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Abstract

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour.
Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the
fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian
methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that
these exhibit a stereotypical ‘phase transition’, whereby an increase in density leads to the onset of collective motion in one
direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial
Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their
neighbours; up to non-Markovian models where prawns have ‘memory’ of previous interactions, integrating their
experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale
behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle
models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model,
provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a
biologically plausible perceptual range. We conclude that prawns’ movements are influenced by not just the current
direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study
system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at
multiple biological scales, include memory of previous interactions and other non-Markovian effects.
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Introduction

The most striking features of the collective motion of animal

groups are the large-scale patterns produced by flocks, schools and

other groups. These patterns can extend over scales that exceed

the interaction ranges of the individuals within the group [1–4].

For most flocking animals, the rules dictating the interactions

between individuals, which ultimately generate the behaviour of

the whole group, are still not known in any detail. Many ‘self-

propelled’ particle models have been proposed for collective

motion, each based on a relatively simple set of interaction rules

between individuals moving in one, two or three dimensions [2,5–

8]. Typically these models implement a simple form of behavioural

convergence, such as aligning the focal individual’s velocity in the

average direction of its neighbours or attraction towards the

position of those neighbours. Generally such rules are explicitly

kept as simple as possible while remaining realistic, with the aim of

explaining as much as possible of collective motion from the

simplest constituent parts.

Each of the models in the literature is capable of reproducing

key aspects of the large-scale behaviour of one or more biological

systems of interest. Together these models help explain what

aspects of inter-individual interactions are most important for

creating emergent patterns of coherent group motion. With this

proliferation of putative interaction rules has come the recognition

that some patterns of group behaviour are common to many

models, and that different models can have large areas of

overlapping behaviour depending on the choice of parameters

[4]. Common patterns of collective behaviour are also observed

empirically across a diverse range of animal and biological

systems. For example, a form of phase transition from disorder to

order has been described in species as diverse as fish [9], ants [10],

locusts [11], down to cells [12] and bacteria [13]. In all these

systems, as density of these species is increased there is a sudden

transition from random disordered motion to ordered motion with

the group collectively moving in the same direction. These studies

indicate that a great deal can be understood about collective

behaviour without reduction to the precise rules of interaction.

In many contexts however the rules of interaction are of more

interest than the group behaviour they lead to. For example, when

comparing the evolution of social behavior across different species,

it is important to know if the same rules evolved independently in

multiple instances, or whether each species evolved a different

solution to the problem of behaving coherently as a group [1].
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Recently researchers in the field have become interested in using

tracking data from real systems on the fine scale to infer what

precise rules of motion each individual uses and how they interact

with the other individuals in the group [14–19]. This is an

important trend in the field of collective motion as we move from a

theoretical basis, centred around simulation studies, to a more

data-driven approach.

The most frequent approach to inferring these rules has been to

find correlations between important measurable aspects of the

behaviour of a focal individual and its neighbours. For example,

Ballerini et al. [14] looked at how a focal individual’s neighbours

were distributed in space relative to the position of the focal

individual itself in a group of starlings. Significant anisotropy in the

position of the k{th nearest neighbour, averaged over all

individuals, was regarded as evidence for an interaction between

each bird and that neighbour. More recently Katz et al. [18] and

Herbert-Read et al. [19] investigated how the change in velocity of

each individual in groups of fish was correlated to the positions

and velocities of the neighbouring fish surrounding the focal

individual. This provides evidence not only for the existence of an

interaction between neighbours but also estimates the rules that

determine that interaction.

In these studies the rules of interaction are presented non-

parametrically and cannot be immediately translated into a

specific self-propelled particle model. Nor are these models

validated in terms of the global schooling patterns produced by

the fish. An alternative model-based approach that does fit self-

propelled particle and similar models to data is proposed by

Eriksson et al. [16] and Mann [17]. Under this approach, the

recorded fine-scale movements of individuals are used to fit the

parameters of, and select between, these models in terms of

relative likelihood or quality-of-fit. This approach has the

advantage of providing a parametric ‘best-fit’ model and can

provide a quantitative estimate the relative probability of

alternative hypotheses regarding interactions.

What all previous empirical studies have lacked is a simulta-

neous verification of a model at both the individual and collective

level. Either fine scale individual-level behaviour is observed

without explicit fitting of a model [18,19] or global properties,

such as direction switches [11,20], speed distributions [21,22] or

group decision outcome [23] have been compared between model

and data. Verification at multiple scales is the necessary next step

now that inference based on fine-scale data is becoming the norm.

Just as simulations of large-scale phenomena can appear consistent

with observations of group behaviour without closely matching the

local rules of interaction, so can fine-scale inferred rules be

inconsistent with large-scale phenomena if these rules of inferred

from too limited a set of possible models or from correlations

between the wrong behavioural measurements. The closest that

any study so far has come to finding consistency between scales has

been Lukeman et al. [15]. In their study the local spatial

distribution of neighbouring individuals in a group of scoter ducks

was used to propose parametric rules of interaction, with some

parameters measured from the fine-scale observables, but with

others left free to be fitted using large-scale data. We suggest that if

group behaviour emerges from individual interactions, then the

form of these interactions should be inferable solely from fine-scale

data without additional fitting at the large-scale. An inability to

replicate the group behaviour using a selected model demonstrates

that the model space has been insufficiently explored. When faced

with alternative hypothesised interaction rules, model-based

parametric inference provides the best means of quantitatively

selecting between them.

In this paper we study the collective motion of small groups of

the glass prawn, Paratya australiensis. Paratya australiensis is an atyid

prawn which is widepsread throughout Australia [24]. Although

typically found in large feeding aggregations, it does not appear to

form social aggregations and has not been reported to exhibit

collective behaviour patterns in the wild. We conduct a standard

‘phase transition’ experiment [9,11,12], studying how density

affects collective alignment of the prawns. We complement this

approach by using Bayesian inference to perform model selection

based on empirical data at a detailed individual level. We select

between models by calculating the probability of the fine scale

motions using a Bayesian framework specifically to allow fair

comparison between competing models of varying complexity.

Comparison of the marginal likelihood, the probability of the data

conditioned on the model, integrating over the uncertain

parameter values, is a well developed and robust means of model

selection that forms the core of the Bayesian methodology [25–28]

and which has been applied to compare models in the biological

sciences, particularly neuroscience [29]. Bayesian methods are also

well established in animal behaviour through consideration of

optimal decision making in the presence of conflicting information,

both environmental [30] and social [31,32]. In adopting this

approach, we reject the dichotomy of model inference based on

either fine scale behaviour of the individuals or the motion of the

group. Instead we use reproduction of the large scale dynamics

through simulation as a necessary but not sufficient condition of

the correct model.

Results

We study the positions and directions of co-moving prawns in a

confined annular arena (See Materials and Methods and Figure 1

and also Figure S1 and Video S1 in the supplementary material).

We tracked, using semi-automated software, the position of each

prawn through the duration of the experiments. We pre-processed

those raw tracking data by using a Hidden Markov Model to

classify the movements of each prawn into a binary sequence of

clockwise (CW) and anti-clockwise orientation (see Materials and

Methods).

Author Summary

The collective movement of animals in a group is an
impressive phenomenon whereby large scale spatio-
temporal patterns emerge from simple interactions
between individuals. Theoretically, much of our under-
standing of animal group motion comes from models
inspired by statistical physics. In these models, animals are
treated as moving (self-propelled) particles that interact
with each other according to simple rules. Recently,
researchers have shown greater interest in using experi-
mental data to verify which rules are actually implemented
by a particular animal species. In our study, we present a
rigorous selection between alternative models inspired by
the literature for a system of glass prawns. We find that the
classic theoretical models do not accurately predict either
the fine scale or large scale behaviour of the system.
Instead, individual animals appear to be interacting even
when completely separated from each other. To resolve
this we introduce a new class of models wherein prawns
‘remember’ their previous interactions, integrating their
experiences over time when deciding to change behav-
iour. These show that the fine scale and large scale
behaviour of the prawns is consistent with interactions
only between individuals who are close together.

Interaction Rules in Animal Groups
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We then calculated the number of prawns travelling CW or anti-

CW at each time step of each experiment involving three, six or

twelve prawns. From this we calculated the average number of CW

and anti-CW prawns at a given time across experiments. Figure 2A

shows how the number of CW prawns, C, changes over time, taken

as a distribution over all trials with six prawns. There is a transition

from an initially random configuration, with most trials having

C~3+1, to a final configuration where most experiments have

either C~0 or C~6. The final stable distribution is further shown

in Figure 2B along with the final distribution for three and twelve

prawn experiments. Steady state polarisation increases as a function

of prawn number. The polarisation, W can be defined as

W~
DN{2CD

N
: ð1Þ

The expected polarisation in randomly oriented groups varies with

the number of individuals in the arena, being larger for smaller

groups and obeying a binomial distribution. We adjust the

measured polarisation by this expectation, W0, to obtain the excess

polarisation, W’~W{W0. Figure 2C shows this measure of

polarisation over time for experiments with three, six and twelve

prawns, confirming that the excess polarisation increases over time

and is greater for larger groups.

At a group level we see that prawns tend to align over time,

producing a polarised stable state, which is higher for larger group

sizes. We define the reproduction of these global patterns as the global

consistency condition of our model. We insist that any realistic model for

the prawns’ interactions must reproduce this large-scale behaviour.

Model selection
Next we investigated a series of interaction models as to their

ability to reproduce the fine scale interactions of the prawns. We

predict the probability, P(directionchangeDmodel), that a focal

prawn will change its orientation, given one of a number of potential

models. The direction changes are determined by the data from the

six-prawn treatment. This treatment provides the best balance

between the number of data points, density of direction changes,

clear large scale behaviour and tracking accuracy.

Each model specifies the probability that a focal prawn will

change its direction in the next time step conditioned on the

relative positions and directions of the other individuals in the

arena. We use a logistic mapping to ensure probabilities remain

between zero and one, so each model uses the relevant variables to

determine a latent ‘turning-intensity’, s, such that,

P(direction changeDs)~1=(1zexp({s)), ð2Þ

Figure 1. Schematic of the experimental setup. Prawns moving within an annulus of 200 mm external diameter and 70 mm internal diameter.
Red coloured prawns indicate a clockwise orientation, blue prawns a counter-clockwise orientation. In this instance the total number of prawns
N~6, number of clockwise-moving oriented prawns C~4, the polarisation W~1=3, and the excess polarisation W’~1=48.
doi:10.1371/journal.pcbi.1002961.g001

Interaction Rules in Animal Groups
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where s is a function of the relative positions and directions of the

other prawns, both now and potentially in the recent past, and the

model parameters.

The models are, in increasing degree of complexity, as follows.

Firstly to consider models that do not include zones-of-interaction

– non-spatial models. We establish a baseline with a Null model.

This simply posits that direction changes occur at random, at the

rate established from the single prawn data, and the prawns do not

interact in any way that changes this direction-changing proba-

bility. Therefore s is given simply by a baseline constant, q, which

is determined by the rate of direction changing in single prawns.

s~q: ð3Þ

We also consider two models where the interaction is independent

of absolute spatial separation. The Mean Field (MF) model includes

interactions between all prawns regardless of position, such that

their relative directions alter the probability of changing direction.

Since the number of prawns in the experiment is fixed, the

probability for a direction change is influenced by the number of

individuals moving in the opposite direction (negative prawns),

N{. Each negative prawn increases the turning intensity by an

amount l{,

s~qzl{N{: ð4Þ

A Topological (T) model restricts these interactions to a limited

number of nearest-neighbours, K , the individuals closest to the

Figure 2. Large-scale behaviour of the experimental system. (A) The proportion of six-prawn experiments (n~102) with a given number of
CW moving prawns over time. For each point in time we calculated the distribution over all trials of the number of CW prawns. This distribution is
then plotted as a heat map. (B) The final distribution of experiments with number of CW moving prawns, for three-, six- and twelve-prawn
experiments (n~58,102,62 respectively). Error bars represent the mean and standard deviation for each proportion as calculated from the final ten
seconds of the experiments. (C) The average polarisation of experiments with three, six and twelve prawns over time, adjusted by the expected
polarisation of randomly oriented prawns.
doi:10.1371/journal.pcbi.1002961.g002

Interaction Rules in Animal Groups

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002961



focal prawn. The turning intensity is now influenced by the

number of negative prawns, NK{ within the set K of nearest-

neighbours.

s~qzl{NK{: ð5Þ

Secondly we consider a class of Spatial models (S1–S4). These

models closely resemble the classic one-dimensional self-propelled

particle models from the literature [5]. The focal prawn interacts

with neighbours within a spatial zone-of-interaction, R. The

number and directions of individuals within this interaction zone

determine the probability of changing direction. A number of

further variations are possible; interactions can be limited to

prawns ahead of the focal prawn and/or to prawns travelling in

the opposite direction to the focal prawn. We consider four

variations, indicated in Table 1. The general form for this model is

given by,

s~qzl{NR{zlzNRz ð6Þ

where NR{ and NRz are the number of negative and positive

(travelling in the same direction) prawns within the interaction

zone, and l{ and lz parameterise the influence of each

individual on the turning intensity.. Interactions can occur with

negative prawns only, lz~0, or with both negative and positive

oriented prawns, lz=0. The spatial interaction zoneR is either a

symmetrical area centred on the focal prawn, of width R radians

around the ring (spatial symmetric models in Table 1), or is only

directed R radians ahead of the focal prawn (spatial forward

models).

Visual inspection of the movements of the prawns suggests that

interactions often follow a particular pattern. Two prawns,

travelling in the opposite directions, collide. After the prawns

have passed each other one of the prawns may subsequently

decide to change direction. Self-propelled particle and other

models of collective motion do not capture this type interaction.

Such interactions are non-Markovian, i.e. the change in direction

is not just the result of the environment now, but of the past

environment as well. We proposed a third class of models (D1–

D4), simple non-Markovian extensions of the basic spatial models,

where each prawn would ‘remember’ the other individuals it

encountered, with those memories fading at an unknown rate after

the interaction was complete. As such the prawn would integrate

those interactions over time, building up experiences which would

alter its chance of changing direction. Mathematically this means

that the turning intensity is now auto-regressive, depending on its

own value at the previous time step as well as the current positions

and directions of the neighbouring individuals. We introduce a

decay parameter, d , which determines how quickly the turning

intensity returns to normal after an interaction with a neighbour

has occurred. The same variations of interaction are allowed as for

the spatial models, giving a general form for the non-Markovian

turning intensity as,

st~dst{1z(1{d)½qzl{Nt{1
R{zlzNt{1

Rz�zl{Nt
R{zlzNt

Rz: ð7Þ

where st now indicates the turning intensity at time t, which

depends on the value of the turning intensity at the previous time

step, st{1. The number of prawns still in the interaction zone from

time t{1 is indicated by Nt{1
R+ , while the number of new arrivals

in the interaction zone is given by Nt
R+. Hence raised (or lowered)

turning intensities persist over time, with a duration controlled by

the value of d. After the focal prawn changes direction the turning

intensity is reset to the baseline, st~q, at the next time step.

Table 1 specifies the interaction zone structure for each of

eleven alternative models, grouped according to the description

given above. For each model we calculate the marginal likelihood

of the data, conditioned on the interaction model (see Materials

and Methods). The marginal likelihood is the appropriate measure

for performing model selection, especially between models of

varying complexity. More complex models, by which we mean

models with a larger number of free parameters, are penalised

relative to simpler models when integrating over the parameter

space, since less probability can be assigned to any particular

parameter value a priori. The marginal likelihood indicates how

likely a particular model is, rather than a model and an chosen

optimal parameter value (see, for example, Mackay [33] Chapter

28 and other standard texts for discussions on this topic). The

marginal likelihoods of each model are shown in Figure 3A.

We also measure the consistency between the large scale results

of our experiments and the results predicted by simulation of each

model, using the parameter values in Table 1. We set a consistency

condition that any model that accurately approximates the true

interactions must fulfil. We measure the large scale quality-of-fit

between the model simulations and the experiments using the

Kullback-Leibler divergence [34] between the distribution of

simulated and experimental outcomes and performing a G-test for

quality-of-fit [35] (see Materials and Methods). The p-value

associated with this quality-of-fit for each model is shown in

Figure 3B, showing which models are deemed to be consistent

with experiments (those with pw0:05). Large scale results from the

simulation of each model are shown individually in Figures S2, S3,

S4, S5, S6, S7, S8, S9, S10, S11, S12 in the supplementary

materials.

The Null model, in which prawns do not interact, performs

significantly worse than the mean-field model. Figure 4 shows that

the mean-field reproduces both the global alignment of the prawn

groups, with an increase in polarisation with time and group size.

These results show that the prawns interactions involve matching

their directions to that of others, producing alignment.

Are local spatial interactions important in reproducing observed

direction changes? We note first that a topological interaction

zone, where the focal prawn interacts with its K nearest

neighbours, has a marginal likelihood slightly lower than the

mean field model. The topological model is ‘punished’ for having

more parameters than the mean-field model, since the most

probable value of the topological interaction range encompasses

all neighbours. However, interactions between prawns are local.

Figure 5 shows how the probability of changing direction depends

on the position of the nearest opposite facing neighbour. An

opposite facing neighbour within approximately p=4 radians of a

focal prawn strongly increases the chance that the focal prawn will

change direction.

This observation suggests that a local interaction spatial model

should outperform the mean field model, and we can use the

approximate observed range of interaction (*p=4 radians) to

inform our prior probability on the interaction zone for models

that include one. However, Figure 3A shows that with this limit on

the interaction zone, the spatial models (S1–S4) all have a

marginal likelihood lower than the mean field model. Simulating

these models with most-probable parameters inferred from our

analysis of the data (see Table 1) shows that these fit poorly on the

large scale too, having a relatively large divergence between the

simulated outcomes and the observed large scale alignment

patterns and are therefore showing significant differences in the

quality-of-fit test (Figure 3B). Both Figure 5 and our biological

Interaction Rules in Animal Groups
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reasoning insist that locality must be maintained in interactions

between individual animals. Therefore the poor performance of

these spatial models indicates that they are an incomplete

description of the true behaviour of the prawns.

The models incorporating a non-Markovian delayed response

together with a spatial interaction zone (models D1–D4) all

outperformed the most probable Markovian spatial model on both

the fine and large scales (Figure 3). Model D3 is the best

performing model on both scales, and is the only model with a

greater marginal likelihood than the Mean Field model. This then

is the best model we can infer from our selection of possibilities.

Figure 6 shows that simulations of model D3 produce collective

alignment of the prawns and consistently stronger and faster

alignment for larger group sizes, fulfilling our large-scale

consistency requirement for a realistic model. The inferred value

of the memory parameter associated with this model (see Table 1)

puts the half-life of these memories at approximately one second.

Combined with the average angular speed of the prawns (*p=4
radians/s) this means that prawns can be separated by a full half of

the arena while still exerting a considerable influence on each

other’s behaviour. This potentially explains the strong perfor-

mance of the mean field model in explaining the fine scale

interactions between individuals.

Discussion

A number of physical [36–38], technological [39] and biological

systems, including animals [9–11,40], tissue cells [12], microor-

ganisms [13,41] are known to increase their collective order with

density. Glass prawns are one additional example of such a system,

which is particularly interesting since they are not known as

gregarious or social species. By confining the prawns to a ring we

facilitated their interactions and in doing so generated collective

motion. This adds further support to the idea that collective

motion is a universal phenomenon independent of the underlying

interaction rules [4,11,42]. While we do not expect that prawns

often find themselves confined in rings in a natural setting, they

and other non-social animals do aggregate in response to

environmental features such as food and shelter. Such environ-

mental aggregations can, above a certain density, result in an

apparently ‘social’ collective motion.

The true value of this study, however, is found not in the

addition of one more species to this growing list, but in

demonstrating a rigorous methodology for selecting an optimal

and multi-scale consistent model for the interactions between

individuals in a group. We have used a combination of techniques

to identify the optimal model for our experiments: Bayesian model

selection, validation against global properties and consistency with

biological reasoning. We applied Bayesian model selection to

identify the model that best predicts the fine-scale interactions

between prawns. This approach allows us to perform model

selection in the presence of many competing hypotheses of varying

complexity, while avoiding over fitting [17]. This indicated the

selection of a non-Markovian model with a persistent ‘memory’

effect. We find that interactions are governed by a perceptual

range which is symmetric about the focal individual which is

somewhat greater than the average body length of the prawns

(approximately p=10 radians).

Reproduction of the large-scale dynamics is frequently used to

validate mathematical models of biological systems, but presents

Table 1. Model comparison.

Model
Interaction
zone q R/radians K l{ lz d P-value L= bits

Null None 27.5 N/A N/A N/A N/A N/A 0 269036

MF Global 27.5 N/A N/A 0.76 N/A N/A 8:8|10{9 257976

T K nearest-
neighbours

27.5 N/A 5 0.77 N/A N/A 0.077 258114

S1 Spatial,
symmetric

27.5 0.20p N/A 1.35 N/A N/A 0:29|10{3 260035

S2 Spatial,
forward

27.5 0.16p N/A 1.37 N/A N/A 0 259102

S3 Spatial,
symmetric

27.5 0.20p N/A 1.72 0.23 N/A 5:4|10{7 262297

S4 Spatial,
forward

27.5 0.19p N/A 1.69 0.52 N/A 0 262004

D1 Spatial,
symmetric

27.5 0.18p N/A 1.08 N/A 0.87 0.097 258094

D2 Spatial,
forward

27.5 0.19p N/A 0.75 N/A 0.94 0.15 258499

D3 Spatial,
symmetric

27.5 0.19p N/A 0.99 23.59 0.92 0.17 257963

D4 Spatial,
forward

27.5 0.19p N/A 1.08 0.32 0.92 1:3|10{3 258512

The interaction zone structure of each model, along with the (maximum a posteri) inferred values of model parameters, the P-value indicating quality-of-fit between
experimental results and model simulations and the log marginal likelihood (L) of the model calculated from the fine scale dynamics (as shown in Figure 3. P-values

reported as zero are smaller than numerical precision, i.e v2|10{308). N/A indicates that the model does not include the indicated parameter. The interaction zone
indicates whether prawns interact with others in a spatial zone around themselves, which may be oriented either forwards or symmetrically around their centre, or with
their nearest-neighbours or globally with all other individuals. Reported parameters are: q, the baseline direction-change intensity; R, the interaction radius for spatial
models; K , the number of interacting nearest-neighbours for topological models; l{ and lz , the strength of interaction with negative and positive prawns respectively;
and d , the decay factor determining how long interaction effects persist.
doi:10.1371/journal.pcbi.1002961.t001
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only a necessary and not a sufficient condition for model validation.

Indeed, all of the models we have assessed in this work can, with the

appropriate parameters, generate aligned motion consistent with

experiment. The fact that our mean-field model reproduces global

dynamics, but fails at a fine-scale level is not particularly surprising.

Mean-field models are not designed to reproduce spatially local

dynamics [1]. More illuminating, however, is the failure of Markovian

spatial models to reproduce the fine-scale dynamics when the locality

of interactions between individuals is imposed. Models S1, S2, S3, S4

are variants of the standard one dimensional Vicsek self-propelled

particle model [43], which has previously been validated against the

global alignment patterns of marching locusts [11]. For the prawns

these models perform poorly on both capturing the fine scale

dynamics of interactions and in reproducing the large scale alignment

patterns seen in the data. This inconsistency allowed us to reject

standard self-propelled particle models as a good model of the data.

To identify a better model we first visually inspected the

interactions between the prawns. These observations suggested a

‘memory effect’, whereby a prawn would remain influenced by

individuals beyond the moment of interaction. The resulting

models are able reproduce the fine scale and large scale dynamics

of the prawns, while also maintaining the biologically-intuitive

locality of interactions between individuals. More generally, we

would expect other examples of animal motion to be non-

Markovian, with individuals taking time to react to others, to

complete their own actions and also potentially reacting through

memory of past situations. In this context, it is important to

consider the limitations of recent studies identifying rules of

interaction of fish [18,19]. These studies concentrated on

quantifying local interactions, but do not try to reproduce global

properties. It may be that non-Markovian and other effects are

needed to produce these properties.

In what circumstances can we expect non-Markovian effects to

play an important role in collective behaviour? Inference based on

a Markovian model must account for behavioural changes of a

focal individual in terms of their current environment. As such the

crucial factor is how much the local environment changes between

when the animal receives information and when it responds. Large

Figure 3. The performance of different models on the fine and large scale. (A) The marginal-likelihood of each model (excepting the null
model), calculated from the fine scale dynamics. Each marginal-likelihood is estimated by annealed importance sampling [47]. (B) The p-value
associated with the quality-of-fit test between the distributions of model simulation and experimental outcomes (proportion of prawns travelling
clockwise at the conclusion of the trial). Each test is performed on 10 independent sets of 100 simulations. On both measures model D3 is the best-
performing model, indicating that the focal prawn interacts with all individuals within a short-range symmetric interaction zone, with a ‘memory’ of
these interactions that has a persistent influence on the probability of changing direction. Note that the null model has a lower marginal-likelihood
and p-value than all other models and is not shown to preserve the scale of the plot.
doi:10.1371/journal.pcbi.1002961.g003
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changes in the local environment can be caused by long response

times or by rapid movements of other animals relative to the focal

individual. Where behavioural changes are strongly discontinuous,

such as the binary one-dimensional movement in this study, non-

Markovian effects may become especially important. This is

because the focal individual may have to execute a number of

small changes (such as stopping and turning through a several

small angles) in order to register as having changed its direction of

motion. Over the course of making many adjustments the

environment can change dramatically from the moment that the

change was initiated.

We have compared the models on the large scale by evaluating

the quality-of-fit between the distribution of large scale outcomes

predicted by model simulations with that seen in experiments. The

model we select from the fine scale analysis is also evaluated as the

best on this large scale analysis, and produces simulation results

that are qualitatively consistent with experiment (see Figure 6).

Because the same model is selected from both analyses we have

not been forced to weight the relative importance of each. In

future it may be necessary to decide on an appropriate weighting

of these different criteria where they disagree on the optimal

model. The research presented here provides a first step towards

the use of multi-scale inference in the study of collective animal

behaviour and in other multi-level complex systems.

Materials and Methods

Glass prawns (Paratya australiensis) were collected from Manly

Dam, Sydney, Australia and transported back to aquaria facilities

at the University of Sydney. They were held in 20 glass aquaria

Figure 4. Simulation results for mean-field model MF. (A) Proportion of six-prawn simulations (n~1000) of mean-field model MF with a given
number of prawns moving CW over time. (B) Final distribution of simulations by number of CW moving prawns for simulations with three, six and
twelve prawns. Error bars represent the mean and standard deviation for each proportion as calculated from the final ten seconds of the simulations.
(C) The average polarisation over time, adjusted by the expected polarisation of randomly oriented prawns, for simulations of three, six and twelve
prawns.
doi:10.1371/journal.pcbi.1002961.g004
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and fed green algae and fish food ad libitum. Prawns were housed

for at least 2 days prior to experimentation. An annulus arena

(200 mm external diameter, 70 mm internal diameter) was

constructed from white plastic and filled to a depth of 25 mm

with freshwater. The arena was visually isolated inside an opaque

white box and filmed from above using a G10 Canon digital

camera at a frame rate of 15 Hz. Data was subsequently down-

sampled to 7.5 Hz by removing every second frame for

computational efficiency. For each trial, we haphazardly selected

one, three, six or twelve prawns and placed them in the arena. We

filmed each trial for six minutes, after which we removed the

prawns, emptied, and then refilled the arena with freshwater.

Prawns were only used once on each day of trials. A schematic of

this setup is shown in Figure 1.

Hidden Markov Model
The frame-by-frame movements of the prawns are imperfect

representations of the true orientation, since a prawn will often

stop or even drift slightly backwards without physically turning

around. A Hidden Markov Model (HMM) allows the underlying

orientation of the prawns to be discovered from the noisy frame-

by-frame movements by demanding a higher degree of ‘evidence’

for a direction change, in essence only identifying direction

changes when the prawn makes a sustained movement in the new

direction. This gives a better estimate of the true orientation than

given by the instantaneous velocity alone.

We constructed a two-state HMM [44] for the observed

changes in position of the prawn, as shown in Figure 7. The two

states represent clockwise (CW) or anti-clockwise (anti-CW)

orientation. In a CW oriented state it is assumed that the prawn

will normally move in CW direction over the course of one frame,

but because the prawns movements are noisy it may move in the

reverse direction over short time periods while remaining oriented

CW. We model the distribution of these movements as a Gaussian

distribution. We further assume a symmetrical model, such that

the distribution of movements in the CW state is anti-symmetric to

the distribution of movements in the anti-CW state. Thus a

movement of zero is equally probable in either state. We use the

Baum-Welch algorithm [44,45] to learn the transition probability

and the mean and standard deviation of the Gaussian observation

probability distribution, using data from single-prawn experi-

ments. We then apply this learnt model to identify the most

probable state sequence for each of the prawns in the three-, six-

and twelve-prawn experiments, using the Viterbi algorithm

[44,46]. We further reduce the number of artifactual detected

direction changes by removing any instances where a prawn

changes direction twice within one second, since inspection

suggests these events are caused by tracking errors.

Calculation of marginal likelihoods for fine scale
comparison

A given model, M describes the probability of a change of

direction for the focal prawn at time t, conditioned on the current,

and potentially past, positions of the other prawns, Xt and Xvt

and the parameters of the model h. The likelihood for a given

parameter set of the model is the probability of the data, D,

conditioned on the parameters and the model and is the product

over both time steps and focal prawns of the probability for the

observed outcome - either a change of direction or no change. Let

Di,j,t equal one when prawn i in experiment j changes direction at

time t, and is zero otherwise, then,

P(DDh,M)~ P
Ne

j~1
P
Np

i~1
P
T

t~1
½P(changeDh,Xt,Xvt,M)Di,j,t

z (1{P(changeDh,Xt,Xvt,M))(1{Di,j,t)�
ð8Þ

where Ne and Np indicate the number of experiments and the

number of prawns in each experiment respectively. The marginal

likelihood of the model is given by integration over the space, H, of

unknown parameters,

P(DDM)~

ð
H

P(DDh,M)P(hDM)dh ð9Þ

The prior distribution of the parameters, P(hDM) is chosen to

represent the available knowledge about the parameters and is split

into independent parts. We use the empirical observations in Figure 5

to inform the prior distribution on the interaction range and possible

interaction strengths. The prior distribution over the number of

interacting neighbours in the topological model is set to the entire

possible range for the analysed six-prawn experiments, and the prior

distribution for the memory factor is naturally between 0 (no

memory) and 1 (permanent memory). The prior for the same

parameter over different models is the same to allow fair comparison.

P(qDM)~d(qz7:5)

P(RDM)~Uc(R; 0,p=4)

P(K DM)~Ud (K ; 0,5)

P(l{DM)~Uc(l{; {4,4)

P(lzDM)~Uc(lz; {4,4)

P(d DM)~Uc(d; 0,1)

ð10Þ

where Uc indicates a continuous uniform distribution, Ud indicates a

discrete uniform distribution and d is the Dirac delta function.

Figure 5. Evidence for short-range interactions. The empirical
frequency of direction changing as a function of the distance to the
nearest opposite facing prawn (grey markers). The empirical data clearly
shows the spatially localised interaction with a central peak. The red
dashed lines indicate a region of +p=4 radians, which confines the
interaction peak and informs our prior probability distribution on the
possible interaction range.
doi:10.1371/journal.pcbi.1002961.g005
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Numerical integration over the appropriate parameters was

performed using annealed importance sampling [47], with 1000

parameter samples.

Inference of most probable parameter values
We select the most probable parameter values, h� for each

model as those which maximise the posterior probability

distribution,

h�~argmaxhP(hDD,M) ð11Þ

where the posterior probability distribution is given in terms of the

likelihood, prior distribution and model evidence defined above

P(hDD,M)~
P(DDh)P(hDM)

P(DDM)
: ð12Þ

In practice we evaluate the posterior probability for each

parameter sample generated within the annealed importance

sampling algorithm [47] and select the most probable for each

model.

Model simulation
Given the most probable parameter values (maximum a posteri)

for a given model inferred from the fine scale data via equation 12,

simulations of that model can be performed to assess the likely

Figure 6. Simulation results for non-Markovian model D3. (A) Proportion of six-prawn simulations (n~1000) of non-Markovian model D3 with
a given number of prawns moving CW over time, showing a bifurcation to either a CW or an anti-CW polarised state, with most simulations
concluding with six prawns travelling in the same direction. (B) Final distribution of simulations by number of CW moving prawns for simulations with
three, six and twelve prawns. Error bars represent the mean and standard deviation for each proportion as calculated from the final ten seconds of
the simulations. (C) The average polarisation over time, adjusted by the expected polarisation of randomly oriented prawns, for simulations of three,
six and twelve prawns.
doi:10.1371/journal.pcbi.1002961.g006
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large scale results of the interactions the model encodes. To

perform these simulations we treat individual prawns as particles

moving on a circular ring. Each particle is initially set to have

either CW or CCW motion at random. At each time step each

particle, taken in a random order, moves around the ring in its

direction of motion, moving a distance sampled from a distribution

matched to the mean and variance of the experimentally observed

motions (0:8+0:5 radians/s). After this motion, the distance

between all the particles is calculated, and for each particle a

decision is made whether to change the direction of motion, based

on the rules encoded by the model being simulated. The time step

used is 2=15 s, which is matched to the time spacing in the

analysed data.

Calculation of Kullback-Leibler divergences for large scale
comparison

It is observed in model simulations that the rate at which the

group aligns is highly dependent on the speed of individuals, which

we have not attempted to model accurately. However, the final

state after 360 seconds of simulation (the length of the experi-

ments) is not sensitive to this factor. Therefore we evaluate the

quality-of-fit between the model and experimental data by

examine the distribution of final states in the experiments and

simulations – that is, how many individuals are travelling clockwise

when the experiment or simulation ends. We average this over the

final 10 seconds of the experiment or simulation to increase the

accuracy of this judgement. The quality-of-fit for the model is

given by the Kullback-Leibler (KL) divergence [34], DKL(EDDS)
from the experimental distribution of outcomes, E to the simulated

distribution, S. This is a canonical measure of how well one

distribution (the simulated outcomes) approximates another (the

experimental outcomes). If E(n) is the proportion of experiments

where n prawns are travelling clockwise, and similarly S(n) the

proportion of simulations where n particles are travelling

clockwise, then the divergence is given by

DKL(EDDS)~
XN

n~0

E(n)log(E(n)=(S(n)) ð13Þ

where N is the total number of prawns in the experiment or

simulation. We calculate this divergence between experiment and

simulation for scenarios with 3, 6 and 12 prawns to check for

consistency over varying group size. The statistical significance of

these divergences can be calculated using the G-statistic,

G~NDKL(EDDS), where N is the number of experiments, and the

KL divergence is evaluated using the natural logarithm. The null

hypothesis that the experimental results come from the simulated

distribution implies a x2-distribution for the G-statistic [35].

Note
This article is a revised version of a paper of the same title [48]

that was previously published in PLOS Computational Biology

and was subsequently retracted when a computational error was

discovered.

Supporting Information

Figure S1 Image of the experimental setup. Prawns

moving within an annulus of 200 mm external diameter and

70 mm internal diameter. In this instance the total number of

prawns N~6, number of clockwise-moving oriented prawns C~2,

the polarisation W~1=3, and the excess polarisation W’~1=48

(TIFF)

Figure S2 Simulation results for model 0. (A) Proportion

of six-prawn simulations (n~1000) with a given number of prawns

moving CW over time. (B) Final distribution of simulations by

number of CW moving prawns for simulations with three, six and

twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

Figure 7. Graphical description of a two-state Hidden Markov Model. At any point in time the prawn is in a state of either CW or anti-CW
orientation. The precise state is hidden but we make observations Ot , the actual frame-by-frame movements of the prawn, which give information
about the relative probabilities of the two states. We assume a fixed probability of transition between the states which is inferred from the data and
allows for the persistence of orientation over time.
doi:10.1371/journal.pcbi.1002961.g007
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seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S3 Simulation results for model MF. (A) Propor-

tion of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of simulations

by number of CW moving prawns for simulations with three, six

and twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S4 Simulation results for model Topo. (A)

Proportion of six-prawn simulations (n~1000) with a given

number of prawns moving CW over time. (B) Final distribution

of simulations by number of CW moving prawns for simulations

with three, six and twelve prawns. Error bars represent the mean

and standard deviation for each proportion as calculated from the

final ten seconds of the simulations. (C) The average polarisation

over time, adjusted by the expected polarisation of randomly

oriented prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S5 Simulation results for model S1. (A) Proportion

of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of

simulations by number of CW moving prawns for simulations

with three, six and twelve prawns. Error bars represent the mean

and standard deviation for each proportion as calculated from

the final ten seconds of the simulations. (C) The average

polarisation over time, adjusted by the expected polarisation of

randomly oriented prawns, for simulations of three, six and

twelve prawns.

(TIFF)

Figure S6 Simulation results for model S2. (A) Proportion

of six-prawn simulations (n~1000) with a given number of prawns

moving CW over time. (B) Final distribution of simulations by

number of CW moving prawns for simulations with three, six and

twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S7 Simulation results for model S3. (A) Proportion

of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of

simulations by number of CW moving prawns for simulations

with three, six and twelve prawns. Error bars represent the mean

and standard deviation for each proportion as calculated from

the final ten seconds of the simulations. (C) The average

polarisation over time, adjusted by the expected polarisation of

randomly oriented prawns, for simulations of three, six and

twelve prawns.

(TIFF)

Figure S8 Simulation results for model S4. (A) Proportion

of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of

simulations by number of CW moving prawns for simulations

with three, six and twelve prawns. Error bars represent the mean

and standard deviation for each proportion as calculated from

the final ten seconds of the simulations. (C) The average

polarisation over time, adjusted by the expected polarisation of

randomly oriented prawns, for simulations of three, six and

twelve prawns.

(TIFF)

Figure S9 Simulation results for model D1. (A) Proportion

of six-prawn simulations (n~1000) with a given number of prawns

moving CW over time. (B) Final distribution of simulations by

number of CW moving prawns for simulations with three, six and

twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S10 Simulation results for model D2. (A) Propor-

tion of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of simulations

by number of CW moving prawns for simulations with three, six

and twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S11 Simulation results for model D3. (A) Propor-

tion of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of simulations

by number of CW moving prawns for simulations with three, six

and twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Figure S12 Simulation results for model D4. (A) Propor-

tion of six-prawn simulations (n~1000) with a given number of

prawns moving CW over time. (B) Final distribution of simulations

by number of CW moving prawns for simulations with three, six

and twelve prawns. Error bars represent the mean and standard

deviation for each proportion as calculated from the final ten

seconds of the simulations. (C) The average polarisation over time,

adjusted by the expected polarisation of randomly oriented

prawns, for simulations of three, six and twelve prawns.

(TIFF)

Text S1 A summary of provided supplementary figures
and videos.
(PDF)

Video S1 Video of a single experiment with six prawns.
(M4V)
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