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6

Abstract7

Modelling glacial lake outburst floods (GLOFs) necessarily involves the8

propagation of large and often stochastic uncertainties throughout the source to impact9

process chain. Since flood routing is primarily a function of underlying topography,10

communication of digital elevation model (DEM) uncertainty should accompany such11

modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated12

against an existing GIS-based model and an existing 1D hydrodynamic model, using three13

DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty14

and model choice on several flood parameters and on the prediction of socio-economic15

impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which16

is distributed in the supplementary information, demonstrated enhanced stability when17

compared to the two existing methods, independent of DEM choice.18

The MC-LCP model outputs an uncertainty continuum within its extent, from which relative19

socio-economic risk can be evaluated. In a comparison of all DEM and model combinations,20

the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to21

those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global22

Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer23

resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for24
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Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we1

find between flood routing model results suggests that consideration of DEM uncertainty and2

pre-processing methods is important when assessing flow routing and when evaluating3

potential socio-economic implications of a GLOF event. Incorporation of a stochastic4

variable provides an illustration of uncertainty that is important when modelling and5

communicating assessments of an inherently complex process.6

Keywords: GLOF, Flow path, Monte Carlo, Uncertainty, Digital Elevation Model, Bhutan7

1. Introduction8

Deglaciation is giving rise to a globally distributed increase in the number and size of glacial9

lakes (Carrivick and Tweed, 2013). In the Himalaya the trend of lake development is spatially10

variable in response to climate and the evolution of debris-covered glaciers (Gardelle et al.,11

2011; Benn et al., 2012; Nie et al., 2013). Sudden outbursts of large volumes of water from12

such lakes, termed Glacial Lake Outburst Floods (GLOFs) , can be hazardous13

to downstream communities and infrastructure. Hazardous lake identification is essential to14

direct timely remedial works, further investigations, or implement early warning strategies15

(Worni et al., 2012). The time to peak flow is usually short and lacks warning, meaning16

assessments of likely flood inundation become a primary tool for disaster preparedness17

(UNDMT, 2005; Koike and Takenaka, 2012; Takenaka et al., 2012). Application of a flood18

model can provide an indication of downstream exposure to a GLOF event, since flood19

propagation is primarily a function of the underlying topography and the GLOF hydrograph.20

The shape and magnitude of the lake breach hydrograph determines the distribution and21

timing of the flood event, and is therefore a key component of a hazard assessment (Westoby22

et al., 2014). Complete GLOF hazard assessments follow a sequential source to impact23

methodology that usually comprises an investigation of lake dynamics, lake surroundings,24
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breach scenarios, and creating downstream risk assessments highlighting potential inundation1

zones (Worni et al., 2014). The current state of knowledge of the GLOF process chain was2

reviewed by Worni et al. (2014) and Westoby et al. (2014), who both highlighted that studies3

evaluating the propagation of uncertainty throughout the chain are lacking. Sources of4

uncertainty are discussed by Westoby et al. (2014) and Westoby et al. (2015). Briefly, they5

concern the initiating trigger mechanism, parameterisation of the dam-breach and initial dam6

conditions, and the hydrodynamic modelling itself. The hydrodynamic modelling has7

uncertainties arising from the topographic resolution used; channel roughness coefficients;8

model dimensionality; and model coupling between the trigger, breach, and flood. A9

probabilistic unified GLOF modelling workflow implemented by Westoby et al. (2015)10

addresses several sources of this cascading uncertainty, but has high data requirements. Such11

methods of addressing stochastic elements and compounding uncertainty should be12

implemented and communicated, concurrent with use of integrated workflows for assessing13

GLOF hazard (e.g. Huggel et al., 2002; Bolch et al., 2011; Mergili and Schneider, 2011;14

Worni et al., 2012; Mergili et al., 2013).15

Where field data are insufficient to implement a physically based numerical flood model, or16

to guide their application, first-pass assessments are commonly implemented (e.g. Huggel et17

al., 2003; Mergili and Schneider, 2011; Mergili et al., 2013). These generally utilise medium18

resolution DEM products such as the ASTER GDEM (herein GDEM) and SRTM DEM19

(herein SRTM) which carry greater vertical uncertainty. Such coarser datasets can still be20

valuable for flood inundation modelling (e.g. Sanders, 2007). However, GIS-based21

algorithms using flow direction are highly sensitive to vertical errors in such DEMs (Veregin,22

1997; Endreny and Wood, 2001). Additionally, a river channel is often poorly defined in23

coarse terrain data and may be offset compared to the ground truth channel and hence socio-24

economic infrastructure. This DEM error can be compounded by sink filling, which is a DEM25
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processing routine that can remove local elevation minima representing the channel (e.g.1

Czubski et al., 2013). Therefore communication of DEM uncertainty should accompany such2

first-pass modelling efforts since this uncertainty is intrinsically important for understanding3

flow propagation.4

This paper therefore presents an inter-model comparison of two GIS-based first-pass flood5

assessment techniques and a 1D flood model. The Modified Single-Flow-direction (MSF)6

model developed by Huggel et al. (2003) was compared to the new MC-LCP developed7

herein, and also to a hydrodynamic model created using HEC-RAS. The aim of this study8

was to quantify the differences between methods when using the same underlying terrain9

data, and when using three different DEM products.10

The first-pass MC-LCP GLOF assessment technique developed in this study incorporates the11

evaluation and communication of DEM uncertainty in the modelled output. It avoids the12

requirement of a flow direction grid and hence a 'filled' DEM. This increases its utility and13

minimises potential artefacts in low relief populated areas, for which a reliable inundation14

output is most desired. The method is proposed as an alternative first-pass GLOF15

vulnerability assessment for data poor regions and features a transferable, easily16

implemented, and adaptable methodology. It is applied to a case study in Bhutan to evaluate17

applicability in a high relief catchment using only remotely sensed data. Since this case study18

is purely hypothetical, the MC-LCP is also validated using geomorphic evidence of the 198519

Dig Tsho GLOF in Nepal.20

2. Background21

2.1 Previous assessment strategies22

GLOF hazard assessments require consideration of the probability of an event occurring and23

the vulnerability of downstream communities and infrastructure, in order to make informed24
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decisions on the risk magnitude and hence suitable remediation or adaptation strategies.1

Studies may adopt a qualitative (e.g. Huggel et al., 2004a), semi-quantitative (e.g. Bolch et2

al., 2011), or quantitative approach (e.g. McKillop and Clague, 2007; Mergili and Schneider,3

2011) using factor combinations of lake and dam characteristics, the surrounding lake4

topography, and adjacent glacier dynamics (Emmer and Vilímek, 2013). However, their5

combination and weighting in a hazard assessment is not standardised. Increasingly there is a6

transition towards modelling the source-to-impact GLOF process chain, using higher-order7

physically based models (Worni et al., 2014). However, constructing physically-based flood8

models is limited by the uncertainty and availability of remotely sensed parameters such as9

dam geometry (e.g. Worni et al., 2012), and the time investment in creating and applying10

such models. They nevertheless provide an enhanced understanding of GLOF flow11

characteristics where the paucity of high resolution terrain data limits most modelling efforts12

to using flow routing algorithms or 1D models, which cannot fully represent flow dynamics13

(Westoby et al., 2014).14

Many previous studies have made use of medium-resolution DEM products such as ASTER-15

derived DEMs (e.g. Byers et al., 2013), and the GDEM and SRTM DEMs (e.g. Wang et al.,16

2012). These DEMs permit catchment-scale coverage where a similar extent of finer17

resolution products such as photogrammetry or airborne laser scanning would be otherwise18

limited logistically or prohibitively expensive. Additionally, the low data processing and19

storage requirements of the GDEM and SRTM permit their rapid exploitation and20

interrogation for simple flow models. However, these products contain inherent uncertainty21

in grid cell elevations of the same order in magnitude to a GLOF flow depth. This is most22

prevalent in mountainous terrain (Hayakawa et al., 2008; ASTER GDEM Validation Team,23

2011; Kolecka and Kozak, 2014) since pixel resolution is less representative of terrain24

characteristics (Fisher and Tate, 2006). For the SRTM, elevation uncertainty contributes to a25
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systematic negative elevation bias with increasing altitude (Paul, 2008), identified in the1

French Alps (Berthier et al., 2006), and confirmed for the Himalaya (Berthier et al., 2007),2

though its precise origin is not apparent. For the GDEM, Rexer and Hirt (2014) demonstrated3

improved vertical accuracy compared to the SRTM over mountainous terrain in Australia.4

However, forested land cover contributed to a positive elevation bias for both the GDEM5

(ASTER GDEM Validation Team, 2011; Rexer and Hirt, 2014) and SRTM (Sun et al., 2003;6

Shortridge and Messina, 2011; Kolecka and Kozak, 2014).7

Quantification of the potential implications of spatially variable elevations biases for GLOF8

modelling requires ground truth data, but nevertheless should be considered on a catchment9

by catchment basis. For example, GLOFs originate in high-altitude vegetation sparse10

environments and will generally flow through increasingly vegetated reaches, such that a11

general trend of increasingly positive elevation bias could exist with distance downstream in12

forested Himalayan reaches. Consideration of the uncertainty and spatial autocorrelation in13

medium resolution topographic products should therefore accompany their usage.14

GIS-based assessments of GLOF routing and inundation provide a first-pass assessment tool15

to identify vulnerable catchments for further analysis (Huggel et al., 2004b), but may also be16

utilised to identify likely inundation characteristics at finer scales and hence an initial17

assessment of relative risk (Nussbaumer et al., 2014). The ArcGIS-based MSF model18

developed by Huggel et al. (2003) has seen usage for modelling GLOFs and debris flows19

(e.g. Huggel, 2004; Huggel et al., 2004b; Schneider et al., 2008; Frey et al., 2010; Iribarren20

Anacona et al., 2014; Nussbaumer et al., 2014). Similar procedures are available in GRASS21

GIS, weighting the flow propagation using local slope and flow direction (e.g. Mergili and22

Schneider, 2011; Gruber and Mergili, 2013). Hydrodynamic modelling is also feasible on23

global DEMs, though uncertainty is increased as a consequence of poorly resolved channel24

networks (e.g. Wang et al., 2012; Czubski et al., 2013).25
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Models dependent on the maintenance of flow direction require a hydrologically correct1

DEM with spurious sinks 'filled' to avoid the algorithm terminating. This filling raises pitted2

areas of the DEM surface and can lead to parallel flow artefacts where lengths of the channel3

are filled to similar elevations (Melles et al., 2011). Uncertainly introduced by filling is4

compounded by underlying DEM uncertainty; commonly reported as a root mean square5

error (RMSE). Therefore communication of the uncertainty in modelled flood extents would6

both increase the confidence in and utility of such first-pass assessments. An evaluation of7

DEM uncertainty can be gained by using stochastic simulation techniques such as the Monte8

Carlo method (Lindsay and Evans, 2008). In this study, a Monte Carlo approach allows9

modelled inundated areas to be evaluated based on their inundation frequency following an10

iterative process of flow routing over sequential terrain realisations, hence making predictions11

of socio-economic impacts more robust.12

2.2 Bhutan case study13

The Chamkhar Chu catchment in Bhutan was selected to exemplify a data-scarce site; hence14

requiring the use of globally available DEMs and a more simplistic inundation modelling15

approach. Here, the paucity of fine-resolution data sets, documented past events, or field16

surveys, limits the possible application of physically-based flood models. Simple GIS-based17

first-pass flood assessments such as the MSF or the MC-LCP proposed, therefore offer a fast18

and transferable alternative for delineating likely GLOF flow paths whilst also considering19

lateral extent.20

Addressing GLOF risk became a priority in Bhutan following the 1994 GLOF event from21

Lugge Tsho (Watanbe and Rothacher, 1996; Ghimire, 2005). Remediation and early warning22

strategies were implemented through two internationally funded efforts involving the United23

Nations Development Program (UNDP) (Meenawat and Sovacool, 2011). Substinence24
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communities using mountain streams for agricultural irrigation are often located on elevated1

terraces away from the valley bottoms and hence flood risk (Wangdi and Kusters, 2012) but2

the long runout distance of GLOF peaks increases the vulnerability of downstream3

infrastructure and settlements located closer to the river channel (Takenaka et al., 2012).4

Safeguarding hydropower generation is of particular importance in Bhutan because it5

represents 99 % of electricity generation (Jamtsho, 2012), accounts for an estimated 22 % of6

, and has secured investments in future run-of-the-river plants that are7

susceptible to runoff variability (NEC, 2009).8

A study by Mool et al. (2001) identified the existence of 24 potentially dangerous glacial9

lakes in Bhutan (Figure 1); although a more recent GIS assessment considering dam slope10

suggests fewer exist (Fujita et al., 2013). Nevertheless, glacial lake expansion in Bhutan11

(Komori, 2008) and the expected enhanced glacial lake development on stagnant, debris-12

covered glaciers (Kääb, 2005), suggests the potential impact of future GLOFs should be13

continually evaluated.14

[Figure 1 approximate location]15

3. Data sources and pre-processing16

3.1 DEMs17

The ASTER GDEM V2. has ca. 30 m horizontal resolution and a reported vertical RMSE of18

±15.1 m over mountainous terrain (ASTER GDEM Validation Team, 2011). The SRTM19

DEM 4.1 has 90 m horizontal resolution and a vertical RMSE of ca. ±16 m (Rexer and Hirt,20

2014). Both are surface models, such that stated elevations reflect the tops of dense21

vegetation and built up areas. However, the SRTM sampling coincided with leaf-off22

conditions for northern hemisphere deciduous forests, suggesting that elevation data over23

forested regions may represent a mix signal between tree height and ground level elevations24
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(ASTER GDEM Validation Team, 2011). In the absence of finer resolution DEMs, both1

global datasets are used for hydrodynamic modelling (e.g. Gichamo et al., 2012; Wang et al.,2

2012). In this study, a third DEM was created at 15 m horizontal resolution using stereo3

ALOS PRISM scenes of 2.5 m resolution, and ground control points (GCPs) derived from4

Google Earth. The accuracy and resolution of the Google Earth elevation data is unknown,5

although good association has been demonstrated with ASTER and SRTM elevation data6

(e.g. Rusli et al., 2014). In this study, we assumed that the GCPs were of similar accuracy to7

the SRTM data and used a vertical RMSE of ±16 m for the ALOS DEM. Summary statistics8

showing the relative accuracy of each DEM are presented in Table 1, highlighting that our9

ALOS DEM is most comparable to the SRTM. The GDEM and SRTM were resampled to 1510

m resolution using bilinear interpolation to provide a common pixel size for analysis in this11

study.12

The spatial resolution of the GDEM and SRTM means that they cannot accurately represent a13

river valley with steep banks. Specifically, these DEMs contain spurious peaks and14

depressions that require pre-processing to improve flow routing (Fisher and Tate, 2006;15

Pitman et al., 2013). Since a DEM is modified by this pre-processing, several correction16

methods were considered in this study using the optimized pit removal tool (Soille, 2004;17

CRWR, 2013). All three DEMs were processed to minimise net change for the HEC-RAS18

and MC-LCP models. This was carried out automatically with the optimized pit removal tool19

which uses cut and fill operations to minimise DEM sinks. In this study, these are referred to20

as optimized pit removal net (OPRN) DEMs (Figure 2a). In contrast, we filled all three21

DEMs for use with the MSF model, which is a requirement for it to run and caused22

comparatively higher cell modification (Table 2). The mean difference between OPRN and23

'filled' DEM profiles is smallest for the SRTM (5.6 m), followed by the ALOS (7.5 m) and24

GDEM (23.4 m) (Table 1), suggesting a higher incidence of channel artefacts in the GDEM.25
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[Figure 2 approximate location]1

3.2 Socio-economic2

Socio-economic impact was evaluated using a 2010 land cover dataset produced by Gilani et3

al., (2014), supplemented with a buildings and road network layer digitised from Google4

Earth imagery.5

4. Methods6

The MC-LCP model was evaluated against the MSF GIS-based model and a 1D7

hydrodynamic model using three DEM products of different initial resolutions, following the8

general workflow outlined in Figure 3.9

[Figure 3 approximate location]10

4.2 Monte Carlo Least Cost Path model (MC-LCP)11

The MC-LCP model (Figure 4) was developed as part of this study and incorporates an12

iterative cost path analysis and Monte Carlo loop of modelled DEM uncertainty, and was13

implemented in ArcGIS 10.2. Similar to the MSF model, the MC-LCP has no physical basis14

and is proposed as a first-pass assessment technique. Incorporating stochastic DEM15

uncertainty within the model facilitates lateral spread and produces relative inundation16

probabilities for each DEM cell. Spatial autocorrelation of DEM error is a recognised quality17

issue, though is difficult to assess without a reference dataset and only a RMSE is commonly18

provided for global datasets (Carlisle, 2005; Wechsler, 2007). In this study, a spatial19

autocorrelation of RMSE uncertainty was introduced in each model iteration as six 15 m20

pixels for the GDEM, six 15 m pixels for the SRTM which is degraded from 30 m to 90 m21

horizontal resolution, and three 15 m pixels for the ALOS DEM, using a focal neighbourhood22

filter following Hebeler and Purves (2009) and Zandbergen (2011).23
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The MC-LCP model workflow is detailed in Figure 4, which describes the processes involved1

in the three aspects of the model: modelling DEM uncertainty, creating the cost layers, and2

modelling least cost path iterations. For each iteration, a normally distributed raster layer was3

created with a standard deviation matching the RMSE of each DEM and a mean of zero4

(Gatziolis and Fried, 2004; Zandbergen, 2011). Spatially autocorrelated uncertainty was then5

introduced with a neighbourhood filter. Each iteration of the error model was then added to6

the initial DEM, thereby creating a new terrain realisation (Lindsay and Evans, 2008). A cost7

path analysis was conducted between a start and end location defining the study reach, using8

equally weighted cost layers of vertical elevation difference from the river channel and local9

slope. This produced a pixel-wide downstream least cost path. Subsequent iterations10

producing new least cost paths were sequentially added, hence the final output represented11

the number of times each cell was considered a least cost path, and therefore inundated. In12

this study, outputs were initially evaluated at 50, 100, 500, 1000, and 1500 iterations for each13

DEM. Stable inundation extents were apparent at 500 model iterations (Figure 5), hence all14

subsequent least cost path results were derived using 500 iterations. The top one percent of15

inundated cells were excluded in this study to remove spurious paths. This exclusion is an16

arbitrary decision based on an inspection of the output where spurious paths diverge notably17

from the main distribution.18

[Figure 4 approximate location]19

[Figure 5 approximate location]20

The MC-LCP model design produced a distribution of least cost paths down the study reach21

for which it is conceivable that a flood could inundate. The likelihood of inundation is22

represented by the inundation frequency output. In this study the lateral spread of least cost23

paths represents our first-24

procedure implemented in GRASS GIS by Mergili and Schneider (2011) and Gruber and25
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Mergili (2013), which produced a lateral inundation extent weighted for local slope, but did1

not incorporate DEM uncertainty.2

Applying a variable threshold to the inundation frequency output could be used to delineate a3

river network, since a high inundation frequency would be indicative of the valley bottom.4

Similar thresholding is used on the output of the flow accumulation function in ArcGIS to5

(Melles et al.,6

2011). Where a ground truth river is unavailable, the model can be used to generate a least7

cost path down the study reach using the original DEM, i.e. no error model is applied. This8

would represent the input river channel (Figure 4) and can be derived from an OPRN9

processed DEM.10

4.2.1 Dig Tsho validation11

Although the MC-LCP output is not directly applicable to any particular magnitude of GLOF12

event, validation of the MC-LCP output was undertaken using geomorphic evidence of the13

1985 Dig Tsho GLOF extent, which featured an estimated peak discharge of ca. 2000 m
3
s
-1

14

(Vuichard and Zimmermann, 1987). The six locations of GLOF geomorphic evidence15

mapped by Cenderelli and Wohl (2001) was used as the flood extent, which was compared to16

the MC-LCP modelled extent for the GDEM (Figure 6, Table 3). This validation used a least17

cost path derived river, therefore representing the MC-LCP in its simplest state without a18

ground truth river network.19

Application of the MC-LCP to the 1985 Dig Tsho GLOF event revealed good spatial20

association with geomorphic evidence of the known GLOF extent (Figure 6, Table 3). Slight21

-LCP and the field-measured extent were22

apparent in reach L1 and L8, which was attributed to the DEM resolution (30 m)23

misrepresenting the high relief channel, rather than potential contemporary river channel24

migration reflected in the DEM. However, overall the MC-LCP provided a good25



13

representation of the 1985 GLOF extent with a mean classification accuracy of 78 % for the1

reaches mapped (Table 3).2

[Figure 6 approximate location]3

4.2.2 Additional land cover cost4

Following the study of Nussbaumer et al. (2014), which considered multi-temporal GLOF5

risk following land use change, we modelled the influence of including an additional land6

cover cost factor into the MC-LCP, which we denote herein as MC-LCP LC; specifically on7

the inundated area and whether high-cost land covers such as woodland would consequently8

experience lower inundation. This was carried out using a simple reclassification of the land9

hydraulic roughness values following Chow (1959). When10

multiplied by 1000, these land cover costs ranged from 10 100, which created a11

normalised scale between the three cost layers. Appropriate weightings for including cost12

factors are speculative; hence this study primarily focuses on the utility of the MC-LCP13

without this additional cost factor.14

4.3 Modified Single-Flow-direction (MSF) model15

Modelled flow in the MSF model has no physical basis and is solely a function of underlying16

terrain data, promoting its usage as a first-order assessment for GLOF flow path modelling17

(Huggel, 2004). It uses ArcGIS's D8 flow routing method and Path Distance tool, allowing18

flow to propagate downstream following the steepest descent, with up to 45° of lateral19

diversion. A methods workflow was outlined by Gruber et al. 2009. The MSF model can be20

stopped when a threshold run-out distance is reached based on the average channel slope21

from the source. However, for this study the flow exceeded the end of the study reach in all22

scenarios. The MSF model output reflects a qualitative likelihood of inundation, accounting23
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for increased flow resistance with lateral spread and distance downstream (Huggel et al.,1

2003).2

4.4 HEC-RAS model3

1D flood modelling was carried out in HEC-RAS 4.1.0, which has previously been used for4

modelling GLOF scenarios and reconstructing past events (e.g. Cenderelli and Wohl, 2003;5

Alho et al., 2005; Bajracharya et al., 2007; ICIMOD, 2011; Osti et al., 2013; Klimes et al.,6

2014), offering computational efficiency over long study reaches. Characteristically confined7

and topographically steep Himalayan reaches restrict the lateral inundation extent. If8

topographically unconfined and shallow, 2D models would better represent flow dynamics9

(e.g. Carrivick, 2006; Stains and Carrivick, 2015). In this study, 516 cross sections were10

added at 100-150 m intervals to capture downstream topographic and land cover changes11

(Figure 2b), and Manning's N roughness values were allocated to respective land covers12

following Chow (1959) and similar GLOF studies (e.g. Dussaillant et al., 2010; Jain et al.13

2012). The HEC-GeoRAS extension in ArcGIS was used to extract cross section geometric14

and roughness data for use in HEC-RAS. Three scenarios of unsteady flow were evaluated,15

which represented a low, medium, and high magnitude event of 500 m
3
s
-1
, 1000 m

3
s
-1
and16

2000 m
3
s
-1

respectively. The scenarios are purely hypothetical and are derived from17

evaluation empirical regression equations relating an estimated lake volume for potentially18

dangerous glacial lakes in the catchment identified by the International Centre for Integrated19

Mountain Development (ICIMOD), to a potential peak discharge. The hypothetical20

hydrograph followed a linear rising and falling limb creating a triangular profile (e.g. Wang21

et al., 2012). The scenarios are referred to as profiles (Pf) one, two and three. The22

downstream boundary condition was set several kilometres below the town of Jakar (Figure23

1) such that any errors arising from it would not affect the study reach (Brunner, 2010).24
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4.5 Flood implications1

Finally, inundation extents and socio-economic impacts for each flood model and DEM2

combination were compared in order to assess the implications of using the different models3

and input DEMs. Downstream wetted width and flood depth were extracted for each cross4

section. Since the MC-LCP and MSF models do not produce a depth output, the channel5

width elevations of their flood extents were extracted and interpolated over the channel to6

estimate a depth surface, and this surface was differenced from the DEM.7

Flood depths maps produced in HEC-RAS do not consider DEM uncertainty. Hence, a Monte8

Carlo based approach was used to communicate uncertainty within the HEC-RAS modelled9

flood extent. Here, the same DEM error model as from the MC-LCP was applied to the HEC-10

RAS depth map to evaluate whether each cell depth remained positive after iterative DEM11

uncertainty realisations. Since the process does not simulate a new flow after each terrain12

realisation (which would require a coupling between HEC-RAS and ArcGIS that was beyond13

the scope of this study), potential inundation outside of the initial flood extent was not14

considered,15

5. Results16

5.1 Inundated area17

Differences in overall inundated area for each scenario represented a regional-scale model18

comparison that provides an indication of model stability with use of each DEM, and19

respective socio-economic and land cover inundation implications (Figure 7). The ALOS20

DEM was the only DEM producing a similar trend across all models. With the exception of21

the MC-LCP LC scenarios, the ALOS DEM consistently produced the smallest inundated22

area (Figure 7).23
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At a regional-scale, model sensitivity to DEM inputs is indicated by the inter-DEM inundated1

area range. Here, a smaller range indicates a lower dependence of the model on the terrain2

data used. The MC-LCP produced the smallest range at 0.85 km
2
, followed by HEC-RAS3

with a minimum range considering all profiles of 2.48 km
2
, and the MSF model at 4.86 km

2
4

(Table 4, Figure 7). Overall, the largest inundated areas were produced by the MC-LCP for5

all DEMs. However, these areas reduced when a land cover cost factor was introduced6

(Figure 7a). The inundated areas of the MSF model were most comparable to the HEC-RAS7

scenarios. HEC-RAS profiles 1 - 3 displayed the largest inundated range on the GDEM at8

0.74 km
2
, followed by the ALOS DEM and SRTM at 0.52 km

2
and 0.48 km

2
respectively9

(Figure 7b, Table 4).10

[Figure 7 approximate location]11

5.2 Inundated extents12

Reporting total inundated area does not consider flow propagation, which was examined13

using downstream wetted width and visual inspection of flood extents between the models14

and for each DEM (Figure 8, 9). Wetted width variability due to DEM choice originates from15

the different initial products resolutions and hence variable river channel representation, and16

the DEM quality following pre-processing. Here, the ALOS and SRTM DEMs produced the17

smoothest downstream channel profiles following OPRN processing (Figure 2a). Notably the18

'filled' SRTM and GDEM displayed a large positive elevation offset in the lower reach, which19

reflected the prevalence of artefacts in the original DEMs in this area (Figure 2a, b).20

[Figure 8 & 9 approximate location]21

The MC-LCP produced a consistently higher downstream wetted width (Figure 9) which22

reflects the overall larger inundated area (Figure 7a). Wetted width for the HEC-RAS Pf223

and the MSF models appeared similar, although it is evidently more variable downstream for24
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the HEC-RAS scenario (Figure 9b, c). A comparatively wider initial flood extent exists in all1

models between 0 - 10 km downstream, which was most prevalent in the HEC-RAS2

scenarios (Figure 9b). Similarly, all models suggested an increased inundation extent in the3

lower 10 km of the study reach, which was of greatest magnitude for the MSF model on the4

SRTM and GDEM (Figure 8c, 9c). This corresponded partly to where the valley bottom5

becomes wider and to where settlements are located (Figure 2).6

Intra-model variability in downstream flood extent was generally greatest for the GDEM,7

whereas the ALOS and SRTM DEMs were more comparable and displayed less high8

magnitude peaks in wetted width. The high wetted width variability for the GDEM is most9

prominent in the HEC-RAS scenarios and for the MSF model (Figure 9b, c). In contrast to10

the comparatively continuous flood extent output by the MC-LCP (e.g. Figure 10a, d),11

downstream extent variability in the HEC-RAS output is highlighted by intermittent areas of12

ponding where water backwater effects are created by the confined channel reaches (Figure13

10b, e).14

[Figure 10 approximate location]15

5.3 Depth characteristics16

Downstream maximum depth displayed greatest variability for all models when run on the17

GDEM (Figure 9). The high incidence of low depth values for the MSF model (Figure 9c)18

corresponded to narrow modelled flood extents, where extracting a depth value beneath an19

interpolated surface exhibited greatest uncertainty. The physically-based HEC-RAS model20

produces the most robust indication of downstream depth variability. For the ALOS DEM,21

depth was generally below 20 m, which was always the case in the SRTM output (Figure 9a).22

In contrast, the GDEM scenario depth often exceeded 30 m and was over 40 m in some cases.23
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5.4 Inundated extent artefacts1

Parallel flow artefacts representing finer scale uncertainty in flow routing were apparent in all2

MSF scenarios (e.g. Figure 8c, 10c, f). These artefacts were over 1 km long in some instances3

(e.g. Figure 10c). A notable contrast was also apparent in the lower reach for the MSF ALOS4

DEM, where a narrow flood extent contrasts with that of the SRTM and GDEM (Figure 8c,5

9c). Artefacts of the OPRN pre-processing procedure were apparent in the HEC-RAS outputs6

where narrowly cut channels are apparent between areas of ponding (Figure 10b, e). In7

contrast, the MC-LCP produced a downstream continuum and represented flow 'braiding'8

around 'higher cost' channel features (e.g. Figure 10a, d).9

5.5 Socio-economic implications10

Examination of inundated land cover highlighted the prevalence of forest cover adjacent to11

the river channel and hence the importance of considering vegetation roughness in modelling12

scenarios (Figure 2b, 7). This forest cover also identifies potential debris input and damming13

hazard emanating from forested reaches, which was not considered in the modelling14

framework. The susceptibility to inundation of agricultural land in the lower reach is also15

highlighted for all scenarios (Figure 7). Comparing socio-economic vulnerabilities for the16

HEC-RAS output revealed a general increase in building and road inundation with higher17

magnitude flooding (Figure 7b), but inter-model comparisons revealed no clear association18

between socio-economic cost and inundated extent, highlighting the importance of evaluating19

local flow characteristics. For example, the MSF SRTM model predicted notably higher20

building and road inundation despite only representing 48 % of the inundated area depicted21

by the MC-LCP SRTM scenario (Figure 7a), since the MSF featured a large lateral extent in22

the populated lower reach. HEC-RAS outputs displayed the smallest range of building and23

road inundation across all scenarios, followed by the MC-LCP and the MSF model (Table 4).24
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5.6 Communication of risk1

Each model pertains to a means of risk identification through either the number of times a2

grid cell was inundated, the depth of inundation at a cell, or a visual indication of inundation3

probability, for the MC-LCP, HEC-RAS, and MSF models respectively (Figure 10). Since4

the MSF model contains a function of downstream distance, a difference in inundation5

probability is only apparent in the vicinity of the start zone. Hence relative inundation6

probabilities cannot be meaningfully compared at finer scales for the MSF model, in contrast7

to the MC-LCP (Figure 10).8

6. Discussion9

The ability to conduct timely yet robust first-pass GLOF assessments is critical to direct10

further investigations, implement mitigation efforts, and derive hazard zonation, in response11

to climatic warming, glacial mass loss, and subsequent increased glacial lake development12

observed in the eastern Himalaya (Gardelle et al., 2011; Benn et al., 2012). Such first-pass13

assessments may represent the only means of GLOF flow routing where fine resolution14

topographic data are not available for robust hydrodynamic modelling. Additionally, a15

probabilistic GIS-based first-pass assessment is equally valuable prior to hydrodynamic16

modelling, since flow paths and areas of interest can be rapidly derived. The inter-model17

comparison presented here indicates that modelled flood extent, its dependence on18

topography, and subsequent societal impacts, can vary considerably due to the combination19

of model and DEM used.20

The sensitivity of model output suggests that great caution should be exercised in data poor21

regions where such first-pass assessments may guide hazard zonation strategies, or where22

finer scale scenario implications are sought. Hence, although computationally more23

demanding (500 iterations for the Dig Tsho validation took four hours to run on a standard24
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laptop with a 2.20 GHz processor and 8 GB of RAM), the MC-LCP stochastic simulation1

based analysis provides a robust and informative indication of likely GLOF inundation with2

no increased implementation time investment required of the user.3

The proposed stochastic simulation based analysis (MC-LCP) is able to consistently represent4

potential flood propagation without necessarily using a hydrologically correct DEM, which5

increases its utility in high relief catchments where artefacts are more likely in global DEM6

products (Pitman et al., 2013). Use of elevation and slope cost factors leads to standardised7

application between catchments and the model produces an inherent communication of8

uncertainty at the culmination of the GLOF process chain.9

6.1 Topographic data10

The 30 m ASTER GDEM V2 and 30 m SRTM (previously 90 m as used in this study) DEMs11

now represent the finest resolution open access elevation data. The GDEM and 90 m SRTM12

DEM products have seen usage in hydrodynamic modelling, with observed SRTM13

overestimation and GDEM underestimation of channel elevation (Wang et al., 2012).14

Although no GPS ground truth validation were available to this study, a similar observation15

of relatively higher elevation SRTM profiles was apparent for lengths of the study reach16

reported here (Figure 2). Studies deriving other topographic parameters have reported greater17

SRTM reliability (Frey and Paul, 2012; Mashimbye, 2014), but also that both DEMs cannot18

adequately represent a river channel in steep topography owing to irregular sensor sampling19

of the valley sides (Czubski et al., 2013; Pitman et al., 2013). SRTM 30 m data, which were20

made available for the Himalaya in early 2015, are likely to become widely used for first-pass21

assessments. The more comparable performance between the SRTM 90 m DEM and ALOS22

DEM shown in this study, suggests future use of the 30 m SRTM DEM will lead to greater23

convergence with finer resolution DEM products such as the ALOS DEM used here. This24
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likely reflects the single-pass data collection of the SRTM compared to the combination of1

scenes used in the GDEM.2

Depression filling can be utilised to remove spurious sinks and peaks in the river channel;3

however, this is the most impacting approach since it can remove lengths of local minima4

which represent the river channel (Czubski et al., 2013). Therefore methods reducing terrain5

modification such as those implemented here are preferred (Lindsay and Creed, 2005), even6

though they bring their own demonstrated artefacts . The high7

downstream variability in extracted flood variables for the GDEM (Figure 9) represents the8

continued existence of sinks in the DEM following OPRN pre-processing (Figure 2a). The9

prevalence of sinks in the GDEM produces a notably variable flood extent for the HEC-RAS10

model (Figure 8b) and areas of flow ponding, which are separated by narrow channels where11

the OPRN algorithm has 'cut' (Figure 10b, e). The narrow channels reflect high relief regions12

of the study reach where DEM artefacts are likely to be most prevalent.13

Overall the SRTM displays greater association with the finer resolution ALOS DEM, despite14

the positive channel elevation offset in some areas of the reach (Figure 2a). In contrast, Wang15

et al. (2012) found greater association between the GDEM and a finer resolution DEM when16

comparing the suitability of the GDEM and SRTM for GLOF assessment for a reach in Tibet.17

The greater channel gradient and high incidence of forest cover adjacent to the river channel18

in this study may explain the increased GDEM variability. Though both DEMs are surface19

models, the GDEM V2 represents a ten year fusion of data acquisition, whereas the SRTM20

dataset was collecting during an 11 day mission and coincided with leaf-off conditions for21

northern hemisphere forests (ASTER GDEM Validation Team, 2011).22
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6.2 Model comparison1

The MSF model can be implemented quickly for several start sites, which increases its utility2

for regional assessments. However, sensitivity to DEM resolution and quality restricts local3

scale evaluation of flow routing (Huggel et al., 2003), as highlighted by linear artefacts and4

variability in inundated extent between DEMs of 4.86 km
2
. This is especially evident in the5

lower reach of the GDEM and SRTM MSF scenarios where significant filling occurred6

(Figure 2a), leading to a notably larger extent compared to the ALOS DEM (Figure 8c).7

Elevation peaks in the channel profile further downstream leads to the 'fill' algorithm raising8

the upstream DEM cells to the height of this peak to allow continued flow propagation, hence9

creating an artificially flat and wider channel (Figure 2b). This demonstrates a notable10

sensitivity when applying the MSF to high relief reaches where such erroneous flood extents11

may be misinterpreted if applied on a regional scale, without finer scale flow path and DEM12

interrogation.13

HEC-RAS scenarios demonstrated reduced sensitivity to DEM choice compared to the MSF14

model with a maximum inundation range between respective profiles of 2.48 km
2
. The15

GDEM scenario produced the least consistent flood extent, followed by the SRTM and16

ALOS DEMs (Figure 8b, 9b). This extent variability is partly derived from issues when17

interpolating flood extent between cross sections for the high relief study reach, but is also18

linked to quality of the processed DEM used. Here, the GDEM displayed prominent19

erroneous peaks in the lower reach despite the OPRN processing (Figure 2a). This amplifies20

the ponding of water in the model where the reaches contract and expand. However, ponding21

was observed throughout the HEC-RAS output, where narrow reaches are encountered22

causing a natural (e.g. Carrivick et al., 2013). The sustained high-depth23

artefact for the HEC-RAS GDEM and SRTM scenarios at the end of the study reach (Figure24

9b) is likely owing to the high relief and heavily forested channel here. Since the DEM25
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cannot adequately resolve the channel, this promotes a reverse profile and hence a build-up of1

water in the hydraulic model (Figure 9b). With a finer initial sampling resolution, the ALOS2

DEM is less sensitive to such sampling artefacts.3

Where DEM data quality is an issue and filling causes widespread degradation of the DEM,4

as evidenced here, the MC-LCP still produces an acceptable flood extent comparable to the5

HEC-RAS scenarios. The MC-LCP generally produced the largest flood extent and hence6

downstream wetted width (Figure 8a, 9a). In the field of disaster mitigation, modelling the7

worst-case scenario is perhaps more justified than underestimation (Wang et al., 2012).8

Additionally, the MC-LCP model accounts for DEM uncertainty, hence the inundated extent9

represents the area that was considered a path of least resistance during the iterative terrain10

realisations.11

Similar to the MSF, the MC-LCP model has no physical basis and does not consider flood12

magnitude, although the output could be classified into relative probability bands using the13

inundation frequency output (Figure 10a, d). This would mean that cells with a high14

inundation frequency are more susceptible to smaller flood events, whereas cells with a lower15

inundation frequency would be more susceptible to a higher magnitude flood. The MC-LCP16

is based on a subjective cost weighting of elevation difference from the channel, local slope,17

and allows for the inclusion of additional GIS layers such as land cover. However, that the18

former two factors are applicable to any DEM means that the MC-LCP s outputs are19

standardised between applications. The inclusion of a land cover cost using a reclassification20

of the -RAS produced a lower inundated area (Figure 7a),21

owing to restricted divergence in the extensive forested reaches but increased divergence over22

agricultural and barren land. When investigating the impacts of future land use change on23

GLOF risk (e.g. Nussbaumer et al., 2014), the MC-LCP could therefore demonstrate how24

evolving land cover scenarios would modify the GLOF flow path.25
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Though still only acting as a first-pass assessment, the MC-LCP demonstrates increased1

utility at local scales where relative risks can be evaluated using the lateral inundation extent2

and frequency. The MC-LCP model also demonstrated the greatest stability between each3

DEM with a difference with an inundated area range of 0.85 km
2
(e.g. Figure 7a). Good4

agreement between the MC-LCP and geomorphic evidence of the Dig Tsho GLOF event5

lends further support to using this method to evaluate GLOF flow path propagation (Figure6

6). Improved flow routing was a notable benefit in this study, where the linear artefacts7

inherent in the MSF output were over 1 km long in places (e.g. Figure 10c).8

6.3. Socio-economic implications9

Extracting the relative socio-economic implications of each scenario facilitates an evaluation10

of model choice and DEM sensitivities. Increasing flood magnitude HEC-RAS scenarios11

correspond with greater damage potential. However, since each model represents flow using12

a different technique, a greater flood extent does not necessarily equate to higher socio-13

economic implications (Figure 7). The MC-LCP uses a least cost path approach, the MSF14

requires the maintenance of flow direction, and HEC-RAS propagates open channel flow15

using 1D St. Venant equations. Hence differing flow patterns were expected. The MSF16

scenarios produced the greatest variation in this case, since the GDEM and SRTM scenarios17

displayed an exaggerated extent in the lower reach in response to using a filled DEM. In18

contrast, the MSF model appeared to under represent lateral divergence on the ALOS DEM19

(e.g. Figure 8c).20

6.4 Communication of risk and uncertainty21

The GLOF workflow often contains large uncertainties at each linkage, including dam breach22

formation and simulation (Osti and Egashira, 2009; Westoby et al., 2014); peak discharge and23

lake volume estimation (Huggel et al., 2002; Fujita et al., 2013); and the flood propagation24
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itself (Westoby et al., 2014). In addition, compounding factors exist such as debris1

entrainment, temporary damming, and the initiation of secondary landslides (Kuenza et al.,2

2010). Increased vulnerability and continued habitation of hazardous zones exists where3

communication and trust between local people, scientists, and policy makers is lacking4

(Carey, 2005). Modelling efforts that contain an inherent communication of uncertainty can5

therefore begin to bridge this gap at the expense only of increased computational processing6

time. Risk maps should represent a range of scenarios and an indication of confidence in each7

to avoid under or over representation. Although a transition towards coupling individual8

process-based modelling efforts of the GLOF workflow is desirable (Worni et al., 2014), such9

efforts are not feasible at regional-scales where first-pass assessments can provide an initial10

indication of risk.11

The MC-LCP incorporates an uncertainty assessment and displays least sensitivity to DEM12

quality. Monte Carlo simulations implemented following a terrain realisation approach,13

which was adopted in the MC-LCP, can be utilised to derive confidence maps using the14

output of any hydrodynamic model and an estimate of DEM uncertainty. Alternatively, the15

approach can also introduce a stochastic element into flood mapping scenarios where other16

uncertainties exist in modelling the process chain. Retrospectively applying a DEM error17

model to the output of a hydrodynamic model (e.g. Figure 8d) allows an assessment of18

uncertainty within the modelled flood extent. However, this approach does not evaluate DEM19

cells outside of the initial input boundary, in contrast to Figure 8e. Considering DEM20

uncertainty when using hydrodynamic models such as HEC-RAS, requires DEM terrain21

realisations to be input for each model iteration. Such coupling was beyond the scope of this22

study but was undertaken manually for 10 iterations to provide a visual illustration and23

comparison with the MC- Figure 8d, e)24

deliver an enhanced decision support utility for subsequent inundation probability25
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interpretation, especially when using a lower quality dataset, or undertaking hazard zonation1

mapping.2

7. Conclusions and further work3

The utility of the MSF model to model basic GLOF flow path propagation is confirmed for a4

Himalayan study reach. However, the long reach length subdues any lateral interpretation of5

inundation probability and the requirement to use a 'filled' DEM can create a high incidence6

of parallel flow artefacts. These MSF artefacts were most apparent in the global DEM7

products but they also appeared in a 15 m resolution ALOS PRISM DEM.8

The new MC-LCP approach developed as part of this study displayed improved flow routing9

compared to widely used MSF model, and displayed a stable flood extent, independent of the10

DEM used. This independence of model performance to DEM product is likely to be11

important in other confined and high relief Himalayan reaches, where the GDEM and SRTM12

suffer with artefacts of poor channel delineation. Model scenarios using the SRTM produced13

more consistent flood characteristics in all cases, in line with those scenarios using the finer14

resolution ALOS DEM. This is likely to be further improved as 30 m SRTM data become15

commonly used for first-pass assessments.16

More widely, this study has shown that caution should be exercised in data poor regions17

where remote sensing based first-pass assessments may guide hazard zonation strategies, or18

where local scale scenario implications are sought, since the socio-economic implications of19

contrasting flow models and DEMs can diverge notably. Nevertheless, we have shown that20

the MC-LCP model is able to represent the lateral inundation of the most vulnerable terrain in21

to a flood event, and that inundation extent is comparable to that predicted with use of a 1D22

hydrodynamic model. The user-customisable error model in the MC-LCP facilitates23

uncertainty assessments even if DEM error is low, since DEM noise perturbation could24
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represent other process chain uncertainties. The stochastic approach demonstrated here could1

benefit from GIS applications of circuit theory when applied to multiple catchments2

simultaneously. Circuit theory can similarly replicate least cost paths between two nodes over3

a cost layer; however, owing to enhanced algorithm development, these techniques can4

produce multiple pathway corridors with greatly reduced processing time (McRae et al.,5

2008). An example is provided in the supplementary information (Figure S1).6

Further development of the model could incorporate a downstream distance decay function to7

represent flood attenuation. This decay function would be more informative than a simple8

slope-dependant model cut-off for Himalayan reaches, where the potential flood travel9

distance is extensive. The inherent incorporation and 'fuzzy boundary' communication of10

uncertainty improves the utility of the MC-LCP when dealing with a hazard for which the11

process chain contains large and propagating uncertainties. The optional inclusion of12

additional cost layers such as land cover, offers increased analytical ability within the model13

framework. In addition, a simple calibration between the modelled DEM cost layers and high14

water marks of a past event could further improve the utility of this initial assessment15

technique since the cost layer itself could give an indication of relative inundation extents,16

without requiring model iterations.17

In summary, we suggest that the key advantages of the MC-LCP approach are as follows:18

It produces a flood inundation extent which represents DEM uncertainty.19

Flood inundation frequency allows an assessment of relative risk at a local scale.20

It is least sensitive to DEM choice.21

Additional cost factors such as land cover can be incorporated.22

It has low data requirements and a quick setup time.23

24
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Tables:1

Table 1. Relative elevation differences between downstream river channel profiles from each2

DEM.3

DEM absolute

mean difference

and (standard

deviation) (m)

GDEM

OPRN

SRTM

OPRN

ALOS

FILLED

GDEM

FILLED

SRTM

FILLED

ALOS OPRN 17.4

(21.8)

13.1

(12.9)

7.5

(18.8)

24.7

(23.0)

18.4

(17.6)

GDEM OPRN - 18.7

(18.1)

20.2

(25.0)

23.4

(20.5)

22.7 (28.7)

SRTM OPRN - - 12.4

(19.7)

18.3

(20.3)

5.6

(10.4)

4

Table 2. Comparison of terrain modification resulting from d DEM5

processing.6

DEM Fill OPRN

Modified

cells (%)

Mean

fill (m)

Max

fill (m)

Modified

cells (%)

Mean fill/

cut (m)

Max fill/

cut (m)

GDEM 4.9 21.2 119.0 1.34 3.7/ -9.4 41.5/

-81.6

SRTM 2.4 16.0 52.0 0.49 2.3/ -5.6 14.3/

-45.0

ALOS* 7.8 53.2 1386.8 2.55 17.4/ -

21.32

953.0/

-598.5

Reported statistics highlight the difference between DEM pre-processing algorithms for each

study reach DEM, not exclusively the river channel environment. *ALOS statistics therefore

include large artefacts of the DEM generation procedure where areas of cloud were present on

adjacent valley slopes

7

8

9

10

11

12

13

14

15
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Table 3. Validation of the MC-LCP model against geomorphic evidence of the 1985 Dig1

Tsho GLOF2

Reach

ID

GLOF reach area derived

from geomorphic evidence

(m
2
)*

MC-LCP intersection

with geomorphic

evidence (m
2
)**

GLOF extent

accounted for by the

MC-LCP (%)

L1 181942 132615 73

L2 115889 99265 86

L4 137546 105172 76

L5 23652 19667 83

L7 16872 14805 88

L8 49967 31162 62

* Mapped by Cenderelli and Wohl (2001)

**Shown in Figure 6

3

Table 4. Inundated extent and socio-economic implications for each model scenario.4

Scenario Inundated

extent (km
2
)

Inter-DEM

extent range

(km
2
)

Building

inundation

Road

inundation

(km)

Socio-

economic

range

(buildings/

road (km))

MC-LCP GDEM

500

9.68

0.85

107 6.59

34/ 2.45
MC-LCP SRTM

500

10.46 118 9.03

MC-LCP ALOS

500

9.61 84 6.85

MC-LCP GDEM

LC 500*

6.97

1.06

138 5.94

16/ 2.49
MC-LCP SRTM

LC 500*
8.03 144 6.54

MC-LCP ALOS

LC 500*
7.88 128 8.43

MSF GDEM 7.81

4.86

246 16.91

241/ 16.03MSF SRTM 5.46 145 12.14

MSF ALOS 2.94 5 0.88

HEC-RAS GDEM

Pf1

6.35

2.48**

53 4.05

31/ 0.72**
HEC-RAS GDEM

Pf2

6.86 56 4.46

HEC-RAS GDEM

Pf3

7.09 56 4.37
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1

2

3

4

5

6

7

8

9

10

HEC-RAS SRTM

Pf1

5.29 36 4.25

HEC-RAS SRTM

Pf2

5.65 37 4.35

HEC-RAS SRTM

Pf3

5.77 37 4.65

HEC-RAS ALOS

Pf1

3.86 11 3.20

HEC-RAS ALOS

Pf2

4.18 20 3.56

HEC-RAS ALOS

Pf3

4.38 25 3.93

* MC-LCP scenarios incorporating a land cover cost factor.

**Minimum inter-DEM range considering all HEC-RAS scenario profiles. Individual profile ranges

are given below:

Pf1 range: 2.48 km
2
, 42 buildings, & 1.06 km of road.

Pf2 range: 2.68 km
2
, 36 buildings, & 0.90 km of road.

Pf3 range: 2.71 km
2
, 31 buildings, & 0.72 km of road.



Figure 1. Location of the Chamkar Chu basin study reach within Bhutan and the

potentially hazardous lakes identified by Mool et al. (2001).

Figure 2. Study reach overview. (a) Channel elevation profiles for each Optimised Pit

Removal Net (OPRN) processed and filled DEM. (b) Example cross sections from

the HEC-RAS model demonstrating the difference between the OPRN and filled

DEMs.

Figure 3. Study workflow outlining the model evaluation procedure for the

hypothetical inundation scenarios.

Figure 4. Components and process of the MC-LCP model.

Figure 5. Evaluation of the MC-LCP inundated area stability with increasing number

of model iterations

Figure 6. Validation of the MC-LCP model against the field-measured flood extent of

the 1985 Dig Tsho GLOF using the ASTER GDEM v2. The six reaches are those

numbered and reported by Cenderelli and Wohl (2001).

Figure 7. Inundated area graphs for (a) GIS-based models, and (b) HEC-RAS

scenarios, where profiles 1-3 represent increasing magnitude flood scenarios.

Figure 8. (a-c) Example flood extent maps for the application of each model to

respective DEMs in the lower reach. The medium magnitude scenario (Pf2) extents

are shown for the HEC-RAS model. (d) Inundation confidence map within one HEC-

RAS output produced by classifying positive flood depth during 500 stochastic terrain

realisations on the GDEM. Note that this method does not consider inundation

uncertainty outside of the initial input boundary. (e) Inundation frequency derived by

manually inputting ten terrain realisations into HEC-RAS simulations run on the

GDEM. This method allows DEM uncertainty to be considered during each HEC-

RAS simulation. The MC-LCP extent for the GDEM is shown for comparison.

Figure 9. Wetted width and maximum depth for the MC-LCP (a), HEC-RAS Profile 2

(b), and MSF (c) models. Maximum MSF depth (c) is plotted on a different scale. (d)

The inter-profile difference for each HEC-RAS DEM scenario.

Figure 10. Model output comparison for an upper reach (a-c) and lower reach

featuring the town of Jakar (d-f).

Figure S1. Comparison of the MC-LCP and CIRCUITSCAPE outputs using the

SRTM. The fuzzy outputs are classified to single values representing the maximum

modelled flood extent. 20 m contour intervals are shown with 100 m index contours.
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