain deterministic mean-field
differential equation in the space of probability measures.
These results are in the spirit of the propagation of chaos in
interacting particle systems [21].



IV. MAIN RESULTS

Let vt(x) be the (upper) value of the robust optimization
problem under worst-case disturbance starting at time t
from state x. In what follows we consider quadratic value
functions of the form

vt(x) = q0t +
∑2
j=1

1
j qjtx

j , in R× [0, T ]

vT (x) = g(xT ,mT (xT ))

= q0T +
∑2
j=1

1
j qjTx

j = a0T +
∑2
j=1

1
j ajTx

j .
(4)

Bearing this in mind, the case of a crowd-averse system
where the players seek to drive their state towards state
values characterized by a lower density, namely the problem
described in Section II is considered.

Theorem 1: The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is de-
scribed by the equations:

∂tvt +

[
−β

2

2b +
(
σ
2γ

)2]
(∂xvt)

2

+αx∂xvt + a0t + a1tx+ 1
2a2tx

2

+ 1
2σ

2x2∂2xxvt = 0, in R× [0, T [,

vT (x) = q0T +
∑2
j=1

1
j qjTx

j , in R,

∂tmt +
∑n
j=1 ajt

[
(1 + 1

j )(
α− β2

b q2t + σ2

2γ2 q2t

)
xjt

+
(
− β2

b q1t + σ2

2γ2 q1t

)
xj−1t

]
+a0t

(
α− β2

b q2t + σ2

2γ2 q2t

)
− 1

2σ
2∂2xx

(
x2mt

)
= 0, in R× [0, T [,

m0(x) = a00 +
∑n
j=1

1
j aj0x

j in R.

(5)

The optimal control and worst disturbance are then given by
u∗t = −β

b ∂xvt,

ζ∗t = σ
2γ2 ∂xvt.

(6)

The above result implies that to find the optimal control input
the two coupled PDEs in (5) in v and m with the given
boundary conditions on vT and m0 must be solved. This
is commonly done by iteratively solving the HJB equation
for fixed m and by entering the optimal u obtained from
(6) in the FPK equation in (5), until a fixed point in v
and m is reached. Any solution of the above system of
equations is referred to as worst-disturbance feedback mean-
field equilibrium. The existence of solutions for problem
(5) can be guaranteed by the following assumptions. Let
m0 be absolutely continuous with a continuous density
function with finite second moment. As the integrand of
the cost is convex in u, and concave in the disturbance ζ,
one gets a convex-concave stage cost function. The drift
is linear and hence Lipschitz continuous because α, β, σ
are bounded. We assume that the Fenchel transform of c
is Lipschitz in (x, z). Finally, we assume that the function
p 7−→ σ2

4γ2 ‖p‖2 + H is strictly convex, differentiable and

σ2

4γ2 ‖p‖2 + H is Lipschitz continuous. Note that this last
condition is weaker than the convexity assumption on H .
Under the above main assumptions, the existence of solution
is established in Theorem 2.6 in [18]. In addition to this, as
the cost is Lipschitz continuous on m the solution to the
asymptotic case with infinite number of players is related to
the case with a finite number of players N by the classical
bound 1√

N
provided in [14], [18]. The following theorem

establishes that the mean-field system (5) can be replaced
by a two-point boundary value problem.

Theorem 2: The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is equiv-
alently described by the ordinary differential equations:

q̇0t +

[
−β

2

2b +
(
σ
2γ

)2]
q21t + a0t = 0 ,

q̇1t +

[
−β

2

2b +
(
σ
2γ

)2]
(2q1tq2t) + αq1t + a1t = 0 ,

1
2 q̇2t +

[
−β

2

2b +
(
σ
2γ

)2]
q22t + αq2t + 1

2a2t + σ2

2 q2t = 0 ,

qjT = ajT ,

ȧ0t + a1t

(
− β2

b q1t + σ2

2γ2 q1t

)
+ a0t

(
α− β2

b q2t

+ σ2

2γ2 q2t

)
− 1

2σ
22a0t = 0,

ȧ1t + a1t

[
α2 + (−β

2

b + σ2

2γ2 )2q2t

]
+a2t(−β

2

b + σ2

2γ2 )q1t

]
− 6

2a1tσ
2 = 0,

1
j ȧjt + ajt[
α(1 + 1

j ) + (−β
2

b + σ2

2γ2 )(1 + 1
j )q2t

]
+aj+1 t(−β

2

b + σ2

2γ2 )q1t − 1
2σ

2 (j+2)(j+1)
j ajt

= 0, j = 2, . . . , n− 1

1
n ȧnt + ant(1 + 1

n )(
α− β2

b q2t + σ2

2γ2 q2t

)
− 1

2σ
2 (n+2)(n+1)

n ant = 0

aj0 given for all j = 1, . . . , n.
(7)

The optimal control and worst disturbance are then given by
ũt = −βb (q2txt + q1t),

w̃t = σ
2γ2 (q2txt + q1t).

(8)

Remark 2: The ODEs in (7) constitute a somewhat atyp-
ical two-point boundary value problem since the initial
conditions aj0 are given for all j, whereas the final conditions
qjT = ajT for j = 0, 1, 2 are unknown a-priori. However, by
performing the change of coordinates q̃jt = qjt−ajt for j =
0, 1, 2, the problem can be transformed into a standard two-
point boundary value problem with final conditions q̃jT = 0.
Solutions to this modified problem can be found numerically,



for example using the shooting method, and these solutions
can be used to obtain solutions to the original ODEs (7).

V. ESTABLISHING ASYMPTOTIC STABILITY

In this section it is shown that the stochastic differential
equation describing the closed-loop system has an exponen-
tially and asymptotically stable equilibrium. Substituting the
optimal control and the worst-case disturbance (8) into the
dynamics for xt yields the closed-loop system

dxt = [αxt + βu∗t + σζ∗t ] dt+ σxtdBt
=
[
α+

(
− β2

b + σ2

2γ2

)
qt

]
xtdt+ σxtdBt,

t ∈ (0, T ], x0 ∈ R .

Consider now the following assumption.

Assumption 2: There exists κ > 0 such that

−κxt ≥
[
α+

(
− β2

b + σ2

2γ2

)
qt

]
xt . (9)

With Assumption 2 the stability analysis can be performed
within the framework of stochastic stability theory [19].
Consider the infinitesimal generator

L =
1

2
σ2x2t

d2

dx2t
− κxt

d

dxt
, (10)

and the Lyapunov function V (x) = x2. The stochastic
derivative of V (x) is obtained by applying the infinitesimal
generator to V (x). This yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt
= [σ2 − 2κ]x2t .

Proposition 1 ([19]): Suppose Assumption 2 holds. If
V (x) ≥ 0, V (0) = 0 and LV (x) ≤ −ηV (x) on Qε :=
{x : V (x) ≤ ε}, for some η > 0, and for arbitrarily large
ε, then the origin is asymptotically stable “with probability
one”, and

Px0

{
sup

T≤t<+∞
x2t ≥ λ

}
≤ V (x0)e−ψT

λ
,

for some ψ > 0.

From the above theorem we have the following result, which
establishes exponential stochastic stability of the mean-field
equilibrium.

Corollary 1: Let Assumption 2 hold. If [σ2 − 2κ] < 0
then lim

t→∞
xt = 0 almost surely and

Px0

{
sup

T≤t<+∞
x2t ≥ λ

}
≤ V (x0)e−ψT

λ
,

for some ψ > 0.

VI. NUMERICAL STUDIES

A numerical example illustrating the theory is presented in
this section. Consider a system consisting of n = 5422 indis-
tinguishable agents with dynamics (1). Furthermore, suppose
each of the agents seeks to minimise a cost functional of the
form (3) subject to an adversary disturbance. The initial dis-
tribution is given by m0 = 0.0184+0.0184x+ 1

20.0373x2 +
1
30.0019x3 − 1

40.0100x4, i.e. the initial distribution is such
that Assumption 1 is satisfied. The optimal control and the
worst-case disturbance are then given by (8), which relies
on the solution of the ODEs (7). These ODEs are solved
numerically using the method discussed in Remark 2. The
solution to (7) is then used to simulate the closed-loop system
(1) for a discretised set of states, namely x ∈ [−1, 1]. The
states of the n agents are initially within this set of states
and their trajectories are computed over the period [0, 5].
Simulations have been run for σ = 0, i.e. without any
noise or disturbances, and with σ = 0.05 and σ = 0.1.
The remainder of the parameters are α = −0.01, β = 0.2,
b = 0.1 and γ = 1.

Figures 1 and 2 show the solution to the two point
boundary value problem (7), for the case in which σ = 0.05.
The solid lines in Figure 1 show the time history of the
coefficients a0t (top), a1t (middle) and a2t (bottom), whereas
the dashed lines show the time histories of the coefficients
q0t (top), q1t (middle) and q2t (bottom). Note that the initial
conditions on the coefficients aj0 and the final conditions,
qjT = ajT , are satisfied for j = 0, 1, 2. Figure 2 shows the
time histories of the coefficents a3t (top) and a4t (bottom),
and these are such that the initial conditions on a30 and a40
are satisfied. The results are similar for σ = 0 and σ = 0.1.

Figure 3 shows the time histories of the state of each
player, when the agents use the control strategies (8), for
σ = 0 (top), σ = 0.05 (middle) and σ = 0.1 (bottom).
Similarly, Figures 4, 5 and 6 show the initial (black dashed
line) and final (black solid line) distribution of the agents’
states for σ = 0, σ = 0.05 and σ = 0.1, respectively. The
dash-dotted black lines indicate the distribution of the agents
at an intermediate time, namely at t = 2. The grey lines
indicate the distribution expected from the solution of the
two-point boundary value problem (7) which is shown in
Figures 1 and 2. Note that the distribution computed based
on the evolution of the agents’ states coincides well with that
predicted by the solution to the two-point boundary value
problems in all three cases.

The initial distribution is such that the distribution of
agents is relatively low between x = −0.5 and x = −1.
It is therefore expected that the agents move towards this
region. This is precisely what occurs, as can be seen Figure
3.

VII. CONCLUDING REMARKS

A problem involving a population of crowd-averse agents
is formulated as a mean-field game. It is demonstrated that,
under certain assumptions, a set of ODEs, forming a two-
point boundary value problem, are obtained in place of the
typical PDEs associated with mean-field games. The theory
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is illustrated by a numerical example. Directions for future
work inlcludes allowing for value functions that are not
quadratic. It is also if interest to consider different cost
functions and consider problems in which the agents have
“local” interactions only.
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Stochastic Dynamic Games: Closed Loop Kean-Vlasov Systems and



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

state

d
is
tr
.

Fig. 5. Black lines: the initial (dashed line), intermediate (dash-dotted
line) and final (solid line) distributions of the agents’s states for σ = 0.05
(top). Grey lines: the intermediate distribution (dash-dotted line) and final
distribution (solid line) resulting from the solution of (7) for σ = 0.05.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

state

d
is
tr
.

Fig. 6. Black lines: the initial (dashed line), intermediate (dash-dotted
line) and final (solid line) distributions of the agents’s states for σ = 0.1
(top). Grey lines: the intermediate distribution (dash-dotted line) and final
distribution (solid line) resulting from the solution of (7) for σ = 0.1.
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