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Abstract: Three-dimensional (3D) high resolution microscopic images have high
potential for improving the understanding of both normal and disease processes
where structural changes or spatial relationship of disease features are significant.
In this paper, we develop a complete framework applicable to 3D pathology
analytical imaging, with an application to whole slide images of sequential
liver slices for 3D vessel structure analysis. The analysis workflow consists of
image registration, segmentation, vessel cross-section association, interpolation,
and volumetric rendering. To identify biologically-meaningful correspondence
across adjacent slides, we formulate a similarity function for four association
cases. The optimal solution is then obtained by constrained Integer Programming.
We quantitatively and qualitatively compare our vessel reconstruction results
with human annotations. Validation results indicate a satisfactory concordance
as measured both by region-based and distance-based metrics. These results
demonstrate a promising 3D vessel analysis framework for whole slide images
of liver tissue sections.

Keywords: Whole Slide Imaging; Digital Pathology; Pathology Image Analysis;
3D Vessel Structure; Liver Pathology.
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1 Introduction

With the rapid and significant advances in large-throughput scanning technologies, digital

pathology whole slide imaging has recently become an emerging tool not only promising

for disease diagnosis and treatment evaluation, but also for high-throughput quantitative

information extraction for a wide scope of diseases, ranging from brain (Han et al., 2011;

Kong et al., 2011), breast (Petushi et al., 2006), lung (Xing and Yang 2013), colorectal,

neuroblastoma (Kong et al., 2009), lymphoma (Cooper et al., 2009), to prostate cancer

(Jafari-Khouzani and Soltanian-Zadeh, 2003; Tabesh et al., 2007). Importantly, this new field

presents salient merits that help researchers and clinicians better understand the underlying

biological mechanisms of pathological evolutions and progressions of distinct diseases

(Jara-Lazaro et al., 2010; Kong et al., 2012). Due to the large pathology microcopy imaging

scale and overwhelming number of histopathology structures of interest to research, human-

based reviewing approaches are not practically feasible for large data sets. In addition,

the traditional labor-intensive reviewing process remains a qualitative discipline prone to

significant intra-/inter-reader variations and poor reproducibility for diagnosis (Coons et
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al., 2007). This results in a significant potential utility of whole slide image analysis and the

quantitative characterization of pathological structures. A large suite of imaging analytical

methods for quantitative analysis of pathology images has, therefore, been developed to

meet these needs ( Qi et al., 2012; Foran et al., 2011; Yang et al., 2008; Teodoro et al., 2013).

In addition, commercial and open-source products are also available (Aperio, Definiens,

ImageJ, among others). However, these tools are bounded by 2D biological structure analysis

and limited for processing objects in 3D space.

As micro-anatomic objects in 2D pathology images are only approximate

representations of their true 3D structures, information is substantially lost when 3D

structures are projected to the 2D image focal plane. In liver disease diagnosis, for instance,

structural changes in liver vessels and their spatial relationships in 3D are important (Roberts

et al., 2012). 2D profiles of blood vessels in microscopy images of liver tissue are highly

dependent on the location and angle of the cutting plane during tissue slide preparation

and are substantially different from their 3D shapes in most cases. By contrast, a sequence

of microscopy images of liver tissue slices allows for analysis of vessels in 3D space.

Therefore, it presents better potential to improve vessel characterization accuracy and to

support disease diagnosis and understanding.

Numerous studies on modeling and analysis of vessel structures have been proposed,

ranging from vessel segmentation (Lesage et al., 2009), vessel structure tracking (Friman

et al., 2009), to the 3D visualization of vascular structures (Kubisch et al., 2012). However,

these investigations are limited to either radiology images (such as Computed Tomography,

and Magnetic Resonance Imaging), or 3D contrast-enhanced imaging modalities (including

Computed Tomography Angiography and Magnetic Resonance Angiography). Compared

with radiology image modalities, digital pathology images have much higher resolutions

and contain a wealth of information at the cellular level. Therefore, applying 3D vessel

analysis methods for radiology images directly to whole slide images is not feasible. Other

vessel studies involve the usage of Optical Coherent Tomography (OCT) and confocal

microscopy imaging data (Hu et al., 2010; Arribas et al., 2007). Although OCT data modality

is non-destructive and accurate for micro-vessels, it loses contextual information of digital

pathology. Alternatively, confocal microscopy can also be used to accurately characterize

vessels, but limited to small tissue samples.

In this paper, we present a complete 3D vessel analysis framework that can

help researchers and clinicians better visualize 3D vessel structures and quantitatively

characterize vessel features with 3D microscopy images of liver tissues. With access to

a sequence of liver 2D microscopy images, we register all these images to allow for

the following analysis in the same spatial coordinate system. Vessels, along with other

key micro-anatomic objects of interest in pathology diagnosis, are segmented on each

2D microscopy image. The large number of vessels within livers poses major challenges

to recover vessel shapes in 3D by human reviewers. With our computerized analysis,

we use Fourier shape descriptors and spatial similarity of vascular structures as visual

cues and formulate similarity functions for one-to-one, one-to-two, and one-to-none

correspondence cases across adjacent tissue slides. The best multiple vessel associations

are found by maximizing the resulting aggregated similarity function with constrained

Integer Programming. The resulting mapped vessel cross sections are interpolated to create

more intermediate virtual slides for better vessel characterization. Finally, each associated

vessel structure is reconstructed and volumetrically rendered in 3D space. We apply our

method to a liver microscopy image dataset with sequential tissue slides and reconstruct

primary vessels for 3D visualization. By comparing machine-identified vessels with human
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annotations, we observe a satisfactory concordance suggested by both region-based and

distance-based measures. Meanwhile, visual inspections on vessel structures by our method

and human annotations also present negligible difference. These results suggest the efficacy

of our 3D vessel analysis method for whole slide images of liver tissue sections. Notably,

our 3D vessel analysis framework is generic and can be readily applied and extended to the

analytics of other 3D biological entities with 3D image datasets of diverse diseases.

The remainder of the paper is organized as follows. Data and Methods used for this study

are described in Section 2. We then present and validate the 3D vessel analysis results in

Section 3. In Section 4, we discuss how to apply this software to future integrative analysis

linked with clinical and molecular endpoints and close the paper with conclusions.

2 Materials and methods

Our workflow for 3D vessel structure analysis consists of multiple components: image

registration, vessel segmentation, vessel cross-section association, intermediate slide

interpolation, and volumetric rendering. We present the overall workflow in Figure 1.

Detailed discussions on these modules and the dataset involved in this study are given as

follows.

Figure 1 The overall workflow of 3D vessel analysis with whole slide imaging data of liver tissue
sections.

Two-stage whole-slide image registration

Tissue slide preparation and whole-slide image acquisition

Image segmentation for vessels, fat, lumens, bile ducts and nuclei

Multiple vessel cross-section associations obtained with 
constrained Integer Programming

Vessel object interpolation for high-quality visualization

Volumetric mesh generation and rendering
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2.1 Slide preparation and imaging data acquisition

Whole slide images provide rich information about morphological and functional

characteristics of biological systems. As a result, such image modality serves as a promising

data source to provide insights on the underlying mechanisms of disease onset and

progression, given the availability of scalable image analysis tools. In this study, we have

access to a sequence of 12 whole slide images of liver sections separated by 50µm from

the University of Leeds. Resected human liver samples are paraffin embedded and formalin

fixed. Then the embedded samples are sectioned into slices with thin thickness. The resulting

slices are dyed with dual chromogen immunohistochemistry (IHC) (Ismail et al., 2010).

DAB IHC is directed against CD34 antigen as a blood vessel marker. Haemotoxylin

nuclear counterstain is also used. Finally, these slides are scanned with ScanScope AT

scanner (Aperio, http://www.leicabiosystems.com/) at 40x magnification and converted

into digital images compressed with JPEG2000 and Matrox Imaging Library (MIL 8.0,

http://www.matrox.com/).

The resulting images have high resolutions and large file sizes, typically with 75k× 65k

pixels and 300 Megabytes per image. Each whole slide image file consists of four image

representations down sampled from the base image by 4:1, 16:1, 32:1, and 88:1 (thumbnail),

respectively. Each resolution level of image representation has three 8-bit image channels.

At the base level, the physical resolution is about 2.508e-1 µm per pixel. From computer-

based analysis perspective, we would like to process images at a high resolution for sufficient

tissue structure detail. By contrast, efficient analysis welcomes images of a low resolution.

After our extensive tests, we reach the balance between image analysis quality and execution

speed via applying our method to images down sampled from the base image level by 64:1.

Scanned whole slide images of liver slides stained by our staining process present

blue, brown, red colors for nuclei, vessels and bile ducts, respectively. Locations for fat in

the resulting liver microscopy images are visualized by bright white color. Lumens inside

vessels show white in color as well, but surrounded with vascular walls in brown.

2.2 Image registration and segmentation

All slides in the same series are registered with a two-stage process. Initially, images are

rigidly registered using phase correlation (Decastro et al., 1987). For non-rigid registration,

the whole image is partitioned into a set of evenly spaced patches that are aligned separately

with phase correlation. Then, B-Spline transformation is applied to the rigidly transformed

image patches to estimate the global non-rigid pixel spatial change by a set of 64 control

points (Roberts et al., 2012). Given the down sampled image resolution, more control points

would only improve registration accuracy marginally. With this sequence of registered

images, we have managed to automatically segment vessels, along with nuclei, fat, lumens,

and bile ducts by morphology reconstruction segmentation method (Vincent, 1993) on each

image channel found by color deconvolution technique (Ruifrok, 2001). The final vessel

boundaries are smoothed.

2.3 3D vessel association

After blood vessels are identified by our analysis, we find some are recognized as numerous

disconnected small parts. To group these disconnected pieces back to their intact vessel

cross-sections, we perform intra-frame vessel object grouping, followed by vessel object

filtering. Grouping is achieved by an image dilation operation (Vincent, 1993) that grows
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small vessel parts belonging to the same vessel object and that forces them to be cohesive to a

single vessel object. Among all grouped vessel objects, we proceed with selecting the top-K

candidates of primary vessels for further analysis based on their sizes, as inclusion of unduly

small vessels for analysis not only significantly increases the computational complexity for

object association, but also reduces the vessel association accuracy.

The selected top-K vessel objects in each frame are characterized based on their shapes

and spatial relationships. We define the problem of frame-by-frame object association in a

constrained Integer Programming framework (Hillier and Lieberman, 2001). For our data,

three distinct vessel association cases are considered: one-to-one (growing), one-to-two

(bifurcation) and one-to-none (disappearing). For each case, the similarity function S is

defined as follows:

• one-to-one: the main vessel still continues to extend to the next frame;

S
(

vt
i,v

t+1
j

)
= λ1 g

(
vt

i,v
t+1
j

)
+λ2 d

(
vt

i,v
t+1
j

)
(1)

• one-to-two: bifurcation occurs and the vessel grows into two small branches;

S
(

vt
i,v

t+1
j1

,vt+1
j2

)
= λ1 g

(
vt

i,v
t+1
j1
∪ vt+1

j2

)
+λ2 d

(
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i,v
t+1
j1
∪ vt+1
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• one-to-none: the vessel stops growing;

S
(
vt

i,v
t+1
∅

)
= d

(
vt

i,ΩI

)
(3)

where function g (·) compares the similarity of vessel appearance by comparing the Fourier

shape descriptors (Zahn et al., 1972) derived from vessel boundaries; d (·) computes the

spatial similarity of two vessel objects with their centroids; vt
i is the i-th vessel object in

frame t; ΩI is the boundary of image I; λ1 and λ2 are two constant weights to control the

association smoothness subject to λ1 +λ2 = 1.

Identification of vessel association is a process of establishing mappings between vessel

objects in adjacent image frames based on given criteria and constraints. Assuming we have

nt and nt+1 vessel objects in frame t and t +1 and h possible associations between the two

frames, we deem such association identification process identical to a multi-object tracking

problem (Jiang et al., 2007). Therefore, the optimal associations among vessel objects can

be achieved by solving the constrained Integer Programming (Hillier and Lieberman, 2001),

based on the pre-defined similarity function:

Arg max
x

sT x

subject to
(
HT x

)
i
≤ 1 for i = 1, · · · ,nt +nt+1

x j ∈ {0,1} for j = 1, · · · ,h

(4)

where s is an h×1 vector with each entry representing the similarity of one vessel object

association; H is an h× (nt +nt+1) binary matrix with Hi j set to 1 if and only if the i-th

object association involves the j-th element in a set concatenated by nt vessel objects from

frame t and nt+1 vessel objects from frame t +1; (HT x)i denotes the i-th element of (HT x)
and the constraint (HT x)i ≤ 1 guarantees that each vessel object in a given frame (i.e. t or
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Figure 2 Vessel associations of four chains of color-coded vessels in frame t1, t2,· · · , tn.

t1

t2

tn

t + 1) can be selected at most once in the result; the optimal solution x is an h× 1 binary

vector where xi = 1 indicates the selection of the i-th association in the optimal solution.

The algorithmic description of the above constrained Integer Programming with simplex

solver is presented in Algorithm 1.

Solving the constrained Integer Programming problem above provides the optimal

associations for vessel objects in adjacent frame pairs. Therefore, by tracking vessel cross-

sections through all adjacent frames with the identified associations, we can recover the

profile of a vessel structure along the z-axis with shape descriptors and spatial similarity.

In Figure 2, vessel in yellow bifurcates, corresponding to the one-to-two association case.

Other vessels (green, red, and magenta) represent one-to-one tracking cases.

2.4 Interpolation and visualization

Since there is a limited number of whole slide images for this liver imaging dataset (n = 12)

and the z-axis resolution is not sufficient to support high-quality 3D rendering, we perform

interpolation between each pair of associated vessel objects in adjacent frames. Initially, we

normalize each boundary by its arc length. Then we uniformly sample points along each

normalized boundary arc. Finally, we apply linear interpolation (Hazewinkel, 2001) to the

sampled points.

Let’s denote m sampled points from frames t and t +1 as (xt
1,y

t
1), (x

t
2,y

t
2), · · · , (x

t
m,y

t
m)

and (xt+1
1 ,yt+1

1 ), (xt+1
2 ,yt+1

2 ), · · · , (xt+1
m ,yt+1

m ), respectively. We linearly interpolate the x-

coordinate and y-coordinate independently. Thus the i-th point (xt+δ
i ,yt+δ

i ) in frame t + δ
(0 < δ < 1) can be interpolated as:





xt+δ
i =

xt+1
i −xt

i
t+1−t

(t +δ − t)+ xt
i =

(
xt+1

i − xt
i

)
δ + xt

i

yt+δ
i =

yt+1
i −yt

i
t+1−t

(t +δ − t)+ yt
i =

(
yt+1

i − yt
i

)
δ + yt

i

(5)

In this way, we get all point coordinates (xi,yi) by performing linear interpolation

for each interpolated frame between frame t and t + 1. Combining the original dataset
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Algorithm 1 Constrained Integer Programming with simplex solver for Vessel Object

Association (VOA): ( f ∗I ,x
∗) =VOA(x, j, fI) (Hillier and Lieberman, 2001)

Require: (HT x)i ≤ 1 f or i = 1, · · · ,nt +nt+1 and x j ∈ {0,1} f or j = 1, · · · ,h
Ensure: Arg max

x
sT x

1: Suppose fI and fr are current objective values obtained by solving the Integer

Programming(IP) problem and LP-relaxation problem, respectively; f ∗I is the optimal

objective value and x∗ is the optimal integer solution

2: Initialization: x← [0, · · · ,0]h×1, j← 1, and fI ← ∞

3: Output: ( f ∗I ,x
∗) =VOA(x, j, fI)

4: function VOA(x, j, fI) ⊲ The definition of function VOA(x, j, fI)
5: if j > h then

6: return ( fI ,x)
7: end if

8: Perform LP-relaxation by releasing x j ∈ {0,1} to a weaker constraint 0≤ x̃ j ≤ 1

9: Solve the LP-relaxation problem: ( fr, x̃ j) = LP_Relax(x1, · · · ,x j−1, x̃ j,x j+1, · · · ,xh)
10: if fr > fI and x̃ j is NOT an integer then

11: x j← 0; ( f 0
I ,x

0) =VOA(x, j+1, fI)
12: x j← 1; ( f 1

I ,x
1) =VOA(x, j+1,max( f 0

I , fI))
13: if f 0

I ≥ f 1
I then

14: return ( f 0
I ,x

0)
15: else

16: return ( f 1
I ,x

1)
17: end if

18: else if fr > fI and x̃ j is an Integer but x̃ j 6= x j then

19: fI ← fr; x j← x̃ j

20: ( fI ,x) =VOA(x, j+1, fI)
21: else if fr < fI then

22: ( fI ,x) =VOA(x, j+1, fI)
23: end if

24: end function

with the interpolated frames, we then render vessels in a 3D space. With interpolated 3D

image volume, triangular isosurfaces with specified density are extracted by Constrained

Delaunay tetrahedralization(CDT). The subvolumes bounded by the extracted isosurfaces

are filled with tetrahedral elements and 3D mesh is generated with adaptive resolution.

Specially, hollow structures or sub-domains corresponding to different tissue types

are rendered according to their predefined labels in the volumetric data (iso2mesh,

http://iso2mesh.sourceforge.net).

3 Results

We apply the proposed processing framework to a whole slide image dataset consisting of

12 sequential liver slides and extensively evaluate our approach implemented with C and

Matlab. In this section, we present results from different modules in our framework and
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demonstrate method performance measured by both quantitative and qualitative validation

analysis.

3.1 Results of individual modules

The first processing module in the analysis pipeline is image registration that helps register

to the first image all subsequent ones in the sequence. As this step provides the foundation

to reconstruct 3D objects in a meaningful way with their 2D cross-sections from different

coordinate systems, it has a profound impact on the following analysis. Our two-step

registration method takes into account both global rigid and local non-rigid deformation

with phase correlation and B-Spline interpolation by 64 control points. With our image

resolution, 64 control points are sufficient to accurately recover non-rigid deformation at

different regions in an image. Additional control points would only marginally improve

registration accuracy. We present a typical registration result in Figure 3 where frame (n =
10) is registered to the reference image (n = 0). After registration, the registered image in

Figure 3(right) is rotated in counterclockwise direction slightly, especially the upper and

lower right corners. Nevertheless, not all parts of the registered image are rotated and shifted

uniformly because of the non-rigid registration effect.

In liver microscopy images, histopathologic objects of interest to this study at the

segmentation step include vessels, nuclei, fat, lumens, and bile ducts. Each type of object

is identified and represented with distinct colors. A representative segmentation result is

demonstrated in Figure 4, where brown, red, dark blue, light purple, and light yellow

colors are used to represent vessels, bile ducts, nuclei, lumens, and fat in liver tissues,

respectively. Since we use vessel shape for association analysis in this study, we obtain

the vessel boundaries from their masks and superimpose green vessel boundaries on the

original image in Figure 4.

In the proposed method, a constrained Integer Programming framework is employed

to identify the optimal vessel object association between adjacent frames. The optimal

solution is achieved by iteratively solving a series of Linear Programming (LP) relaxation

problems. The parameters for object association used in this study are K = 25, λ1 = 0.68

Figure 3 Sequential liver microscopy image registration. (Left): a microscopy image of a liver
slice (n = 10) before registration; (Right): same image after registration (slightly rotated
counterclockwise).
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Figure 4 Liver microscopy image segmentation. (Left): a registered microscopy image of a liver
slice (n = 10); (Right): a close-up view of segmentation result within the red box region
overlaid on the left image. Note that brown, red, dark blue, light purple, and light yellow
colors are used to represent vessels, bile ducts, nuclei, lumens, and fat in liver tissues;
Additionally, vessel boundaries are overlaid in green.

Blood Vessels

Bile Ducts
Fat

Nucleus

Lumens

in Equation (1), and λ1 = 0.35 in Equation (2). We carefully choose these parameter values

after intensive experiments. The value for λ1 in Equation (1) is intentionally selected to be

greater than that in Equation (2), in the sense that shape descriptors are more reliable and

discriminative in the one-to-one than one-to-two case. When vessel bifurcates, shapes of

the resulting vessel components are substantially deformed from their source. As a result,

we assign more weight on spatial similarity for one-to-two case.

We plot objective similarity value for each adjacent frame pair as a function of iteration

number in Figure 5, where the objective similarity function defined in Equation (4) increases

as iteration number increases. Each curve in Figure 5 represents similarity function change

of one frame pair, as indicated by a unique color. The optimal solution is achieved when the

objective function reaches its maximum. In Figure 5, we also show time cost for finding the

optimal vessel object association for each frame pair with the same color coding scheme

of similarity function curves. Note that all time costs are less than 0.7 seconds, with the

majority around 0.32 seconds. This suggests that it is efficient to use the constrained Integer

Programming framework to establish vessel object association.

Interpolation used in our framework enables us to recover 3D vessel structures that

exhibit a smooth transition process between two original frames. Without this step, the

resulting reconstructed vessels present abrupt changes and step artifacts due to insufficient

inter-frame resolution. We present a typical interpolation result in Figure 6, where the

leftmost and the rightmost frames are original slices with two identified vessel objects in

each. Six intermediate frames are evenly sampled from 50 interpolated frames.

Note that the interpolation error is bounded as follows (Hazewinkel, 2001):

error(k)≈ f(k)−L(k) =
f ′′ (ξi)

2
(k− k1)(k− k2) (6)

≤
l2

8

f ′′ (ξ ∗)

2

∣∣∣∣
ξ ∗=

k1+k2
2
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Figure 5 Similarity value as a function of iteration number, with an inset presenting time cost of
vessel object association for each image pair in the sequence. Similarity function curves
and time cost bars are coded with the same color scheme.
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where ξi ∈ [k1,k2], i = 1,2, · · · ,P, and l = k2 − k1. As a result, the interpolation error

decreases as the interval l decreases and the number of sampled data points increases. This

suggests that we can achieve improved accuracy by using more sampled points. In this study,

the length of interval [k1,k2] is normalized to l = 1 and the number of ξi is set to P = 50.

With these parameter values, we observe continuously changed vessel cross sections as

illustrated by two interpolated vessel chains in Figure 6.

As a last step in our pipeline, we render the matched and interpolated vessel objects in

3D space. After interpolation, each object is labeled with a unique integer. Coordinates of

vertices on isosurfaces with same label values are recorded and the associations of these

vertices for triangular isosurfaces are found. Then, tetrahedral elements are generated to

fill up volumes contained by these isosurfaces and 3D mesh is generated with adaptive

resolution. The 3D view of six primary vessel objects is presented in Figure 7(a).

3.2 Validation study

To validate the segmentation method, we quantitatively compare the machine-identified

vessel segmentation result and human annotations on the same dataset consisting of 12 liver
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Figure 6 Interpolation of intermediate frames. The leftmost and rightmost frames are original,
while the six ones in the middle are interpolated.

tissue slides. With machine and manual results, we linearly interpolate segmentation results

from adjacent frame pairs and validate our method on all interpolated frames. Specifically,

region-based and distance-based measures are used for evaluation. Region-based measures

used in our validation include Jaccard coefficient, precision, recall and F1 score while

Hausdorff distance is used as a distance-based metric.

We take human annotations on each vessel as ground truth and denote them by A. We

denote the machine segmentation results by B. For region-based measures, the Jaccard

coefficient (J), precision (P), recall (R) and F1 score (F1) are defined as J(A,B) =
|A∩B|
|A∪B| , P

=
|A∩B|

B
, R =

|A∩B|
A

and F1 = 2PR
P+R

, respectively. Hausdorff distance between the ground truth

and segmentation results is defined as dH(A,B) = max{sup
a∈A

in f
b∈B

d(a,b),sup
b∈B

in f
a∈A

d(a,b)}

with sup and in f representing the supremum and the infimum, respectively. For each vessel,

we present mean and relative standard error (RSE%) of each metric in Table 1. The best

performance with each measure is in bold. The first column in Table 1 shows distinct vessel

objects and their colors are demonstrated in Figure 7(a). Since vessel 1, 2 and 3 are more

regular than vessel 4, 5 and 6 in shape, better segmentation agreement between the proposed

method and human is achieved, as indicated in Table 1. Our validation results with all above

measures suggest that our segmentation method has a satisfactory concordance with the

manual segmentation results.

In addition to the quantitative segmentation method validation, we also take a qualitative

assessment by visually comparing the reconstructed vessel objects in 3D view. We present

the 3D vessel rendering results from human annotations in Figure 7(b). Reconstructed

vessels in Figure 7(a) and Figure 7(b) look similar in 3D structure overall, although

ones derived by human annotations have more regular surfaces. By contrast,the machine

generated vessels tend to preserve more structural details.

Table 1 Evaluation of the segmentation results (mean ± Relative Standard Error%) for primary
vessels. Red (r), yellow (y), magenta (m), green (g), cyan (c) and purple (p) are used to
represent the corresponding 3D objects in Figure 7(a). The best result with each measure
is bold.

Vessel (color) J P R F1 dH

1 (r) 0.91 ± 20% 0.87 ± 32% 0.87± 32% 0.87 ± 32% 4.13 ± 5%

2 (y) 0.77 ± 17% 0.90 ± 35% 0.91 ± 35% 0.91 ± 35% 4.24 ± 3%

3 (m) 0.82 ± 28% 0.92 ± 33% 0.89 ± 33% 0.90 ± 33% 5.39 ± 2%

4 (g) 0.76 ± 20% 0.71 ± 41% 0.76 ± 41% 0.73 ± 41% 4.14 ± 6%

5 (c) 0.88 ± 11% 0.70 ± 37% 0.69 ± 39% 0.70 ± 38% 5.48 ± 3%

6 (p) 0.68 ± 50% 0.71 ± 42% 0.73 ± 42% 0.72 ± 42% 4.24 ± 4%



14 Y.H. LIANG et al.

Figure 7 3D visualization result of (a) machine-identified and (b) human-annotated vessels.

(a) (b)

4 Discussion and conclusion

As commercial whole slide imaging scanners are now capable of producing high-

magnification, high-resolution images from whole slide tissues in a prompt manner,

it increasingly becomes feasible even for a medium-scale study to routinely generate

sequential whole slide images of tissue sections. The resulting high-resolution microscopy

image data offers a rich source of tissue phenotypic information on clinical relevant

histological features and spatial relationships among histopathology hallmarks in specimen

architectures. However, 3D microscopy image data is still an underutilized data modality

in biomedical research because of the following reasons:

• It is not technically straightforward to develop effective and efficient methods to extract

useful information from large-scale whole slide image dataset;

• There is a lack of highly configurable image analysis software to meet diverse research

demands from individual studies.

• Paucity of generic methods appropriate for 3D pathology structure investigations

contrasts with 2D analysis tools in relative abundance.
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As 2D microscopy images can only present histopathological structures at discrete

planes, we aim to provide efficient and generic 3D image analysis tools to facilitate

biomedical investigations where 3D tissue examinations at microscopic resolution are

important. Our vessel structure analysis framework is one such effort to enrich microscopy

image analysis tools applicable to a large spectrum of 3D pathology phenotypic hallmarks

in numerous diseases. To achieve a reasonable efficiency and accuracy, our current method

is focused on primary vessel structure modeling and analysis. As a result, inaccurate

segmentation results of small vessels do not affect following modules. Nevertheless, the

efficacy of our method is affected by such factors as unduly large inter-slice resolution and

tissue slicing orientation during tissue slide preparation. In our future work, we will improve

individual analysis modules to reduce errors propagated in our working pipeline. We will

also develop methods to accommodate small vessels. Additionally, we will validate our

method with more liver tissue sample datasets and extract informative 3D imaging features

to help researchers and clinicians better analyze 3D biological structures.

As a follow-up research, we will characterize vessels and other tube-shaped structures

with the following generic features. 1) Length: the length of the 3D vessel can be determined

by the medial axis with the hamonic skeletonization technique (Yang et al., 2005); 2)

Thickness of walls: the vessel wall thickness can be used to measure blood flow volume

and to indicate the degree of vascular integrity closely related to oncogenesis; 3) 3D vessel

bifurcations: the number of bifurcations along the artery could be a clinically relevant

parameter that determines the complexity of the vessel structures; 4) Angles at bifurcations:

the angles at bifurcations of the vessels could affect volume of blood flow; 5) Local cross-

sectional area: cross-sectional areas at different locations along a vessel can characterize

vessel structures. With these fundamental features measured, we will further describe high-

level 3D shape features. For vessels, we will calculate the inter-branch distance, characterize

the branching pattern, and generate a histogram of branch lengths and thicknesses for the

entire 3D tissue volume. With these 3D structure features and their cross-relationships

quantitatively characterized, better clinically relevant patient stratification protocols and

molecularly correlated phenotypic information could be expected. Our end goal is to

combine our methods with such techniques as immunohistochemistry, Fluorescent In Situ

Hybridization, or mRNA gene expression data and potentially provide complementary

information to enhance investigations on the anatomical features and micro-architecture

of histologic tissues, mechanisms of tumor progression, spatial distributions of signatured

molecular biomarkers, expression of master regulators in cancer pathways in relation to 3D

vessel structural features.

In summary, we present in this paper a new 3D vessel structure analysis method

consisting of registering, segmenting, matching, interpolating, and visualizing blood vessels

in liver tissues with large-scale microscopy images. We vision this cohort of 3D analysis tool

development effort as a new avenue to facilitate pathology review and biomedical research,

and a better way to engage researchers and clinicians in using rich molecular and clinical

related information from histopathological imaging data.

Acknowledgement

This research is supported in part by grants from National Institute of Health K25CA181503,

National Science Foundation ACI 1443054 and NSF IIS 1350885, and CNPq.



16 Y.H. LIANG et al.

References

Petushi, S., Garcia, F.U., Habe, M., Katsinis, C. and Tozeren, A. (2006) ‘Large-scale

computations on histology images reveal grade-differentiating parameters for breast

cancer’, BMC Med Imaging, 6(14), doi: 10.1186/1471-2342-6-14 PMCID: PMC1634843,

page length: 11

Xing, F.Y. and Yang, L. (2013) ‘Robust cell segmentation for non-small cell lung cancer’,

International Symposium on Biomedical Imaging, Vol. 1, pp.386–389

Jafari-Khouzani, K. and Soltanian-Zadeh, H. (2003) ‘Multiwavelet grading of pathological

images of prostate’, IEEE Trans Biomedical Eng., Vol. 50, pp.697–704

Tabesh, A., Teverovskiy, M., Pang, H.Y., Kumar, V.P., Verbel, D., Kotsianti, A. and Saidi,

O. (2007) ‘Multifeature prostate cancer diagnosis and Gleason grading of histological

images’, IEEE Trans Med Imaging, 26(10), pp.1366–1378

Han, J., Chang, H., Loss, L., Zhang, K., Baehner F.L., Gray, J.W., Spellman, P. and

Parvin, B. (2011) ‘Comparison of sparse coding and kernel methods for histopathological

classification of gliobastoma multiforme’, IEEE International Symposium on Biomedical

Imaging, pp.711–714.

Cooper, L., Sertel, O., Kong, J., Lozanski, G. and Gurcan, M. (2009) ‘Feature-

Based Registration of Distinct Stained Histopathology Images: An Application for

Computerized Follicular Lymphoma Prognosis’, Computer Methods and Programs in

Biomedicine, 96(3), pp.182–192

Kong, J., Sertel, O., Shimada, H., Boyer, K.L., Saltz, J.H. and Gurcan, M. (2009) ‘Computer-

aided Evaluation of Neuroblastoma on Whole-slide Histology Images: Classifying Grade

of Neuroblastic Differentiation’, Pattern Recognition, 42(6), pp.1080-1092

Kong, J., Cooper, L.D., Wang, F., Gutman, D.A., Gao, J.., Chisolm, C., Sharma, A., Pan,

T., Van Meir, E.G., Kurc, T., Moreno, C.S., Saltz, J.H. and Brat, D.J. (2011) ‘Integrative,

Multimodal Analysis of Glioblastoma Using TCGA Molecular Data, Pathology Images,

and Clinical Outcomes’, IEEE Transactions on Biomedical Engineering, 58(12),

pp.3469–3474

Jara-Lazaro, A.R., Thamboo, T.P., Teh, M. and Tan, P.H. (2010) ‘Digital pathology:

exploring its applications in diagnostic surgical pathology practice’, Pathology, 42(6),

pp.512–518

Kong, J., Cooper, L.D., Wang, F.S., Gao, J., Teodoro, G., Scarpace, L., Mikkelsen, T.,

Moreno, C.S., Saltz J.H. and Brat, D.J. (2013) ‘Generic, Computer-based Morphometric

Human Disease Classification Using Large Pathology Images Uncovers Signature

Molecular Correlates’, PLoS One, 8(11):e81049. doi: 10.1371/journal.pone.0081049.

eCollection 2013, page length: 17

Coons, S.W., Johnson, P.C., Scheithauer, B.W., Yates, A.J. and Pearl, D.K. (1997)

‘Improving diagnostic accuracy and interobserver concordance in the classification and

grading of primary gliomas’, Cancer, 79(7), pp.1381–1393



A Framework for 3D Vessel Analysis using Whole Slide Images of Liver Tissue Sections17

Qi, X., Xing, F.Y., Foran, D.J. and Yang, L. (2012) ‘A fast, automatic segmentation algorithm

for locating and delineating touching cell boundaries in Imaged histopathology’, Journal

of Methods in Medical Informatics, Vol. 51, No. 3, pp. 91–102

Foran, D.J., Chen, W. and Yang, L. (2011) ‘Automated image interpretation computer-

assisted diagnosis’, Analytical Cellular Pathology, Vol. 34, No. 6, pp.279-300

Yang, L., Tuzel, O., Meer, P. and Foran, D.J. (2008) ‘Automatic image analysis of

histopathology specimens using concave vertex graph’, Proc. International Conference

on Medical Image Computing and Computer Assisted Intervention, Vol. 11, pp. 833-841,

2008..

Chang, H., Han, J., Spellman, P.T. and Parvin, B. (2012) ‘Multireference level set for the

characterization of nuclear morphology in glioblastoma multiforme’, IEEE Transactions

on Biomedical Engineering, 59(12), pp.3460–3467

Teodoro, G., Pan, T., Kurc, T.M., Kong, J., Cooper, L.D., Podhorszki, N., Klasky, S. and

Saltz, J.H. (2013) ‘High-throughput Analysis of Large Microscopy Image Datasets on

CPU-GPU Cluster Platforms’, IEEE International Symposium on Parallel and Distributed

Processing, pp.103–114

Lesage, D., Angelini, E.D., Bloch, I. and Funka-Lea, G. (2009) ‘A review of 3D vessel

lumen segmentation techniques: models, features and extraction schemes’, Medical Image

Analysis, 13(6), pp.819-845

Friman, O., Hindennach, M., Kühnel, C. and Peitgen H. O. (2009) ‘Multiple hypothesis

template tracking of small 3D vessel structures’, Medical Image Analysis, 14(2), pp.160-

171

Kubisch, C., Glaer, S., Neugebauer, M., and Preim, B. (2012) ‘Vessel visualization with

volume rendering’, Vis. in Med. & Life Sci., pp.109-134

Hu, Z.,Niemeijer, M. ,Abramoff, M. D., Lee, K. and Garvin, M. K. (2010) ‘Automated

segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false

positive suppression’, MICCAI, pp. 33–40

Arribas, S. M., Daly, C. J., Gonzalez, M. C. and McGrath, J. C. (2007) ‘Imaging the vascular

wall using confocal microscopy’, J. Physiol., 584, pp. 5–9

Jiang, H., Fels, S. and Little, J.J. (2007) ‘A linear programming approach for multiple object

tracking’, Proc. in IEEE CVPR, pp.744-750

Hillier, F. S. and Lieberman G. J. (2001) ‘Introduction to Operations Research’, McGraw-

Hill, New York, NY, ISBN 0077298349

Ismail, A., Gray, S., Jackson, P., Shires, M., Crellin, D. M., Magee, D., Quirke, P.

and Treanor, D. (2010) ‘3D Histopathology of the Liver Using Dual Chromogen

Histochemistry’, reAgents, 3, pp. 20–22

ecastro E. and Morandi C. (1987) ‘Registration of Translated and Rotated Images Using

Finite Fourier-Transforms’, IEEE T Pattern Anal, 9, pp. 700–703



18 Y.H. LIANG et al.

Roberts, N., Magee, D., Song, Y., Brabazon, K., Shires, M., Crellin, D., Orsi, N.M., Quirke,

R., Quirke, P. and Treanor, D. (2012) ‘Toward Routine Use of 3D Histopathology as a

Research Tool’, Am J Pathol, 180(5), pp.1835–1842

Vincent, L. (1993) ‘Morphological Grayscale Reconstruction in Image Analysis:

Applications and Efficient Algorithms’, IEEE Transactions on Image Processing, Vol. 2,

No. 2, pp.176–201

Ruifrok, A.C. and Johnston D.A. (2001) ‘Quantification of histochemical staining by color

deconvolution’, Anal Quant Cytol Histol, 23(4), pp.291–299

Zahn, C.T. and Roskies, R.Z. (1972) ‘Fourier Descriptors for Plane Closed Curves’, IEEE

Transactions on Computers, Vol. 21, pp. 195–201

Hazewinkel, M. (2001) ‘Linear interpolation’, Encyclopedia of Mathematics, Springer,

Netherlands, ISBN 9781556080104

Yang, Y., Zhu, L., Haker, S., Tannenbaum, A.R. and Giddens, D.P. (2005) ‘Harmonic

Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries’, Int Conf Med

Image Comput Comput Assist Interv, 8(Pt 1), pp.490–497


