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We present new findings on how the presence of particles alters the pinch-off dynam-

ics of a liquid bridge. For moderate concentrations, suspensions initially behave as

a viscous liquid with dynamics determined by the bulk viscosity of the suspension.

Close to breakup, however, the filament loses its homogeneous shape and localised

accelerated breakup is observed. This paper focuses on quantifying these final thin-

ning dynamics for different sized particles with radii between 3 µm and 20 µm in a

Newtonian matrix with volume fractions ranging from 0.02 to 0.40. The dynamics

of these capillary breakup experiments are very well described by a one-dimensional

model that correlates changes in thinning dynamics with the particle distribution in

the filament. For all samples, the accelerated dynamics are initiated by increasing

particle-density fluctuations that generate locally-diluted zones. The onset of these

concentration fluctuations is described by a transition radius, which scales with the

particle radius and volume fraction. The thinning rate continues to increase and

reaches a maximum when the interstitial fluid is thinning between two particle clus-

ters. Contrary to previous experimental studies, we observe that the final thinning

dynamics are dominated by a deceleration, where the interstitial fluid appears not to

be disturbed by the presence of the particles. By rescaling the experimental filament

profiles, it is shown that the pinching dynamics return to the self-similar scaling of a

viscous Newtonian liquid bridge in the final moments preceding breakup.

a)christian.clasen@cit.kuleuven.be
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I. INTRODUCTION

Capillary-driven breakup of a liquid jet into droplets is omnipresent in daily life and is

of tremendous importance in a variety of industrial applications, such as spraying, inkjet

printing and dosing operations in food or pharmaceutical industry. Fluids used in these

applications often exhibit a complex rheology, making the prediction of these processes non-

trivial1–3. One reason for such divergent flow behaviour can be the presence of particles in

these fluids. For example, inks used in various conventional printing operations contain solid

particles that can disturb the normal jetting process4,5. Furthermore, inkjet printing is used

as a fabrication tool for ceramic components and printed electronics, where the functional

components of the ink, the solid particles, are present in high concentration6,7. Despite the

practical importance of particle-laden drops, knowledge on the effects of particles on the

stability and breakup of liquid jets is rather limited compared to Newtonian fluids.

The formation of droplets from a liquid jet has fascinated scientists for centuries. The

study of the breakup dynamics of Newtonian fluids gained momentum after the character-

isation of a pendant water drop using high-speed photography by Peregrine et al.8. In the

instances preceding breakup, the drop is connected to the nozzle with a slender liquid fila-

ment that ultimately ruptures near the surface of the forming drop rather than in the centre

of the filament. Moreover, this strong up-down asymmetry at the breakup point is indepen-

dent of the employed setup (dripping faucet, continuous jet or unstable liquid bridge), which

suggests the existence of a universal solution for these free-surface flows. These findings have

been extended to more viscous liquids and the effects of viscosity on the shape of the fluid

thread are quantified9,10.

The first step to discovering an analytical solution is to simplify the three-dimensional

Navier-Stokes equations using a slenderness assumption. When the fluid thread is long and

thin, the flow is predominantly directed along the axis, so the velocity field is essentially

one-dimensional. By expanding the velocity field in the radial direction and taking only the

leading-order terms into account, a one-dimensional version of the momentum equations is

deduced11,12. Since the flow is without a typical length scale near breakup, the concept of self-

similarity can be successfully applied to this problem to retrieve an analytical solution13,14.

The length scale of this solution is time-dependent, implying that solutions at different times

are identical after a correct rescaling of the filament radius and the axial coordinate.
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Different self-similar solutions have been established depending on the relative importance

of inertial and viscous term in the simplified Navier-Stokes equation. The dominant material

parameter resisting the breakup is revealed by the Ohnesorge number Oh, which compares

the time scales of viscosity controlled breakup and inertia controlled breakup and is defined

as:

Oh =
η√
ργR

, (1)

where η is the viscosity, ρ is the fluid density, γ is the surface tension and R is the relevant

length scale, e.g. the jet radius. For moderate Ohnesorge numbers, a universal solution

considering all terms of the one-dimensional Navier-Stokes equation has been developed by

Eggers15. In this case, the minimum radius observed along the jet, Rm, obeys the thinning

law

Rm = 0.0304
γ

η
(tp − t) , (2)

where tp is the pinching time, where the jet breaks. Although the universality of the solution

implies a validity for all fluids, in practice, this inertia-viscous (IV) scaling is only observed in

close proximity to breakup for fluids in a narrow viscosity range16. Nevertheless, Newtonian

fluids with these viscosities are employed to generate stable droplets for example in inkjet

printing applications7. More viscous fluids with larger Ohnesorge numbers tend to follow a

different, viscous (V) scaling. The inertial term may be dropped in this case, reducing the

momentum equation to the Stokes form. A symmetric self-similar solution to this equation

was derived by Papageorgiou17, giving the following expression for the minimal radius:

Rm = 0.0709
γ

η
(tp − t) . (3)

Since the fluid effectively undergoes a uniaxial extensional flow, free-surface flows are

also employed in rheometry. The breakup dynamics offer insight into the extensional prop-

erties of relatively low viscous fluids, which cannot be measured with standard rheological

techniques18. The temporal evolution of the minimal radius is used in combination with

the correct scaling law to extract material parameters. For Newtonian fluids, McKinley and

Tripathi19 show that the viscous scaling law (Eq. 3) can be used to extract the capillary

velocity vc = γ/η. For non-Newtonian fluids, the material properties that have been deter-

mined include the apparent extensional viscosity, the relaxation time of elastic samples and

the power law parameter for strain-thinning liquids2,20–22. Although different experimental
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setups are possible, these capillary breakup experiments are mostly executed with an unsta-

ble bridge created by stretching a liquid sample between two end plates. This setup has the

advantage of an Eulerian reference frame, so the evolution of the minimal diameter is easily

followed with a laser micrometer or a high-speed camera.

Recently, the extensional properties of suspensions have been investigated with free-

surface flows. Dispersions that exhibit shear-thickening can show viscoelastic pinch-off or

dilatancy effects depending on the strain rate23,24. However, other non-Brownian suspensions

display a faster thinning rate close to pinch-off than that predicted by the viscous scaling

law for the bulk viscosity25–30. This flow behaviour is not necessarily a strain-thinning effect

and can rarely be captured by a power-law model30. The shear response of these systems

is dominated by hydrodynamic interactions and can be described by a single viscosity up

to moderate particle concentrations31. This viscosity is proportional to the viscosity of the

suspending medium and has a strong dependance on the particle volume fraction φ. Careful

experiments on the shear-rate dependance of these suspensions are performed by Zarraga

et al.32 who found no shear thinning for φ < 0.45. Many semi-empirical correlations have

been proposed to describe the relative shear viscosity ηr of the suspension. Throughout this

paper, we will use the Maron-Pierce model33

ηr(φ) =

(

1− φ

φm

)

−2

, (4)

where ηr = η/ηm is the relative viscosity compared to the medium viscosity ηm. The highest

volume fraction is estimated by the random close packing limit of φm = 0.6434. This equation

has the same form as the commonly used Krieger-Dougherty expression35, which employs a

different power law exponent −[η]ρφm, where [η] is the intrinsic viscosity.

The acceleration that is observed during the late stages of capillary breakup of these

suspensions is caused by the finite-size effects of the particles, rendering the continuum

approximation invalid for small filaments. Furbank and Morris26,27 demonstrate this in an

extensive experimental study on dripping and jetting flows of granular suspensions (with

particle radius Rp = 53 - 103 µm) and describe the thinning as a two-stage process. The

necking is initially dominated by the suspension viscosity, followed by a second stage in which

the suspending fluid properties appear to be critical. Lindner and co-workers continue this

work by performing dripping experiments of granular suspensions with a wide range of

particle sizes and concentrations. The second stage is split into a small regime where the
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thinning rate is independent of the volume fraction, matching that of the medium fluid, and

an accelerated regime where the suspension clearly thins faster than the medium fluid25.

This acceleration is observed at very low particle concentrations, even when there is only a

single particle in the thinning filament28.

In this paper, we quantify and explain this acceleration of suspensions near pinch-off with

capillary breakup tests of an unstable liquid bridge. Contrary to previous studies where the

breakup dynamics are examined by comparison to viscous oils with approximately the same

viscosity, we will only use the temporal evolution of the minimal filament radius of the

suspensions and apply the self-similar scaling laws to extract material parameters. Further-

more, we focus on the final thinning stage and use high-resolution optics to image the fluid

dynamics and distinguish the motion of individual particles. The paper is structured as

follows. In Section II the employed model suspensions and the experimental setup are intro-

duced, as well as the one-dimensional model previously established by McIlroy & Harlen36,

which is used to simulate the thinning behaviour of the suspensions. Reference capillary

breakup experiments on the Newtonian suspending media are presented in Section III. The

different stages in the pinching of the suspensions are described and compared to the one-

dimensional model in Section IV, where a clear distinction is made between the thinning of

the suspension (Section IVB) and that of the interstitial fluid (Section IVC).

II. MATERIALS AND METHODS

A. Experimental measurements

The model suspensions consist of non-Brownian spherical particles dispersed in Newto-

nian silicone oils with volume fractions φ between 0.02 and 0.40. The key physical properties

of the poly(dimethylsiloxane) (PDMS) oils at a temperature of 22◦C are summarised in Ta-

ble I. Three different-sized particles are used: polystyrene spheres with a radius Rp = 10

µm (PS10) and Rp = 20 µm (PS20), and poly(methyl methacrylate) spheres with Rp = 3

µm (PMMA3) (Dynoseeds, Norway). The particles are initially dispersed in the continuous

phase using a vortex mixing device (Vortex Genie 2, Scientific Industries) and the suspen-

sions are subsequently placed on a rolling bench for 30 minutes to homogenise the samples.

The PS spheres have a density of ρ = 1050 kg/m3 and the PMMA spheres of ρ = 1180
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kg/m3.

To judge the stability of the dispersions, the sedimentation velocity vs,0 for dilute sus-

pensions is calculated using Stokes’ law:

vs,0 =
2R2

p∆ρg

9ηm
, (5)

where ∆ρ is the difference between the densities of particle and fluid, and g is the gravita-

tional constant. For more concentrated suspensions, the settling velocity vs is calculated by

the empirical Richardson-Zaki expression31

vs
vs,0

= (1− φ)6.55 , (6)

where the exponent is chosen to match the prediction for dilute particle concentrations by

Batchelor37. The maximal sedimentation velocity is determined for the dilute samples of

PS20 to be vs ≈ 10 µm/min. Therefore, each experiment is performed within 15 minutes

after (re)dispersing the particles using the vortex mixer.

γ ρ ηm Oh

(mN/m) (kg/m3) (Pa.s) (−)

PDMS 1 21.0 1070 0.180 1.20

PDMS 2 21.0 970 0.360 2.52

TABLE I: Characteristics of the silicone oils at a temperature of 22◦C.

Capillary breakup experiments are performed with the CaBER-1 extensional rheometer

(Thermo Scientific, Germany), equipped with circular disks with a radius R0 = 2 mm and

an initial gap of 2 mm, at an ambient temperature of 22◦C. Sample volumes of 0.03 ml

are loaded between the plates with a syringe through a nozzle of 1.36 mm (EFD Nordson

Precision tips). To create an unstable liquid bridge, the samples are linearly stretched within

50 ms to final plate separations of 6 and 8 mm. However, it should be noted that no change

in the thinning behaviour is observed when changing the final gap. The thinning dynamics

depend on the local distribution of the particles, which varies statistically between each

experimental run. Therefore, experiments are repeated at least ten times to account for this

statistical variation and the parameters extracted from the thinning curves are averaged

over at least ten representative measurements.

6



The thinning and breakup dynamics are monitored with a high-speed camera (Fastcam

SA2, Photron, USA) to capture the heterogeneous nature of the final breakup process of

suspensions. The camera is connected to a tube lens system equipped with 5x and 10x

microscopic objectives (Olympus, Japan), resulting in a spatial resolution of 1.9 µm/pixel

and 0.95 µm/pixel respectively. This resolution allows the identification of individual par-

ticles in the liquid filament and enables accurate tracking of their position near breakup.

Images are generally taken at a rate of 3000 fps with a shutter time of 10 µs, but rates are

increased to 9000 fps for examining the final pinch-off dynamics. Illumination is achieved

by a fibre-optic illuminator (Fiber-Lite DC-950, Dolan Jenner Industries, USA) and a 50

mm condenser lens. The image series are analysed with Matlab-based, self-written image

processing routines38 in order to determine the shape of the edges of the filament and to

follow the evolution of the minimal radius in time Rm(t).

The Hencky strain ǫH and the strain rate ǫ̇ are determined from the radius data via

ǫH(t) = 2 ln

(

R0

Rm

)

, (7)

ǫ̇(t) = − 2

Rm

∂Rm

∂t
. (8)

Since the required numerical differentiation for ǫ̇ is susceptible to noise, the filament radius

data is smoothed with a Savitzky-Golay filter with a second-order polynomial and a fitting

window of 21 points. This technique is preferred to weight-adjacent averaging, as it tends

to better preserve features of the data.

Since micron-size particles are investigated in a relatively high-viscosity medium, Brow-

nian motion is unable to re-distribute the particles and eliminate particle-density gradients

within the timescale of the experiment. This can be verified from the value of the Péclet

number Pe, which is the ratio of the rate of advection by the flow to the rate of diffusion

by Brownian motion in a dilute dispersion:

Pe =
6πηmǫ̇R

3
p

kBT
, (9)

where kB is the Boltzmann constant and T is the absolute temperature. The strain rate

has the lowest value during capillary breakup experiments of the most viscous samples

and a characteristic value ǫ̇ ∼ 10 s−1 can be estimated by the inverse viscous time scale

ǫ̇ ∼ γ/ (ηR0). Even for the smallest particles the Péclet number is of the order Pe = O(104),

which justifies neglecting Brownian motion in our study.
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B. Simulating particulate suspensions

To model the effects of finite particle size on the dynamics of filament thinning, we use

the one-dimensional method of McIlroy & Harlen36 to examine the effects of axial variations

in particle concentration. In this model, the filament generated by the CaBER is assumed

to be sufficiently long and thin that it can treated as an axisymmetric slender jet. Thus,

the governing equations for the dimensionless filament radius h(z, t) and the velocity v(z, t)

are given by

∂h2

∂t
+

∂

∂z
(h2v) = 0,

∂

∂t
(h2v) +

∂

∂z
(h2v2) =

∂

∂z

(

h2

(

K + 3Oh
∂v

∂z

))

,
(10)

from conservation of mass and momentum, respectively. Here the curvature term is defined

as

K =
hzz

(1 + h2
z)

3/2
+

1

h(1 + h2
z)

1/2
, (11)

with the z-subscript denoting differentiation with respect to z. These governing equations

(Eqs. 10-11) have been non-dimensionalised with respect to the initial radius R0 and the

Rayleigh time scale tR =
√

ρR3
0/γ. The initial shape of the free surface is modelled as an

arc of a circle to simulate a liquid bridge held between two end plates, as in the CaBER

technique.

For each realisation, the particles are initially uniformly distributed at random axial

positions zp, for p = 1, . . . , Np, throughout the liquid bridge. The average volume fraction

is given by

φav =
Np

Vtot

V p, (12)

where V p is the particle volume, which for spherical particles is

V p =
4

3
πR3

p. (13)

Thus, the effective particle radius Rp is controlled by varying the number of particles Np.

Also for the numerical calculations, the particles are assumed to be sufficiently large that

Brownian motion is negligible. In addition, we assume that the overall effects of particle-

particle and particle-surface interactions can be neglected so that each particle moves with

the axial velocity v(zp, t) of the fluid, obtained by linear interpolation. The local volume
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fraction φ is then determined from the number of particles within a segment of the filament.

This concentration discretisation is larger than the mesh size used in the solution of Eq. 10

and, within limits, does not affect the ultimate thinning dynamics36.

The effects of particle concentration on the dynamics are incorporated by assigning a local

viscosity from the Maron-Pierce relation (see Eq. 4), which introduces a local Ohnesorge

number in Eq. 10, given by

Ohi = Ohs

(

1− φi

φmax

)

−2

, i = 1, . . . Nb, (14)

where Ohs denotes the Ohnesorge number of the solvent and Nb represents the number of

bins into which the filament is divided for the concentration discretisation. In this way,

the particles contribute only to the local viscosity of the fluid and the direct effects of

individual particles on the free surface are neglected. The governing equations (Eqs. 10-

11) are then solved via a semi-implicit numerical scheme, where the velocity terms are

treated explicitly. Simulations are executed to mimic the particles used in the experiments

for various concentrations φ < 0.25. In general and similar to the experimental protocol,

ten realisation are performed for a single suspension to account for the statistical variation

arising from the initial particle distribution. In the case of Rp = 3 µm, a single realisation

is executed for φ = 0.02 and φ = 0.10 due to computational time constraints.

III. NEWTONIAN OILS

As reference cases, capillary breakup experiments are performed on the two silicone oils

without particles. For these inelastic fluids, the dominant material parameter resisting the

breakup is the Ohnesorge number2. The global Ohnesorge number for this experiment

given in Table I uses R = R0 (L1/L0)
−3/4 in Eq. 1, which is the radius predicted at the

cessation of stretching, determined by a lubrication solution for a Newtonian viscous fluid39.

By comparing the characteristic thinning velocities of the viscosity and inertia dominated

regimes, the boundary between the two regimes is located at a critical value Oh∗ = 0.207716.

Since the values in Table I are sufficiently above Oh∗, both oils initially display viscosity-

dominated filament thinning.

Figure 1 shows the evolution of the minimal radius during capillary breakup of the two

silicone oils, in which the pinching time tp is used as a temporal reference. As expected from
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FIG. 1: Thinning dynamics of the two viscous silicone oils. Both oils follow the viscous

scaling for the most part of breakup process.

the value of the Ohnesorge number, which is greater than Oh∗ , both fluids thin linearly

in time consistent with the viscous scaling (Eq. 3), allowing the extraction of viscosities

from the thinning data. The quality of the fits over a radius range from 250 to 50 µm is

demonstrated in Figure 1 and the extracted viscosities ηfit = 364 mPa.s and ηfit = 171

mPa.s, respectively, are in agreement with the shear-viscosity values (see Table I).

However, deviations from this viscous scaling occur close to breakup. This observation

is highlighted in Figure 2, where, in order to simplify the comparison between samples, we

eliminate viscosity from Eq. 2 and Eq. 3 by rescaling the time with the viscous time scale2

tη =
14.1 ηmR0

γ
. (15)

The time axis is further shifted with tc, the time at which the filament radius equals the

reference radius. As a result, the thinning curves of both samples initially coincide, following

the viscous scaling (Eq. 3) until a radius Rm = 50 µm. Although the filament thinning of

PDMS 2 follows the viscous scaling until breakup, the thinning of the less viscous PDMS 1

undergoes a transition and decelerates prior to breakup.

This transition in scaling has been explained by Eggers13,15. He shows that the decaying

filament radius gives rise to a strongly increasing capillary pressure close to pinch-off, re-

sulting in a diverging strain rate (see Eq. 8). Hence, the inertial term grows more quickly

than the other terms and can no longer be neglected in the dominant balance. Thus, the

10



FIG. 2: Enlargement of the final thinning dynamics of both silicone oils. The time is

rescaled with tη to allow a better comparison of both samples. The low viscous PDMS 1

clearly exhibits a transition from the viscous (V) scaling to the inertia-viscous (IV) scaling

during the final breakup stages.

pinching of the filament is controlled by an inertia-viscous-capillary balance (IV-scaling)

and follows the similarity solution described by Eq. 2 prior to breakup, rather than the V-

scaling. This deceleration of the breakup dynamics is accompanied by a shift of the location

of the minimum radius in the axial direction from the centre of the filament towards the end

drops, turning the initial symmetric viscous pinching into an asymmetric pinching. Theoret-

ically, the transition radius from viscous scaling to inertia-viscous scaling is approximated

by equating the estimates of the inertial and capillary term as

R = R0Oh2/(2β−1), (16)

with β = 0.17514. However, this value is an order of magnitude larger than our experimental

transition radius, which is comparable to other experimental observations40. The reason for

this discrepancy is presently not understood, although it might be related to breaking of the

symmetry which could delay the transition2,41.

Since the thinning of Newtonian fluids are generally used as a benchmark for more com-

plex suspension dynamics, recognising this transition in crucial. Moreover, the transition

radius we observe is comparable to the particle size in the current investigation and therefore
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comparable to the reported length scale at which changes in the breakup process occur due

to finite-size effects25,26. Thus, in order to decouple the transition of V- to IV-scaling from

the suspension dynamics, most suspension experiments in this paper are performed with

PDMS 2 as a continuous phase.

IV. SUSPENSIONS

A. Thinning stages

In order to quantify the particulate effects on the pinching dynamics, we have examined

the filament evolution for suspensions with varying volume fraction and particle size. As

an example of the general thinning dynamics we observe, Figure 3 shows the experimental

breakup curve (points) compared to the results of the numerical simulation (solid line) for

10% of PS20 in PDMS 2. We also include a series of experimental images to illustrate

how the unstable filament approaches breakup. In general we observe four distinct thinning

regimes; a suspension regime, a concentration fluctuation regime, an accelerated regime and

a final deceleration regime governed by the properties of the medium fluid only, which we

now describe.

In the initial suspension regime – illustrated by the first two images in Figure 3 – the fila-

ment appears entirely black, because the particles render the sample opaque. The suspension

can be considered as a homogeneous fluid and the thinning dynamics are fully determined

by the effective viscosity of the suspension. The viscosity that is recovered by fitting the

viscous scaling (Eq. 3) to the minimal radius data, corresponds to the prediction of the

Maron-Pierce correlation (see Eq. 4) for a particle fraction φ = 0.10. In previous dripping

studies, a clear linear decrease of the minimal radius Rm with time - as predicted by the

similarity solutions - is not observed. The breakup dynamics are instead interpreted by ex-

perimentally comparing the suspension breakup dynamics with the thinning of a Newtonian

oil with the same viscosity as the suspension25,28.

We recognise two reasons why the study of the breakup starting from an unstable filament

has a more straightforward interpretation than a dripping experiment. First, the self-similar

solutions are only applicable if the slenderness assumption is valid16. The instant creation

of a slender, unstable filament in the CaBER allows the viscous scaling to remain suitable
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FIG. 3: Evolution of the minimal radius during capillary breakup of suspension with

φ = 0.10 of PS20 in PDMS 2. The solid line shows the results of a simulation with the

same concentration and particle size. Initially, the dynamics are solely determined by the

effective viscosity of the suspension. Subsequently, the thinning velocity accelerates causing

a faster rupture of the filament. The number in the bottom left of the images indicates the

time to pinch-off (tp − t) in ms and the scale bar represents 200 µm. In the last three

frames, localised thinning of the continuous phase between two particles is observed.

for most of the breakup process. In the dripping setup, the filament only gradually achieves

the required slenderness to observe the self-similar shapes. This formation exhibits different

dynamics, which are only empirically captured for suspensions27. Second, once this filament

of the dripping experiment is slender enough, the filament and particle radius are often of

the same magnitude, particularly for larger granular particles. Hence, the fluid can no longer
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be treated as a continuum.

As the filament becomes thinner, transparent zones emerge and individual particles are

clearly distinguished. The suspension appears heterogeneous revealing lighter oil-rich regions

and darker zones with clusters of particles. We call this phase the concentration fluctuation

regime. Regions of the filament with a lower particle density locally exhibit a smaller effective

viscosity and will therefore thin faster. As the model of McIlroy & Harlen36 predicts, these

fluctuations in the local concentration of particles are amplified as the volume of the filament

region is reduced, inducing an accelerated thinning rate compared to the suspension regime.

Consequently, we observe a deviation from the viscous scaling law once the filament radii

has reduced to 100 µm, as shown in Figure 3.

Despite the simplicity of the model, the corresponding simulation, shown by the solid line

in Figure 3, not only captures the qualitative features of the experiments with a transition

to an accelerated thinning of the filament due to fluctuations in the local particle density,

but it also describes quantitatively both the radius of onset and the thinning velocity during

this phase of thinning. The small difference in the slope of the initial linear regime is caused

by a small difference between the experimentally observed suspension viscosity and the

predictions of Maron-Pierce model used in the simulations. The degree of agreement between

the simulations and experiments strongly suggests that the acceleration is a consequence of

the amplification of particle-density fluctuations due to thinning creating local regions of

lower than average viscosity that are able to thin more easily, producing a more rapid

thinning in these regions.

Particle-density fluctuations also manifest in the shape of the filament shown in Figure

3, starting from the fourth image (with time stamp 15). Unlike the previous images, we

now observe local variations in the filament diameter, indicating the onset of a localised

thinning. These concentration fluctuations during capillary breakup of the suspensions are

also observed by Roché et al.24 during extensional experiments on concentrated cornstarch

dispersions. However, the nearly periodic surface fluctuations between solvent-rich and

jammed regions that are present in their work are not detected in our samples, which are

significantly less concentrated. Similar concentration fluctuations have also been observed

for concentrated suspensions of colloidal particles in a complex flow field with a strong

extensional contribution42.

After the concentration fluctuation regime, where a certain amount of particles are still
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FIG. 4: Plot showing the final thinning dynamics of 10% PS20 in PDMS 2 near pinch-off.

The accelerated regime is followed by a deceleration where the dynamics appear to return

to the self-similar scaling of the continuous phase, demonstrated by the fitted viscosity.

The onset of suspension dilution is also indicated with the transition radius RT .

present in the thinnest region of the filament, particle-density fluctuations in the thinning

filament eventually lead to particle-free sections, which are clearly observed in the last three

images of Figure 3. In this particle-free zone, the radial velocity is locally accelerated,

resulting in confined thinning with the filament resembling the shape of a power law fluid43.

This continuous-phase thinning begins at roughly 7 ms before pinch-off for this particular

suspension and the evolution of the minimum radius in this phase is highlighted in Figure

4. We split this continuous phase into two distinct regimes.

First, there is an accelerated thinning regime25,28 where the radius decays linearly with

time, in quantitative agreement with the model results, and the radial velocity vr = −dRm/dt

reaches a maximum. For this short period, the thinning is approximately twice as fast as that

of the pure medium fluid. Enlarged pictures of this accelerated pinching stage are shown

in Figure 5, in which the two nearest particles are accentuated with a grey circle. The

displacement of these particles in the consecutive frames demonstrates the acceleration in

this zone. In these pictures, two particle clusters appear to form a barrier for the continuous

phase, isolating roughly 2 nl of the medium fluid from the rest of the filament. Due to the

slower or even arrested thinning in the clusters, the continuous phase in between is forced
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FIG. 5: Magnified image of the final stages of the capillary breakup of 10% PS20 in

PDMS 2. The number in the bottom left indicates the time to pinch-off (tp − t) in ms and

the scale bar represents 50 µm. The final thinning takes place between two particles which

are highlighted by the grey circles and their displacement reveals the large extension rates

before pinch-off.

to resemble an hour glass shape similar to a small-scale filament stretching experiment with

the clusters as boundaries, resulting in a faster pinching of the thread.

Second, the radial velocity reduces and the thinning decelerates prior to breakup. This

deceleration was not detected in previous studies on similar systems25–29 because these small

filament radii were below the resolution limit of the employed camera setup. By fitting

these last radii with the viscous scaling (Eq. 3), the viscosity of the interstitial viscous oil is

recovered. The thinning appears to return to the self-similar scaling of a Newtonian liquid

bridge, indicating that the thinning is no longer affected by the presence of the particles.

This final stage where the thinning-rate of the pure suspending fluid is recovered is also

captured in the simulations.

Reviewing the breakup dynamics of this suspension, we have not encountered the inter-

stitial fluid regime described by Bonnoit et al.25, where thinning dynamics observed between

the suspension regime and the accelerated regime is governed only by the medium fluid. Fig-

ure 4 indicates that part of the concentration fluctuation stage has approximately the same

thinning rate as the final regime, so this region was probably labelled the interstitial fluid

regime. However, we presume this zone is merely a transition state in the concentration fluc-

tuation regime, because there is no distinct physical reason why the suspension would thin

at this rate. In the following sections the different thinning stages are separately regarded

and the effect of changing different suspension properties is investigated. We first consider
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the first two stages, where there are still particles present in the neck, before continuing to

the thinning of the interstitial fluid in the final two stages.

B. Suspension thinning and dilution

To obtain a better understanding of the mechanisms causing this accelerated breakup,

we have performed a series of CaBER experiments for different particle concentrations and

sizes. We have also simulated the breakup of these suspensions with Ohs = 2.5 correspond-

ing to PDMS 2 (see Table I). Qualitatively, all samples follow the thinning curve of Figure

4, with the four thinning regimes that are described in the previous section. Initially, the

examined suspensions behave as an effective Newtonian fluid. The initial linear section of

the thinning curve is fitted with the viscous scaling law (Eq. 3) for each sample to ac-

quire the characteristic viscosity. The extracted viscosity is independent of particle size and

the concentration dependance is well described by the model prediction for the suspension

viscosity (Eq. 4).

As the filament becomes thinner, particle-density fluctuations are amplified for all ex-

amined samples. Local heterogeneities consequently emerge and the fastest thinning occurs

in a locally-diluted region. Although each sample demonstrates the four thinning regimes,

we observe differences in the thinning rate of the accelerated regime and the transitions

between the consecutive thinning stages occur at different filament radii. By examining the

local slopes of the thinning curves, we explore the effects that changing suspension properties

has on the concentration fluctuation regime.

Figure 6 shows the evolution of the minimal filament radius for three suspensions of

different particles with a fixed volume fraction φ = 0.25. The results of the one-dimensional

model are shown by the three lines. Initially, the thinning trajectories of the three samples

overlap in the effective fluid stage, as the suspension viscosity depends solely on the volume

fraction. However, the suspension with largest particles deviates from this linear thinning

much earlier, so that while the smallest particle (PMMA3) suspension is still in the first

thinning stage, the PS20 sample has already pinched due to a combination of the suspension

dilution and the accelerated thinning of the interstitial fluid. Although the model results

are in qualitative agreement with the experimental data and represent the final thinning

dynamics well, we observe differences in the radii at which the thinning departs from the
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FIG. 6: Breakup dynamics of suspensions of different particle sizes in PDMS 2 with a

fixed volume fraction φ = 0.25. The symbols show the experiments and the solid lines the

simulated thinning profiles for the two largest particles. The time axis is shifted to

demonstrate that the initial effective viscosity regime is independent of particle size.

Breakup occurs considerably sooner for the suspensions with the larger particles. As

reference, the radius evolution of a viscous fluid with the same viscosity is included as a

dashed line.

initial suspension regime, indicating the onset of concentration fluctuations.

Similarly, Figure 7 shows the evolution of the minimal filament radius for three suspen-

sions of PS40 having volume fractions φ = 0.02, 0.10 and 0.25. Again, the model results

are given by the lines. In this case, the time axis is rescaled by tη (Eq. 15) so that, as

in Figure 6, the initial thinning trajectory of the three samples overlap. A deviation from

the linear suspension regime is observed at larger filament radii for the more concentrated

experimental samples and the model results are in qualitative agreement. Again, we observe

small differences in the concentration fluctuation radius predicted by the model compared

to the experimental data.

We have chosen to quantify the onset of the dilution with a transition radius RT , which is

defined as the intersection between fitting lines of the suspension regime and the accelerated

regime (see Figure 4). The precise value of the transition radius depends upon the initial

particle distribution and so varies in consecutive experiments and numerical realisations of
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FIG. 7: Breakup dynamics of PS40 in PDMS 2 with volume fractions φ = 0.02, 0.10 and

0.25. The symbols show the experiments and the solid lines the simulated thinning profiles.

The time axis is shifted and rescaled with tη for better comparison of the three samples.

the same suspension. However, in general, the average transition radius increases with parti-

cle size, as seen in Figure 6, and volume fraction, as seen in Figure 7. In order to understand

this evolution, and the differences between the experiments and the model behaviour, we

define a structural length scale Rs for the variation in the particle density.

The distribution of non-interacting, identical spherical particles in a homogeneous sus-

pension is characterised statistically by the particle nearest-neighbour probability density

function Hp(r)
44, the probability associated with finding the nearest-neighbour particle at

some given distance r from a reference particle. For an ideal system of non-interacting point

particles, this function is given by45

Hp(r) = 4πρNr
2 exp

(

−4

3
πρNr

3

)

, (17)

where the particle number density ρN can be expressed in terms of the volume fraction and

the particle radius as ρN = 3φ/(4πR3
p). Thus a length scale for concentration variations can

be obtained as the standard deviation of the nearest-neighbour distance
√

〈r2〉, obtained
from the second central moment of Hp(r). However, it is only when these concentration

variations lead to a significant change in fluid viscosity that they affect the thinning dynam-

ics, and to take account of this effect we multiply
√

〈r2〉 with the derivative of the logarithm
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FIG. 8: Overview of the scaled transition radius RT/Rs at which the suspension dilution

starts for the suspensions with PDMS 2 as medium. The experimental radii are compared

to simulations with the same particle size.

of the suspension viscosity with respect to volume fraction. Using the Maron-Pierce model

(Eq. 4), the length scale Rs for the transition radius is defined as

Rs =
√

〈r2〉
(

1

η

∂η

∂φ

)

=
0.65Rp

φ1/3 (φm − φ)
. (18)

In Figure 8 we use this to rescale the transition radii of various suspensions. The scaling

works well for the simulated transition radii, particularly in the range φ = 0.10− 0.25. For

smaller concentrations, the transition between the suspension regime and the accelerated

regime is not as pronounced, as the slopes of the respective regimes are similar. However,

despite having qualitatively the correct features of the experiments, the length scale Rs

does not capture the lower transition radii at low volume fractions and overestimates the

transition radii at high concentrations (φ = 0.40). It is to be expected that this scaling

should work better for the simulated thinning profiles than the experiments as both neglect

the effects of the excluded volume in the particle distributions, whereas the experimental

systems contain impenetrable hard spheres. Expressions for Hp in a system of impenetrable

hard spheres have been established by Torquato and co-workers46,47, but the moments of

this function cannot be obtained analytically. Moreover, the scaled transition radius has the

highest value for the concentrated samples of the smallest particles PMMA3, which may be
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FIG. 9: Plot showing the minimal radius evolution of the same suspensions with φ = 0.25

near pinch-off. The increase of the maximum radial velocity with decreasing particle size is

shown and the onset of the continuous phase thinning is indicated with a horizontal

dashed line.

the result of colloidal forces.

C. Continuous-phase thinning

As dilution continues, concentration fluctuations eventually lead to particle-free sections

in the filament. As discussed in Section IVA, we split this final continuous phase into two

regimes: the acceleration regime and the deceleration regime. In the accelerated regime,

the filament radius generally thins linearly with time for a short period and the radial ve-

locity vr = −dRm/dt reaches a maximum. We observe that this maximum radial velocity

increases for smaller particles and higher particle concentrations. However, this observation

does not capture the effect that particle size has on the ultimate breakup time of the sus-

pensions. Although the smallest-particle (PMMA3) suspension has the largest value of vr,

this suspension takes the longest time to breakup, as demonstrated in Figure 6.

Figure 9 focusses on the final pinch-off dynamics of the three suspensions with fixed

volume fraction φ = 0.25. The short linear decay where the highest thinning rate is achieved,
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FIG. 10: Scaled experimental filament profiles R∗ as a function of the scaled axial

coordinate z∗ of a PDMS 2-based suspension of PS20 particles with φ = 0.10 near

pinch-off. The time until breakup is indicated for each profile. The first three profiles are

situated during the accelerated thinning of the continuous phase and the other four are

observed in the deceleration stage. The profiles in the latter stage are clearly overlapping

and exhibit the same shape as the viscous self-similar solution.

i.e. the accelerated regime, is demonstrated by a linear fit with a slightly different slope

for each sample. For each case, the horizontal dashed line indicates the visible onset of

continuous-phase thinning between two particle clusters. As this transition occurs at a

smaller radius for smaller-particle suspensions, the acceleration regime is limited and large

vr cannot affect the dynamics. Consequently, the reduction in breakup time is less than

that observed for larger particle sizes. Evidently, it is the concentration fluctuation regime,

characterised by the transition radius RT , that is key to understanding particulate effects

on breakup time, rather than the accelerated regime itself.

As discussed in Section IVA, the acceleration regime is succeeded by a deceleration, which

has not been detected in previous experimental studies. The transition into this final regime,

and therefore the extent of the deceleration, also depends on the suspension properties in

a similar way as previously discussed. For example, in Figure 9 the larger particle cases

have a more pronounced deceleration regime, owing to a larger transition radius initiating
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this final thinning stage. In the PMMA3 case, the final transition is below the spatial and

temporal resolution of our set up.

The deceleration regime also exhibits linear decay (see Figure 4) characterised by a bal-

ance between surface tension and the viscosity of the medium fluid. This indicates a return

to the self-similar scaling of a viscous Newtonian fluid. This hypothesis is confirmed by

scaling the filament profiles near breakup to verify the convergence to the universal Stokes

similarity solution φSt for the filament radius of a viscous liquid13,14,17. Figure 10 shows

the scaled profiles of a suspension of PS20 in PDMS 2 with φ = 0.10 near pinch-off. The

filament radius R and the axial coordinate z are rescaled as

R∗ =
R

Rm

, (19)

z∗ =
z − z0
Rm

(tp − t)1−β , (20)

where z0 is axial coordinate corresponding to the minimal radius and β = 0.175 is the scaling

exponent for the Stokes similarity solution.

Seven profiles are selected in the final 5 ms before breakup. The first three scaled profiles,

at times 5, 4 and 3 ms before breakup, occur during the accelerated thinning regime and

do not exhibit self-similarity. In this regime, a small region around z∗ = 0 is observed to

be particle free and surrounded by a cluster of particles. However, the last four profiles at

times 2, 1.67, 1.33 and 1 ms before breakup, clearly demonstrate the self-similar nature of the

final deceleration regime, approaching the symmetric shape of φSt. Although the interstitial

fluid continues to thin between two particle clusters in this regime, finite-size ceases to affect

the thinning dynamics so that the thinning rate can be described solely by the Ohnesorge

number of the medium fluid. Consequently, we are able to recover the Newtonian thinning

transitions described in Section III, as we now discuss.

In Figure 11, we plot the deceleration regime for the PS20 suspension with a range of

volume fractions for both medium fluids PDMS 1 and PDMS 2. The deceleration is more

prominent for suspensions with a lower particle volume fraction. To allow comparison of

samples with different medium viscosities, the time is rescaled with the viscous time scale tη

(Eq. 15), where we have chosen the particle radius as the reference radius: R0 = Rp. The

time axis is further shifted with tc, the time at which filament radius equals the reference

radius. The slopes of the two possible self-similar solutions for a viscous liquid are shown

in Figure 11. For the suspensions with PDMS 1 as medium fluid there is the appearance
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FIG. 11: Deceleration of the filament thinning near pinch-off for a series of suspensions of

PS20 with both medium fluids. The time is rescaled with tη and minimum filament radius

is depicted relative to the particle radius. The deceleration is more pronounced for lower

particle volume fractions and for lower medium viscosity, where the thinning dynamics

tend to the slower inertia-viscous (IV) scaling before breakup.

of a transition from the V-scaling to the IV-scaling close to breakup, whereas the PDMS

2-based dispersions persist in following the V-scaling. The switch to the IV-scaling results

in a relatively longer deceleration zone for the PDMS 1-based suspensions.

Moreover, the final shape of a Newtonian filament is controlled by the preferred scaling law

prior to breakup2. The PDMS 2-based suspensions exhibit a symmetrical pinching, where

the breakup occurs in the centre of the filament. In contrast, the symmetry in the filament of

the PDMS 1-based suspensions is broken under the influence of inertia, generating a vertical

shift of the necking point along the filament towards the particle clusters. This asymmetrical

pinch-off results in the formation of a small satellite droplet, which is not experimentally

observed with PDMS 2-based suspensions. This contrast between the behaviour of the two

medium fluids during the capillary thinning experiments on the pure liquids was noted in

Section III. However, the transition to IV-thinning in the PDMS 1 suspensions occurs at

significantly smaller radii than in the pure liquid, as a consequence of the reference radius

R0 in Eq.16 being the onset of the continuous-phase thinning.
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V. CONCLUSION

We have studied the drop formation of particulate suspensions in a Newtonian medium by

investigating the pinch-off dynamics of an unstable liquid bridge. This geometry instantly

creates a slender filament enabling the use of self-similar scaling to explain the thinning

dynamics. This strategy results in a more straightforward interpretation of the capillary

breakup than in previous dripping studies on similar fluids25,26. We have demonstrated excel-

lent agreement between capillary breakup experiments and the model for capillary breakup

of particulate suspensions developed by McIlroy and Harlen36. Four thinning regimes are

identified during the capillary thinning of suspension. The suspension initially behaves as

homogeneous viscous fluid and the filament radius decreases linearly in time following the

viscous scaling for the effective viscosity of suspension, which is accurately described by the

Maron-Pierce model.

As the filament thins, local particle-density fluctuations are amplified resulting in a het-

erogeneous suspension with diluted zones that exhibit faster thinning rates due to the local

decrease in viscosity. We have defined the onset of this dilution regime with a transition

radius RT that depends the particle radius and volume fraction in a non-trivial way. A scal-

ing for this radius was proposed based on the standard deviation of the mean inter particle

distance and the relative dependance of the viscosity to small changes the volume fraction.

The value of the transition radius is crucial in estimating the reduction in breakup time

compared to a viscous fluid with matching shear viscosity. The local dilution eventually

develops a particle-free section, where the a small volume of medium fluid is caught between

two particle clusters. At this point, the breakup resembles a small-scale filament stretching

experiment and the thinning rate reaches a maximum.

Finally, we observe a transition from the accelerated regime to a last deceleration regime,

which has until recently48,49 not been detected in previous experimental studies. The thin-

ning of the continuous phase appears unaffected by the presence of the particles and follows

the viscous scaling of the medium fluid. This scaling has been verified by rescaling the

filament profiles to retrieve the symmetric Stokes similarity solution.
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