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Abstract

We present a receding horizon algorithm that converges to the exact solution
in polynomial time for a class of optimal impulse control problems with uni-
formly distributed impulse instants and governed by so-called reverse dwell
time conditions. The cost has two separate terms, one depending on time
and the second monotonically decreasing on the state norm. The obtained
results have both theoretical and practical relevance. From a theoretical per-
spective we prove certain geometrical properties of the discrete set of feasible
solutions. From a practical standpoint, such properties reduce the compu-
tational burden and speed up the search for the optimum thus making the
algorithm suitable for on-line implementation in real-time problems. Our
approach consists in approximating the optimal impulse control problem via
a binary linear programming problem with a totally unimodular constraint
matrix. Hence, solving the binary linear programming problem is equivalent
to solving its linear relaxation. Then, given the feasible solution from the
linear relaxation, we find the optimal solution via receding horizon and local
search. Numerical illustrations of a queueing system are performed.

Keywords: Impulse Control; Hybrid Systems; Reverse Dwell Time.

1Conference version [3] in Proc. of the 48th CDC, Shangai, China, 2009. Research
supported by PRIN 20103S5RN3 “Robust decision making in markets and organization”.
Part of this work has been conducted during a sabbatical period that the author spent as
academic visitor at the Department of Engineering Science, University of Oxford, UK.

Preprint submitted to Elsevier November 28, 2014



1. Introduction

Cyber-physical systems are often characterized by shared communication
channels. Thus, a main issue is the one of minimizing the “attention” that
a control task requires, or which is the same, maximizing the dwell time
(also called interexecution time), i.e., time between two consecutive execu-
tions [10]. We reframe the above challenge in the context of optimal impulse
control problems (see, e.g., [5, 7, 8, 18, 22, 23] and references therein) with
uniformly distributed impulse instants.

The decision problem consists in finding the optimal schedule of the im-
pulses to drive and keep the system in a safe operating interval, while mini-
mizing a function related to the cost of the impulses. The decision variables
are thus binary (whether to act with an impulse at a given time instant or
not) and this is an element in common with mixed integer predictive control
[1], boolean-controlled systems [2], and alphabet control [12]. The problem
applies to practical examples such as queueing systems, batch deliveries in
inventory systems (see, e.g., [7] Example 3.5), bank account flows in eco-
nomics [17], impulsively controlled mechanical systems (bouncing balls) (see,
e.g., [7] Example 3.2).

We cast the problem within the framework of Input to State Stabiliz-
ability (ISS) of impulsively controlled systems with reverse dwell time [15].
Actually, we start from the observation that the problem of driving and keep-
ing the system in a safe operating interval can be reviewed as an ISS problem
over an infinite horizon. In this context, it is assumed that the continuous
time system has the tendency to become unstable, while the applied impulses
have a stabilizing effect upon the system. Under the aforestated assumption,
previous results in [15] establish that the system will be ISS as long as the
exerted impulses are separated by a time interval bounded by above. This
last condition is known as reverse dwell time condition. We then impose a
cost structure on the applied impulses thus turning the basic stabilizabil-
ity problem into a decision optimization one. The areas of the impulses at
the time instants under consideration are predetermined, i.e., one does not
choose the area of the impulse but simply whether or not to apply an impulse
at a certain point in time. When introducing the optimization problem, we
also reduce the horizon window into a finite one as this has the meaning of
minimizing the rate for the accumulation of the considered cost. Actually,
though ISS has a meaning over an infinite operational horizon, the cost min-
imization is well-posed only over a finite horizon. This is clear as over an
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infinite horizon we would end up with infinite impulses and costs.
The problem at hand differs from other optimal impulse control prob-

lems [14] in two main aspects. First, the considered cost has a discrete-time
structure which has its roots in the discrete-time nature of the controlled
impulses. Second, due to the nature of the reverse dwell time constraints, we
can turn the problem into an integer nonlinear program [20].

The present paper improves the results in [3] in at least three directions:
i) a simplified reformulation of the problem based on previous results on
reverse dwell time impulse control [15], ii) a completely new rearrangement
of the receding horizon framework and iii) additional numerical illustrations
of a queueing system [11, 19].

We highlight three main contributions that apply to problems with reverse
dwell time conditions. First, we provide cost bounds by approximating the
optimal impulse problem by a more tractable linear program. Second, we
analyze constraints to reduce the computational burden associated to the
exploration of the solution domain. Third, we tighten the above bounds via
a receding horizon algorithm embedding the above constraints.

The obtained results have both theoretical and practical relevance. From
a theoretical perspective we prove certain geometrical properties of the feasi-
ble solutions. Actually, the set of feasible solutions is an integral polyhedron.
Such properties can be used in practice to reduce the computational burden
and speed up the search for the optimum. Indeed, the approximate solution
(given by the linear program) provides constraints that reduce the computa-
tional burden for the optimal search. Visualizing the domain exploration on a
decision tree, such constraints allow to prune nodes at a higher level. Practi-
cal relevance derives then from the possibility of implementing the algorithm
on-line in real-time problems.

The decision problem is formulated as an integer nonlinear program (INP ).
This requires the exact knowledge of the interval between the different can-
didate impulse times over the considered horizon [13, 16]. To solve it, we
go through an integer linear reformulation (ILP ) [20], which can eventually
be turned into an equivalent linear program (LP ) [9]. All the three for-
mulations are also casted within a receding horizon framework to apply to
real-time control schemes. The cost structure and the local search are new
contributions with respect to [2]. To be more specific, in the current paper,
costs are, in general, nonlinear and state dependent whereas in [2] costs were
independent of state (see eq. (9) in [2]). The result is that here we deal with
a nonlinear binary program while in [2] we are faced with a linear binary
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one. The nonlinear binary program is derived under the assumption that the
cost has two separate terms: one depending on time and the other monoton-
ically decreasing on the state norm. For the aforestated reasons, finding the
optimal schedule of the impulses is a real challenge for this work.

This paper is organized as follows. In Section 2, we introduce the problem.
In Section 3, we provide motivations. In Section 4, we establish the main
results and collect all the proofs in an appendix. In Section 5, we present
a simulation example. Finally, in Section 6, we draw some conclusions and
discuss future works.
Notation. We use the notation x′ to mean the transpose of any given vector
x. We write ‖x‖ to denote its Euclidean norm, and ‖x(t)‖∞ := maxi |xi(t)| its
infinity norm. For two vectors x and y, we use x < y (x ≤ y) to denote xi < yi
(xi ≤ yi) for all coordinate indices i. We use t to denote the continuous-time
index and tk (or simply k) the discrete time index. The symbol t+ indicates
the time instant right after an impulse at time t. Further, x(t+) is given by
the right-limit operator as x(t+) = limτ→t+ x(τ) for a piecewise continuous
function x(.). We denote by Z+ and R+ the set of nonnegative integers and
reals respectively. The symbol {0, 1}n denotes the finite set of n-dimensional
binary vectors. Similarly, for given positive scalars m and N , we indicate
by {0, 1}m×N the m × N -dimensional binary matrix. We usually indicate
with N the horizon length. We use u := (u(0), . . . , u(N − 1))′ to indicate
the vector of impulses over the horizon [0, N ]. Given u, and for generic
integers α, β ∈ [0, N −1] with α < β, we denote by u[α,β] := (u(α), . . . , u(β))′

the vector of impulses over the interval [α, β] extracted from u. We also
write u[α,β](k) to indicate u(k), i.e., the kth coordinate of u[α,β] for generic k
between α and β.

2. Impulsively-controlled systems and reverse dwell time

Consider an infinite set of strictly increasing candidate impulse times
{t0, t1, t2, . . .} defined over the infinite horizon [0,∞) and a control law u :
{t0, t1, t2, . . .} → {0, 1} which allows us to activate impulses at any discrete
time tk from 0 to ∞. Specifically, the control law u(·) returns one in cor-
respondence to an impulse and zero otherwise (see, e.g., boolean-controlled
systems in [2]). With this premise, the system takes on the form in equa-
tion (1), where the function f : Rn×R

m 7→ R
n is the continuous dynamics of

state x(t), the function h(x(t), d(t)) is the impulse dynamics, and the variable
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d(t) is a disturbance:

ẋ(t) = f(x(t), d(t)) if t 6= tk OR u(tk) = 0
x(t+) = h(x(t), d(t)) otherwise.

k = 0, 1, 2, . . . (1)

In the above dynamics the areas of the impulses at the time instants under
consideration are predetermined. Further, let f be locally Lypschitz, and all
signals be right-continuous.

Let N (τ, ti) be the number of impulses in the open interval [ti, ti + τ) for
any 0 ≤ ti < ti + τ .

Definition 1 (reverse dwell time condition). A reverse dwell time con-
dition in the most simple form requires that there must exist some positive T
for which (2) holds for every time ti:

N (T, ti) ≥ 1. (2)

The above condition comes into play in ISS problems over an infinite
horizon. Here a controller has to stabilize asymptotically (the control horizon
is infinite) an “unstable” dynamics through “infinitely often” and not “too
rare” controlled impulses [15].

The next step towards the problem formulation is to introduce the func-
tion to minimize. To this purpose, let V : Rn → R, be a locally Lipschitz,
positive definite, radially unbounded function. Let the cost of an impulse
at time tk and state x(tk) be c(x(tk), tk) = K(tk) + Ψ(V (x(tk))), where the
function Ψ : R+ 7→ Z+ denotes a nonnegative integer cost depending on
V (x(tk)) and the function K : R+ 7→ Z+ is a nonnegative integer cost de-
pending on time tk. Though the overall cost of any given control law u(·)
over the infinite horizon [0,∞) is infinite, it is still meaningful to minimize
the rate for the accumulation of the cost over a finite horizon. In this spirit,
let {t0, t1, . . . , tN−1} be the finite set of candidate impulse times over the fi-
nite horizon [t0, tN ] whose length is fixed apriori. Then, the total cost over
the horizon takes on the nonlinear form (we omit dependence on initial state
x(0))

J(u(·)) =
∑

k=0,1,...,N−1

c(x(tk), tk)u(tk). (3)

At this point, we need to introduce some monotonicity properties for the
cost. Monotonicity plays a central role in the local search procedure discussed
later on (see, e.g., the proof of Theorem 2).
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Assumption 1 (monotonicity of cost). Function Ψ(·) is decreasing in V (x(t)).

The above assumption simply says that, let V be a norm function, part of
the cost is monotonically decreasing in the state norm. This is a key factor
in reducing computations in the local search procedure. In the queueing
system presented later on, we will see that monotonicity has to do with
the economies of scale [6]. Similarly, in bank account flows, impulses are
payments and monotonicity can be interpreted as interests deriving from late
payments. We finally need to remark that when introducing the prediction
step for Ψ(V (x(tk))) in the receding horizon algorithm, we will ignore the
disturbance or will replace it with its mean value.

Finally, on the basis of the above definition, we are in the position of
stating the problem of interest.

Problem 1. Find an impulse control law u(·) that minimizes the cost (3)
and satisfies m reverse dwell time conditions (2) on intervals [ti, ti + T ),
i = 1, . . . ,m, and 0 ≤ ti < ti + T ≤ tN .

Note that the optimization procedure requires the exact knowledge of the
interval between the different candidate impulse times over the considered
horizon [13, 16].

Two main points distinguish Problem 1 from other optimal impulse con-
trol problems. First, the cost (3) has a discrete-time structure which has its
roots on the discrete-time nature of the controlled impulses [14]. Second, the
nature of the constraints (2) allows us to turn the problem into an integer
nonlinear program as shown in the following.

3. Motivations

3.1. ISS stability to justify reverse dwell time conditions

Reverse dwell time conditions find their roots in Input-to-state stability.
We recall that in Theorem 1 and Corollary 1 (b) in [15] it is proved that
under a certain assumption on the continuous and impulse dynamics (1) (see
Assumption (4a)-(4b) in [15]), a sufficient condition for system (1) to be ISS
over an infinite horizon is that impulses satisfy a so-called reverse dwell time
condition. In the following, we recall the required assumption.

Assumption 2 (ISS-Lyapunov function). There exists a function V :
R

n → R, locally Lipschitz, positive definite, radially unbounded, and which
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satisfies the following condition for given p < 0 and q > 0 and for some
function χ ∈ K∞

2:

∇V (x(t))f(x(t), d(t)) ≤ −pV (x(t)) + χ(|d(t)|), ∀x(t), d(t), (4)

V (h(x(t), d(t))) ≤ e−qV (x(t)) + χ(|d(t)|) ∀x(t), d(t). (5)

The above function V (·) is called candidate exponential ISS-Lyapunov func-
tion for (1). Roughly speaking, condition (4) with p < 0 tells us that the
continuous flow f(., .) tends to destroy ISS (see the definition in [15]) by
pushing the state far from the origin. To counter this effect and preserve
ISS, impulses tend to drive the state towards the origin as stated in condi-
tion (5) for q > 0. Note that, despite the binary nature of variable u(tk),
the sign of the impulse depends on the sign of the current state through the
function h(·, d(t)).

A possible approach to compute ISS-Lyapunov function is based on the
discretization of the system in which case the problem turns into a feasibility
problem for the integer nonlinear program which we will set-up in the next
section.

Under the aforementioned assumption, Corollary 1 in [15], which we adapt
and copy below, establishes that the system will be ISS as long as the exerted
impulses are separated by a time interval T no greater than q/|p|.

Lemma 1. System (1) is ISS if N (T, ti) ≥ 1, where T ≤ q/|p|.

Note that the preliminary result reported above is a special case of Corollay 1
in [15].

3.2. Economies of scales to justify cost monotonicity
Consider a queue describing a constant demand accumulating in a pro-

duction/distribution inventory system or at a service provider. The system
manager chooses in which instants to process the accumulated demand thus
to empty the queue. Then, the queue length is the system state. Each time
the queue is served an impulse acts on the system reducing the state to zero.
The queue is described by the following impulsive dynamics:

ẋ(t) = d(t) if t 6= tk OR u(tk) = 0
x(t+) = 0 otherwise.

k = 0, 1, 2, . . . (6)

2A function θ : [0,∞) → [0,∞) is of class K, and we write θ ∈ K when θ is continuous,
strictly increasing, and θ(0) = 0. If θ is also unbounded, then we say that it is of class
K∞ and write θ ∈ K∞.
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In this context, the term Ψ(V (x(tk))) is representative of the economies of
scales. Actually, suppose that the system manager pays a processing cost
cost(x(tk)) increasing and concave on x(tk) anytime he/she processes the de-
mand. Then, if x(tk) > 0 is the demand processed at time tk, we can inter-
pret cost Ψ(·) as the cost per unit of demand processed, i.e., Ψ(V (x(tk))) :=
cost(x(tk))

x(tk)
which is decreasing due to concavity of cost(·). As regards the cost

term K(tk), it can be used to model inertia, namely the tendency of the
system manager to postpone processes, and this is captured by taking K(tk)
decreasing. Conversely, increasing K(tk) would mean a prompt demand pro-
cessing on the part of the system manager. Constant K(tk) can be used
whenever the manager’s aim is to simply minimize the number of actions
(impulses) on the queue system over a finite horizon.

4. Main results

We highlight three main results pertaining to the case of impulsive sys-
tems with uniformly distributed impulse instants. First, we analyze con-
straints to reduce the computational burden associated with the exploration
of the solution domain. Second, we tighten the above bounds via a receding
horizon algorithm embedding the above constraints. Third we show that the
receding horizon algorithm is optimal for the case T = N . As a preliminary
result, we provide cost bounds by replacing the original problem with a more
tractable linear program.

4.1. Preliminary result: cost bounds

In this section, we provide an upper bound for the cost. To do this, we
first show how the optimal impulse control problem described in Problem 1
can be turned into an integer nonlinear programming one (INP ). We then
introduce an associated integer linear program (ILP ) and use the optimal
solution of this latter problem to compute an upper bound for the cost.

The (INP ) is based on a discretized model for which we need to use an
exact integration over the interval between two candidate impulse times. In
order to simplify the notation of the (INP ) to be defined in this section,
let us assume that the impulses for the problem described in the previous
section may occur only at integer times, and therefore we have tk = k, and
we can simply write x(k), u(k) instead of x(tk) and u(tk). Let us define

f(x(k), d(k)) :=
∫ k+1

τ=k
f(x(τ), d(τ))dτ . In the case where the latter integra-

tion is subject to uncertainty, see e.g. [21], one can deal with a robust
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approximation which would appear in the form of a min-max program [4].
Observe that the reverse dwell time conditions (2) can be described by linear
constraints of the form:










T
︷ ︸︸ ︷

1 . . . 1 0 . . . 0 . . .

T
︷ ︸︸ ︷

0 . . . 0
0 1 . . . . . . . . . 1 . . . 0 . . . 0

...
. . .

...
0 . . . 0 0 . . . 0 . . . 1 . . . 1










︸ ︷︷ ︸

A






u(0)
...

u(N − 1)




 ≥






1
...
1




 .

(7)

In the above constraints, we have denoted by N the number of candidate
impulses, which follows from assuming tk = k. From the latter assumption,
though T in the original problem is not an integer but a real, we can simply
take T as integer. The above linear constraints are useful to introduce the
set of feasible solutions for our nonlinear integer program. To this aim, we
denote by u = [u(0), . . . , u(N −1)]′ the column vector of candidate impulses.
Then all feasible solutions are in the discrete set:

F = {u ∈ {0, 1}N : linear constraints (7)}.

To complete the formulation of the nonlinear integer program, let us
define the vector of exact costs c = [c(x(0), 0), . . . , c(x(N − 1), N)], and let

us recall that f(x(k), d(k)) :=
∫ k+1

τ=k
f(x(τ), d(τ))dτ .

For the case of systems with impulse times of the form tk = k, Problem 1
is transformed in the following mathematical problem:

(INP ) min
u∈F

cu (8)

x(k + 1) = x(k) + f(x(k), d(k))

+ [h(x(k), d(k))− x(k)]u(k), k = 0, . . . , N − 1.

Here, the state evolution x(k), k = 0, 1, . . . , N is captured by the above sam-
pled dynamics obtained integrating (1). The term [h(x(k), d(k))− x(k)]u(k)
is such that when we compute the integration over the interval between two
candidate impulse times, say k and k+1, the initial value of the state is either
h(x(k), d(k)) or x(k) depending on whether there is an impulse at time k,
namely u(k) = 1, or not.

Looking at the above problem, we would like to reiterate that a binary
control variable simply captures the possibility of activating a discrete event
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to stabilize an unstable dynamics. It is an impulse in our example, but it
could also be a mode switch as in [2].

Note that a mathematical problem (INP ) of type (8) can be obtained in
the more general case where the candidate impulse times are not uniformly
distributed under certain conditions. First, we need to know exactly the
interval between the different candidate impulse times over the considered
horizon. Second, we need to be able to perform an exact integration over the
interval between two candidate impulse times.

To put more emphasis on certain geometric aspects of the feasible set F ,
we next get rid of any nonlinearities in the costs and focus on a linear rear-
rangement of the (INP ) centered around the same set F . Specifically, let
c̃ = [K(0), . . . , K(N − 1)] be the vector of the costs that depend only on
time, and refer to the following integer linear program:

(ILP ) min
u∈F

c̃u. (9)

The above two problems (8) and (9) share the same feasible set F . We
are now in the position of introducing the receding horizon approach used to
solve the above problems.

To convexify the set of feasible solution, we start by the observation that
F is a discrete set in the sense that it contains only integer points. However
we can replace the integrality constraints u ∈ {0, 1}N by the relaxed and
more tractable constraints 0 ≤ u ≤ 1 and consider the resulting polytope

P = {u ∈ R
N : linear constraints (7), 0 ≤ u ≤ 1} .

Relaxing the integer constraints has the advantage of turning (ILP ) into a
more tractable linear program:

(LP ) min
u∈P

c̃u. (10)

Denote uLP an optimal solution of (LP ) and write JLP to mean the opti-
mal cost returned by (INP ) in correspondence to the solution uLP . Similarly,
let JILP be the optimal cost returned by (INP ) in correspondence to an op-
timal solution uILP of (ILP ). We are in the position to state the main result
of this paper. The novelty is that this result is based on geometric consid-
erations borrowed from combinatorial optimization (see [20], part III.1 on
integral polyhedra, p. 540).
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Theorem 1. Solution uLP is also optimal for (ILP ) and therefore there
exists a uILP = uLP for which it holds:

JLP = JILP ≥ JINP . (11)

Proof. Given in the appendix. �

The above result hinges upon the fact that P is an integral polyhedron.
As a consequence we have that (LP ), which is the linear relaxation of the
(ILP ), has an integral optimal solution. We recall from the combinatorial
optimization that, roughly speaking, a linear relaxation is a problem where
all integer constraints have been dropped. Now, if P is an integral polyhe-
dron, all its vertices are integer. This implies that, when we solve the LP
problem we obtain an optimal solution which corresponds to a vertex of P
and therefore it is integer, even if the LP problem does not impose a-priori
for the solution to be integer (see, e.g., total unimodularity in [20]). The
advantages of adopting an integral polyhedron is common to another work
of the author [2], but for a different problem.

The significance of the above result is three-fold: i) we can formulate a
linear program whose solution uLP satisfies the reverse dwell time conditions
and as such implicitly stabilizes the dynamics in the sense of ISS, ii) we can
solve a linear program to bound from above the optimal cost JINP , iii) we
show that tightness of the bound depends solely on the nonlinear dependence
of the cost c(x(k), k) on x(k) (but not on the integral nature of the decision
variables).

4.2. Tightening the bounds via receding horizon and local search

This section introduces a method to improve the bounds provided in the
preceding section. The method is based on the receding horizon algorithm
illustrated in Table 1. In the following, we first introduce the algorithm and
then discuss its properties.

4.2.1. The algorithm

The algorithm receives uLP as input, and gives as output the impulse
sequence urh whose cost is Jrh := curh. We recall that uLP is an optimal
solution of (LP ) in (10). The method consists in solving problem (INP )
online over a receding horizon [α(j), β(j)] with 0 ≤ α(j) < β(j) < N . Let us
denote by

(
INP[α(j),β(j)]

)
the problem solved at the generic iteration j. In

addition, let us denote by u∗

[α(j),β(j)] the optimal solution of
(
INP[α(j),β(j)]

)
.
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Receding horizon algorithm

Input: system parameters (see eq. (1)-(3)) and uLP .
Output: impulse sequence urh

1 : Initialize Assign j := 0; α(j) = 0 and β(j) = T − 1,
2 : If β(j) < N − 1
3 : (Prediction horizon) solve (INP[α(j),β(j)]) and find u∗

[α(j),β(j)]

as in (12)
4 : (Control horizon) implement u(α(j)) . . . u(γ)
5 : set j = j + 1, α(j) = γ + 1, and β(j) = α(j) + T − 1
6 : else implement u(α(j)) = . . . = u(N − 1) = 0
7 : end if

Table 1: Receding horizon algorithm.

We will show that u∗

[α(j),β(j)] has only one non-null component at time γ ∈

[α(j), β(j)], namely u∗

[α(j),β(j)] = (u∗(α(j)) . . . u∗(β(j)))′ where

u∗(α(j)) = . . . = u∗(γ(j)− 1) = 0, u∗(γ) = 1,
u∗(γ + 1) = . . . = u∗(β(j)) = 0.

(12)

The problem solved at iteration j can be defined inductively. To do this,
let us introduce the column vector of decisions over the horizon [α(j), β(j)]

u[α(j),β(j)] = (u(α(j)), . . . , u(β(j)))′,

and the feasible set

F[α(j),β(j)] = {u[α(j),β(j)] ∈ {0, 1}T :

β(j)
∑

k=α(j)

u(k) ≥ 1}.

Now, let the receding horizon solution returned at iteration j − 1 be

uj−1 := (u∗′

[0,α(j)−1], u
LP ′

[α(j),N−1])
′.

We recall that uLP
[α(j),N−1] involves the components of uLP in the interval

[α(j), N − 1]. Thus, the solution uj−1 differs from uLP only in the first
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α(j) components. For j = 0, we initialize α(j) = 0, u∗

[0,α(j)−1] = nil and

uj−1 := uLP
[0,N−1]. Given the inductive reasoning, the solution u∗

[0,α(j)−1] at

j − 1 is unambiguously determined once we clarify how to obtain uj =
(u∗′

[0,α(j+1)−1], u
LP ′

[α(j+1),N−1])
′, and in particular u∗

[0,α(j+1)−1] at iteration j.
The problem solved at the generic iteration j is given by:
(
INP[α(j),β(j)]

)
min

u[α(j),β(j)]∈F[α(j),β(j)]

cu (13)

u[β(j)+1,N−1] = uLP
[β(j)+1,N−1]

u[0,α(j)−1] = u∗

[0,α(j)−1]

x(k + 1) = x(k) + f(x(k), d(k))

+ [h(x(k), d(k))− x(k)]u(k), k = 0, . . . , N − 1.

Essentially, the vectors u[0,α(j)−1] and u[β(j)+1,N−1] are fixed and the opti-
mization involves only the components in the interval [α(j), β(j)], namely
u[α(j),β(j)].

The interval extremes α(j) and β(j) are set as explained next. We set
α(j) equal to the first instant after an impulse has been activated, i.e.,
u∗

[0,α(j)−1](α(j)− 1) = 1. We set β(j) so that

C1 the interval [α(j), β(j)] contains at most T candidate impulses, and

C2 the vector uLP
[α(j),β(j)] has only one non-null component, i.e.,

uLP (α(j)) = . . . = uLP (δ(j)− 1) = 0, uLP (δ) = 1,

uLP (δ + 1) = . . . = uLP (β(j)) = 0.

In the above, we denote by δ the index (time instant) of the non-null
component of uLP

[α(j),β(j)].

In other words, we set β(j) := min{α(j) + T − 1, r}, where r is the
istant of a second impulse that should appear in uLP

[α(j),α(j)+T−1], formally,

r := {minr̂∈[α(j),N−1]|
∑r̂

k=α(j) u
LP
[α(j),N−1](k) = 2}.

To compute the solution uj = (u∗′

[0,α(j+1)−1], u
LP ′

[α(j+1),N−1])
′, we need to

compute the vector u∗

[0,α(j+1)−1]. This is obtained by juxtaposition as clarified

next. Let us consider two consecutive intervals [0, α(j)− 1] and [α(j), α(j +
1)− 1]. Let the optimal solutions in the two intervals be

u∗

[0,α(j)−1] = (u∗(0), . . . , u∗(α(j)− 1))′,

u∗

[α(j),α(j+1)−1] = (u∗(α(j)), . . . , u∗(α(j + 1)− 1))′,

13



and juxtapose both solutions in order to define a new vector

u∗

[0,α(j+1)−1] = (u∗′

[0,α(j)−1], u
∗′

[α(j),α(j+1)−1])
′. (14)

The solution returned by the algorithm at iteration j is then

uj = (u∗′

[0,α(j+1)−1], u
LP ′

[α(j+1),N−1])
′. (15)

Given u∗

[α(j),β(j)], we set α(j + 1) = γ + 1 and reiterate the procedure.
The method can be visualized using the decision tree displayed in Fig. 1.

u(α(j)) u(β(j))

u(δ) u(γ)

u(α(j + 1)) u(β(j + 1))

u(β(j) + 1) u(β(j) + 1)
u(β(j) + 1)

Figure 1: Decision tree illustrating the exploration of the solution domain.

There, edges correspond to variables and nodes correspond to time in-
stants. The edges departing from any node identify the variables at future
times. In particular, the edges at level 1 represent the decision variables
u(α(j)), . . . , u(β(j)) involved in

(
INP[α(j),β(j)]

)
. The dashed edge at level 1

corresponds to the non-null component uLP (δ) = 1 introduced in condi-
tion C2. The dashed edges at level 2 are all associated with the component
of vector u[β(j)+1,N−1] which is fixed to one. We recall that in the definition
of

(
INP[α(j),β(j)]

)
the vector u[β(j)+1,N−1] is fixed. The algorithm builds upon

the idea that u∗

[α(j),β(j)] has only one non-null component at time γ, as ex-

pressed by (12). In addition to this, we have γ ≥ δ, where δ is the non-null
component of uLP in [α(j), β(j)], as discussed in condition C2. This is illus-
trated in Fig. 1, where the edge for u(γ) is on the right of the edge for u(δ).
This fact is formally stated in the next section.
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4.2.2. Properties of the algorithm

Let us start by noting that problem
(
INP[α(j),β(j)]

)
guarantees the reverse

dwell time condition on the interval [α(j), β(j)] from the definition itself of
F[α(j),β(j)].

With regards to the setting of β(j), condition C1 is fundamental to
guarantee feasibility of the solution returned by the algorithm as shown in
Lemma 2, and furthermore it allows us to specialize the reverse dwell time
conditions to [α(j), β(j)] and so we write them as u[α(j),β(j)] ∈ F[α(j),β(j)]. Con-
dition C2 is critical to arrive at a solution not worse than uLP as established
in Lemma 3.

The next theorem establishes that u∗

[α(j),β(j)] has only one non-null com-

ponent at time γ ≥ δ, where δ identifies the non-null component uLP (δ) = 1
as in condition C2.

Theorem 2. Solution u∗

[α(j),β(j)] has the structure given in (12), namely, for

a generic integer γ ∈ [α(j), β(j)] with γ ≥ δ:

u∗(α(j)) = . . . = u∗(γ(j)− 1) = 0, u∗(γ) = 1,
u∗(γ + 1) = . . . = u∗(β(j)) = 0.

Proof. Given in the appendix. �

The significance of the above result is mainly in that we can ignore earlier
impulses (see the thin edges and pruned nodes in the decision tree of Fig. 1)
thus reducing the computational complexity of the receding horizon algo-
rithm. In this sense, an exhaustive search would imply to explore all thick
edges. The provided algorithm reduces furtherly the computational burden
as it fixes future decisions and this results in comparing uLP with only two
other solutions, emphasized in dash-dot in Fig. 1.

The next result establishes that the solution returned by the algorithm
at iteration j, which is given in (15), satisfies the constraints of (INP ).

Lemma 2. The solution uj is feasible for the (INP ).

Proof. Given in the appendix. �

Furthermore, it can be shown that the algorithm at each iteration re-
turns a solution which is not worse than the one returned at the previous
iteration. In other words, we have that uj improves uj−1. To see this, let us
write ∆J(j) := c(uj − uj−1) to denote the cost improvement between two
consecutive iterations.
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Lemma 3. For all j, it holds ∆J(j) ≤ 0.

Proof. Given in the appendix. �

The receding horizon algorithm returns a feasible solution in linear time
as remarked next.

Theorem 3. The receding horizon solution urh is feasible for (INP ) and
provides a tighter upper bound:

JLP ≥ Jrh ≥ JINP .

Also, the receding horizon algorithm finds urh in the worst-case in O(N).
Furthermore, if T = N then the solution urh is also optimal and the bound
is tight, i.e., Jrh = JINP .

Proof. Given in the appendix. �

The above result is a novelty as it uses geometric considerations borrowed
from combinatorial optimization in a receding horizon context (see [20], part
III.1 on integral polyhedra, p. 540).

5. Numerical Illustrations

This section provides a detailed numerical analysis of a simple network
controlled system extracted from the queueing literature. The example adds
another level of complexity in the optimization problem, namely, that of
trying to stabilize simultaneously ten different systems instead of one. This
reflects in the use of an additional scheduling component that concerns the
selection of the system component (in this case a queue) that will receive the
next impulse. Despite this new element, we can still reframe the example
within the framework of ISS and reverse dwell time impulse control.

Assume we have queues describing demands accumulating at different
geographic sites in a production/distribution inventory system. The system
manager can serve only one queue (or site) at the time and up to a limited
number of demands established by certain capacity constraints. Then, the
queue lengths are the system state. Each time a queue is served an impulse
acts on the corresponding system reducing the state of a fixed quantity. Each
queue is described by the following impulsive dynamics. When no impulse
occurs, for all i = 1, . . . , n,

ẋi(t) = ai(t)xi(t) + ρ rand(−1, 1) t 6= tk k = 0, 1, 2, . . .

16



λ ρ x0 a ǫ N c̃

50 150 rand([5,. . . ,10]) rand([0.8,. . . ,1]) 5(n3
2

22
) 1700 rand([1,. . . ,N]])

Table 2: Parameters of the experiment.

with rate ai(t) > 0 and where rand(−1, 1) is a random disturbance uniformly
distributed in the interval between −1 and 1, ρ is the maximal disturbance.
Furthermore, we assume that the impulse acts on the longest (in magnitude)
queue. Then, denoting by ik = argmaxi |xi(tk)| such a queue, the impulsive
dynamics at impulse times is

xi(t
+) =







xi(t)− sign(xi(t)) if |xi(t)| > 1
0 if |xi(t)| ≤ 1

if i = ik

xi(t) if i 6= ik

t = tk, k = 0, 1, 2, . . .

Note that the queues tend to diverge if no impulses are activated. So, roughly
speaking, impulses have a stabilizing effect while the dynamics is unstable.

Serving a queue has a cost which depends on time, and also decreases
with the queue length. In general, such a decreasing term models economies
of scale [6]. This is a term used to describe situations where the cost of
producing an additional unit of an outcome, (i.e, a good or service) decreases
with the total volume of the outcome.

In mathematical terms, this means that activating an impulse has a cost
c(x(t), t) = K(t) + Ψ(V (x(t))) where the state dependent term is a linear
decreasing function on the infinity norm of x(t), i.e., V (x(t)) = ‖x(t)‖∞. In
formulas, this corresponds to

Ψ(V (x(t))) = λ ·max
t

K(t) ·
UB(‖x‖∞)− ‖x(t)‖∞

UB(‖x‖∞)
,

where λ ≥ 0 and it is specified a-priori. We have denoted by UB(‖x‖∞) an
upper bound of the infinity norm of the state and we take for it the value 10.
Parameter λ weights the influence of the state dependent term Ψ(V (x(t)))
with respect to the time-varying term K(t). Actually, for ‖x(t)‖∞ = 0,
the term Ψ(V (x(t))) is λ times greater than the maximal time varying cost,
maxt K(t).

This study is carried out by setting the parameters as listed in Table 2.
In particular, we take λ = 50 and set the maximal disturbance ρ = 150.
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Queues start from random values between 5 and 10, and the rate coefficients
are randomly distributed from 0.8 to 1, i.e., ai = rand([0.8, . . . , 1]) for all
i = 1, . . . , n. The horizon length is N = 1700, and the values of K(t), or,
which is the same, of the approximate costs c̃ are extracted randomly from
the interval 1 to N .

Also, we take as time unit the value −log((ǫ − 1)/ǫ) where ǫ = 10(n3
2

22
).

This value is an estimate of the rate q used in (5) and it derives from the
fact that between two consecutive impulses we can guarantee the condition
‖x(t+)‖2 ≤

ǫ−1
ǫ
‖x(t)‖2 at least on the average because of the random distur-

bance rand(−1, 1) (the same condition is always guaranteed in absence of a
random disturbance). Beyond this, as the rates ai are upper bounded by 1, we
can estimate the rate p used in (4) equal to 1, so that the value −log((ǫ−1)/ǫ)
can also be taken as dwell time T for our simulations. The sample interval
is 1

10
of the dwell time T = −log((ǫ− 1)/ǫ), i.e., ∆t = −log((ǫ− 1)/ǫ)0.1.

We simulate the receding horizon procedure starting at x(0). In the
experiment, we compare the solutions of (9) and (8). The first solution is
obtained by solving the linear problem

min
u∈P

c̃u, P = {u ∈ R
N : linear constraints (7), 0 ≤ u ≤ 1} ,

and returns a suboptimal cost. The second solution is the optimal solution
obtained from the receding horizon algorithm. In particular, we illustrate
the ISS properties of both solutions for a system with n = 10 independent
queues.

In Fig. 2, left, starting from x0 = [8 10 8 10 10 7 5 6 10 10]′, the state
is driven to the interval -1 and 1 at about t = 1200 and kept within such
interval for the rest of the time. The two state trajectories are obtained by
implementing the suboptimal control (top) and the optimal control (bottom).
In Fig. 2, right, a zoom in the first 100 samples evidences the impulses and
shows the difference between the two controls. The optimal control postpones
the first impulse at about t = 10 (see, bottom) while with the suboptimal
control the first impulse is at t = 0 and thus, because of the effect of this first
impulse, one of the five systems with initial state 10 actually evolves from 9.

6. Conclusions and future directions

In summary, this article provides a detailed analysis of a class of im-
pulse optimal control problems characterized by uniformly distributed im-
pulse times, reverse dwell time conditions and a special structure of the cost.
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Figure 2: Second experiment: time plot of x(t) with approximate and exact controls (left).
Zoom on the first 10 samples (right).

From a theoretical perspective the obtained results have proved certain geo-
metrical properties of the discrete set of feasible solutions. From a practical
standpoint, such properties have reduced the computational burden thus
making the algorithm suitable for the on-line implementation.

Future research will elaborate more on the connections between predic-
tive control and combinatorial optimization techniques in order to circumvent
the challenges deriving from the mixed integer nature of the controls. We
do this motivated by the observation that mixed integer predictive control
is attracting the attention from an increasing number of researchers in the
optimization and control community. More specifically, we first think of ex-
tending the use of cutting planes algorithms to all those problems that do
not benefit from total unimodularity. In all these cases, we can no longer
solve the linear relaxation and obtain binary solutions. So, cutting planes
are introduced iteratively with the aim of eliminating fractional solutions.
Second, we would like to investigate analogies between regeneration intervals
used in combinatorial optimization and reverse dwell time conditions devel-
oped in hybrid/impulse control. Our current belief is that both notions have
some common physical meaning behind them which we would like to inspect
more in detail in the future.
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Appendix

Proof of Theorem 1

We start by observing that the constraint matrix A ∈ {0, 1}m×N used in
the inequalities (7) turns out to be an interval matrix, i.e., it has 0-1 entries
and each row is of the form

(0, . . . , 0 1, . . . . . . . . . , 1
︸ ︷︷ ︸

0, . . . , 0).

consecutive 1’s

Now, it is well known from the literature [20] that each interval matrix is
totally unimodular where we remind here that a matrix is totally unimodular
if the determinant of any square sub-matrix is equal to−1, 0 or 1. This means
that the polyhedron P is an integral polyhedron. As a consequence we have
that the linear relaxation of the (ILP ) has an integral optimal solution as
established in the next lemma.

Lemma 4 ([2]). Solving (ILP ) is equivalent to solving the linear program-
ming problem:

(LP ) min
u∈P

c̃u.

Invoking the above lemma, we then have that uLP is also optimal for
(ILP ). This means that (ILP ) has at least one optimal solution uILP =
uLP . Then, we can substitute the latter solution in (INP ) thus obtaining
JLP = JILP and the first equality of (11) is proved.

To prove JILP ≥ JINP observe that uLP belongs to F and as such it
is feasible for (INP ). In other words, we have uLP ∈ F which implies
JINP = minu∈F cu ≤ cuLP and this concludes our proof.

Proof of Theorem 2

The underlying idea is to make use of uLP
[α(j),β(j)] to find u∗

[α(j),β(j)]. Let us
introduce the subset of solutions with multiple impulses

I = {u[α(j),β(j)] :

β(j)
∑

k=α(j)

u(k) ≥ 2}.
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Also, let us recall that uLP (δ) is the non-null component of uLP
[α(j),β(j)] and

construct the subset D ⊂ {0, 1}T of solutions presenting one or more impulses
at any time earlier than δ, namely:

D = {u[α(j),β(j)] :
δ−1∑

k=α(j)

u(k) ≥ 1, u(δ) = . . . = u(β(j)) = 0}.

Now, to prove (12) we need to show that u∗

[α(j),β(j)] is not in I nor in D
as established next. Formally, solution u∗

[α(j),β(j)] 6∈ I ∪ D.
To see that u∗

[α(j),β(j)] has a single non-null component, u∗

[α(j),β(j)] 6∈ I
observe that any other solution with additional non-null components would
provide a higher cost.

To prove u∗

[α(j),β(j)] 6∈ D, it suffices to show that u∗

[α(j),β(j)] dominates any
other solution in D. To see this, we need to refer to Assumptions 2 and 1.
Actually, it holds c(x(k), k) = K(k) + Ψ(V (x(k))) > c̃(k) = K(k) for all k.
Now, if the index δ gives the minimum to the cost with c̃(k), then it gives also
the minimum to the cost with c(x(k), k), because the sequence Ψ(V (x(k)))
is decreasing on V (x(k)).

Proof of Lemma 2

We need to prove that uj ∈ F . The latter is true if

i) u∗′

[0,α(j+1)−1] satisfies conditions
∑β(ĵ)

k=α(ĵ)
u(k) ≥ 1 for all integer ĵ such

that 0 ≤ ĵ ≤ α(j)− 1, and

ii) uLP ′

[α(j+1),N−1] satisfies
∑β(ĵ)

k=α(ĵ)
u(k) ≥ 1 for all integer ĵ such that α(j +

1) ≤ ĵ ≤ N − 1.

Now, condition ii) is satisfied as uLP is feasible for (INP ). To prove

condition i) we first observe that solution u∗

[0,α(j)−1] satisfies
∑β(ĵ)

k=α(ĵ)
u(k) ≥ 1

for all integer ĵ such that 0 ≤ ĵ ≤ α(j) − 1. We also note that u∗

[0,α(j+1)−1]

satisfies
∑β(ĵ)

k=α(ĵ)
u(k) ≥ 1 for all integer ĵ such that 0 ≤ ĵ ≤ α(j+1)− 1 and

this concludes our proof.
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Proof of Lemma 3

Note that uLP
[α(j),β(j)] is feasible for

(
INP[α(j),β(j)]

)
as uLP

[α(j),β(j)] ∈ F[α(j),β(j)].

Invoking the optimality of u∗

[α(j),β(j)](k) the we can infer the following inequal-
ity which proves our thesis:

∆J(j) =
( β(j)

∑

k=α(j)

c(x(k), k)u∗

[α(j),β(j)](k) +
N−1∑

k=β(j)+1

c(x(k), k)uLP
[α(j),β(j)](k)

)

−
( β(j)

∑

k=α(j)

c(x(k), k)uLP
[α(j),β(j)](k) +

N−1∑

k=β(j)+1

c(x(k), k)uLP
[α(j),β(j)](k)

)

≤ 0.

Proof of Theorem 3

Let us show that JLP ≥ Jrh. Recalling that urh = uj∗ where j∗ is the
last iteration then we have Jrh − JLP =

∑j∗

j=0 ∆(j) ≤ 0 the latter inequality
being a consequence of Lemma 3. Then we have the thesis.

To prove that Jrh ≥ JINP , note that urh is feasible for (INP ) from
Lemma 2. In other words, this means that urh ∈ F which implies JINP =
minu∈F cu ≤ curh and this concludes our proof.

To see that the receding horizon algorithm finds urh in the worst-case in
O(N) observe that the worst-case is when we have T equal to N . In the
latter case it turns α(j) = 0, β(j) = N − 1. If δ = 1 then the algorithm
performs N comparisons between the solutions of S.

We next prove that if T = N then urh is optimal and Jrh = JINP .
Actually, by definition we have urh := u∗

[0,N−1]. Also observe that in this case

β(0) = N −1 and therefore u∗

[0,N−1] is optimal for (INP[0,N−1]). Invoking the

equivalence between (INP[0,N−1]) and (INP ) we can conclude that urh is
optimal for (INP ). As a consequence we have Jrh = JINP and this concludes
the proof.
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