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GLANON GROUPOIDS

MADELEINE JOTZ LEAN, MATHIEU STIÉNON, AND PING XU

Abstract. We introduce the notions of Glanon groupoids, which are Lie groupoids equipped
with multiplicative generalized complex structures, and of Glanon algebroids, their infinites-
imal counterparts. Both symplectic and holomorphic Lie groupoids are particular instances
of Glanon groupoids. We prove that there is a bijection between Glanon Lie algebroids on
one hand and source connected and source-simply connected Glanon groupoids on the other.
As a consequence, we recover various known integrability results and obtain the integration
of holomorphic Lie bialgebroids to holomorphic Poisson groupoids.

1. Introduction

In their study of quantization, Karasev [19], Weinstein [34], and Zakrzewski [40, 41] indepen-
dently introduced the notion of symplectic groupoids. By a symplectic groupoid, we mean
a Lie groupoid equipped with a multiplicative symplectic 2-form on the space of morphisms.
It is a classical theorem that the unit space of a symplectic groupoid is naturally a Poisson
manifold [7]. The Lie algebroid of a symplectic groupoid Γ⇉M is naturally isomorphic to
(T ∗M)π, the canonical Lie algebroid associated to the Poisson manifold (M,π). Conversely,
Mackenzie-Xu [29] proved that, for a given Poisson manifold (M,π), if the Lie algebroid
(T ∗M)π integrates to an s-connected and s-simply connected Lie groupoid Γ⇉M , then Γ is
naturally a symplectic groupoid. As a consequence, they recovered the following theorem of
Karasev-Weinstein: every Poisson manifold of dimension n admits a symplectic realization
of dimension 2n. The symplectic groupoid structure on Γ was also obtained by Cattaneo-
Felder [6] using the Poisson sigma model. The full integrability criterion for Poisson manifolds
was obtained later by Crainic-Fernandes [10]. In fact, symplectic groupoids constitute a partic-
ular class of a more general type of structures called Poisson groupoids, which were discovered
by Weinstein [35] and also comprise Drinfeld’s Poisson groups [11]. In a Poisson groupoid,
the Poisson bivector field and the groupoid multiplication are required to be compatible: the
Poisson bivector field must be “multiplicative.” It was proved in [28] that a Poisson bivector
field on a Lie groupoid G⇉M with Lie algebroid A is multiplicative if and only if it induces
a morphism of Lie groupoids from the cotangent groupoid T ∗G⇉ A∗ to the tangent groupoid
TG ⇉ TM . For instance, a Poisson bivector field on a Lie group G is multiplicative in the
sense of Drinfeld [11] if and only if it induces a morphism of Lie groupoids from T ∗G⇉ g∗ to
TG⇉ {∗}. A Poisson groupoid whose Poisson bivector field is nondegenerate is a symplectic
groupoid as the inverse of the Poisson bivector is a multiplicative symplectic form in the sense
of Coste-Dazord-Weinstein [7].

Two of the authors have recently been interested in holomorphic Lie algebroids and holomor-
phic Lie groupoids [24]. Finding out which holomorphic Lie algebroids can be integrated is a
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2 MADELEINE JOTZ LEAN, MATHIEU STIÉNON, AND PING XU

very natural problem. In [23], together with Laurent-Gengoux, they studied holomorphic Lie
algebroids and their relation with real Lie algebroids. A holomorphic Lie algebroid is a real
Lie algebroid structure on a holomorphic vector bundle A → X such that (1) the sheaf A of
holomorphic sections of A is stable under the Lie bracket of (all smooth) sections of A and (2)
the restriction of the Lie bracket to A is C-linear. Laurent-Gengoux et. al. proved in particular
that a holomorphic Lie algebroid A can be integrated to a holomorphic Lie groupoid if and
only if its underlying real Lie algebroid AR is integrable as a real Lie algebroid [24].

In this paper, we introduce the notion of Glanon groupoids: Lie groupoids equipped with
a multiplicative generalized complex structure. Recall that a generalized complex structure
in the sense of Hitchin [15] on a manifold M is a smooth bundle map J : TM ⊕ T ∗M →
TM ⊕ T ∗M such that J 2 = − idTM⊕T ∗M , J preserves the natural nondegenerate symmetric
bilinear form on the fibers of TM⊕T ∗M , and the +i-eigenbundle of J is involutive with respect
to the Courant bracket (or, equivalently, the Nijenhuis tensor of J vanishes). A generalized
complex structure J on a Lie groupoid Γ⇉M is said to be multiplicative if J is a Lie groupoid
automorphism of the Courant groupoid TΓ⊕T ∗Γ⇉TM⊕A∗ in the sense of Mehta [30]. When
J is the generalized complex structure determined by a symplectic structure on Γ, it is clear
that J is multiplicative if and only if the symplectic 2-form is multiplicative. In this case,
the Glanon groupoid is simply a symplectic groupoid. On the other hand, when J is the
generalized complex structure determined by a complex structure on Γ, J is multiplicative if
and only if the complex structure on Γ is multiplicative. In this case, the Glanon groupoid
is simply a holomorphic Lie groupoid. On the infinitesimal level, to each Glanon groupoid
corresponds a Glanon Lie algebroid: a Lie algebroid A equipped with a generalized complex
structure JA : TA ⊕ T ∗A → TA ⊕ T ∗A which is also an automorphism of the Lie algebroid
TA⊕ T ∗A→ TM ⊕A∗. More precisely, we prove the following main result:

Theorem A. If Γ is an s-connected and s-simply connected Lie groupoid with Lie algebroid
A, then there is a bijection between Glanon groupoid structures on Γ and Glanon Lie algebroid
structures on A.

As a consequence, we recover the following standard results [29, 24]:

Theorem B. Let (M,π) be a Poisson manifold. If Γ is a s-connected and s-simply connected
Lie groupoid integrating the Lie algebroid (T ∗M)π, then Γ automatically admits a symplectic
groupoid structure.

Theorem C. If Γ is a s-connected and s-simply connected Lie groupoid integrating the real Lie
algebroid AR underlying a holomorphic Lie algebroid A, then Γ is a holomorphic Lie groupoid.

When the matrix representation of the generalized complex structure J on a Glanon groupoid
Γ relative to the direct sum decomposition TΓ⊕T ∗Γ of the Pontryagin bundle1 has the special
form

J =

(

N π♯

0 −N∗

)

,

1 Yoshimura and Marsden refer to the Whitney sum TM ⊕ T ∗M as the “Pontryagin bundle” of M because of
the fundamental role it plays in the geometric interpretation of Pontryagin’s maximum principle. Izu Vaisman
calls it the “big tangent bundle” of M . For more details, see [22].
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Γ is simply a holomorphic Poisson groupoid and it is no surprise that its Lie algebroid is
necessarily part of a holomorphic Lie bialgebroid. We prove the following result.

Theorem D. Given a holomorphic Lie bialgebroid (A,A∗), if the real Lie algebroid AR un-
derlying A integrates to a s-connected and s-simply connected Lie groupoid Γ, then Γ is a
holomorphic Poisson groupoid.

This theorem was proved in [24] using a different method in the special case of the holomorphic
Lie bialgebroid ((T ∗X)π, TX) determined by a holomorphic Poisson manifold (X,π). More
precisely, it was proved that when the underlying real Lie algebroid of (T ∗X)π integrates to
a s-connected and s-simply connected Lie groupoid Γ, then Γ is automatically a holomorphic
symplectic groupoid. To the best of our knowledge, the integration problem for arbitrary
holomorphic Lie bialgebroids had remained open to this day. Solving it constituted one of the
motivations behind our study of Glanon groupoids.

It is known that a generalized complex structure on a manifold determines on it a Poisson
bivector field [2, 14]. Therefore a Glanon groupoid is automatically a (real) Poisson groupoid
and we can consider the ‘Glanon to Poisson’ forgetful functor. On the other hand, every Glanon
Lie algebroid A admits a linear Poisson structure so that its dual A∗ is also a Lie algebroid.
We prove that, for any Glanon algebroid A, the pair (A,A∗) automatically constitutes a Lie
bialgebroid. Finally, we prove that the ‘groupoid to algebroid’ Lie functor, which takes Glanon
groupoids and Poisson groupoids, respectively, to Glanon algebroids and Lie bialgebroids,
commutes with the forgetful functor, which takes Glanon groupoids and Glanon algebroids,
respectively, to Poisson groupoids and Lie bialgebroids.

Note that in this paper we confine ourselves to the standard Courant groupoid TΓ ⊕ T ∗Γ.
Instead, one could have considered the twisted Courant groupoid (TΓ⊕ T ∗Γ)H , where H is a
multiplicative closed 3-form. This will be discussed elsewhere. Note also that a multiplicative
generalized complex structure on a groupoid induces an endomorphism j : TM ⊕A∗ → TM ⊕
A∗ of the unit space and an endomorphism jA : A ⊕ T ∗M → A ⊕ T ∗M of the core2 of the
VB-groupoid TΓ⊕T ∗Γ. Thinking of multiplicative generalized complex structures as pairs of
complex conjugate multiplicative Dirac structures, we can conclude from results in [18] that a
multiplicative generalized complex structure on a groupoid is equivalent to a pair of complex
conjugate Dirac bialgebroids on its space of units. The detailed study of properties of the maps
jA and j, the Dirac bialgebroids, and the associated Dorfman connections will be investigated
in the spirit of [23] in a future project.

Acknowledgments. We would like to thank Camille Laurent-Gengoux, Rajan Mehta, and
Cristian Ortiz for useful discussions and an anonymous referee for suggesting many improve-
ments. We would also like to thank several institutions for their hospitality while work on this
project was underway: Penn State (Jotz), and Institut des Hautes Études Scientifiques and
Beijing International Center for Mathematical Research (Xu). Special thanks go to the Michéa
family and our many friends in Glanon, whose warmth provided us constant inspiration for
our work in the past. Our memories of our many friends from Glanon who have unfortunately
left mathematics serve as a powerful reminder that our primary role as mathematicians is

2The Whitney sum TΓ ⊕ T ∗
Γ, which is simultaneously a vector bundle with Γ as base manifold and a Lie

groupoid with TM⊕A∗ as unit space, is a VB-groupoid with the vector bundle A⊕T ∗M over M as core [32, 26].
It is well known that a morphism of VB-groupoids determines a morphism of their cores.
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to elucidate mathematics while enjoying its beauty. We dedicate this paper to our dear old
friends.

Notation. In the following, Γ⇉M will always be a Lie groupoid with set of arrows Γ, set of
objects M , source and target s, t : Γ →M , object inclusion map ǫ : M → Γ and inversion map
i : Γ → Γ. The product of g, h ∈ Γ with s(g) = t(h) will be written m(g, h) = g ⋆ h or simply
gh.

The Lie functor that sends a Lie groupoid to its Lie algebroid and Lie groupoid morphisms
to Lie algebroid morphisms is A. For simplicity, we will write A(Γ) = A. The Lie algebroid
qA : A→M is identified with T s

MΓ, the bracket [· , ·]A is defined with the right invariant vector
fields and the anchor ρA = ρ is the restriction of T t to A. Hence, as a manifold, A is embedded
in TΓ. The inclusion is ι : A→ TΓ. Given a ∈ Γ(A), the right-invariant section corresponding
to a will simply be written ar, i.e. ar(g) = TRga(t(g)) for all g ∈ Γ. We will write al for the
left-invariant vector field defined by a, i.e. al(g) = −T (Lg ◦ i)(a(s(g))) for all g ∈ Γ.

The projection map of a vector bundle A → M will always be written qA : A → M , unless
specified otherwise. For a smooth manifold M , we fix once and for all the notation pM :=
qTM : TM → M and cM := qT ∗M : T ∗M → M . We will write PM for the Pontryagin bundle
TM ⊕ T ∗M over M , and prM for the canonical projection qPM

: PM →M .

A bundle morphism PM → PM , for a manifold M , will always be meant to be over the identity
on M .

2. Preliminaries

2.1. Dirac structures. Let A → M be a vector bundle with dual bundle A∗ → M . The
natural pairing A⊕A∗ → R, (am, ξm) 7→ ξm(am) will be written * · , ·+A or * · , ·+qA if the vector
bundle structure needs to be specified. The direct sum A ⊕ A∗ is endowed with a canonical
fiberwise pairing (· , ·)A given by

((am, ξm), (bm, ηm))A = *bm, ξm+A + *am, ηm+A,

for all m ∈M , am, bm ∈ Am and ξm, ηm ∈ A∗
m.

In particular, the Pontryagin bundle PM = TM ⊕ T ∗M of a smooth manifold M is endowed
with the pairing (· , ·)TM , which will be written as usual 〈· , ·〉M .

The orthogonal of a subbundle E ⊆ A ⊕ A∗ relative to the pairing (· , ·)A will be written
E
⊥. An almost Dirac structure [8] on M is a Lagrangian vector subbundle D ⊂ PM . That

is, D coincides with its orthogonal relative to 〈· , ·〉M , D = D
⊥, so its fibers are necessarily

dimM -dimensional.

The set of sections Γ(PM ) of the Pontryagin bundle ofM is endowed with the Courant-Dorfman
bracket, given by

JX + α , Y + βK = [X , Y ] + (£Xβ − iY dα) ,

for all X + α, Y + β ∈ Γ(PM ).

An almost Dirac structure D on a manifold M is a Dirac structure if its set of sections is closed
under this bracket, i.e. JΓ(D) , Γ(D)K ⊂ Γ(D).
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2.2. Generalized complex structures. Let V be a vector space. Consider a linear endo-
morphism J of V ⊕ V ∗ such that J 2 = − idV⊕V ∗ and J is orthogonal with respect to the
inner product

(X + ξ , Y + η)V = ξ(Y ) + η(X), ∀X,Y ∈ V, ξ, η ∈ V ∗.

Such a linear map is called a linear generalized complex structure by Hitchin [15]. The com-
plexified vector space (V ⊕ V ∗)⊗ C decomposes as the direct sum

(V ⊕ V ∗)⊗ C = E+ ⊕ E−

of the eigenspaces of J corresponding to the eigenvalues ±i respectively, i.e.

E± = {(X + ξ)∓ iJ (X + ξ) | X + ξ ∈ V ⊕ V ∗} .
Both eigenspaces are maximal isotropic with respect to (· , ·)V and they are complex conjugate
to each other.

The following lemma is obvious.

Lemma 2.1. The linear generalized complex structures are in bijection with the splittings
(V ⊕ V ∗)⊗ C = E+ ⊕ E− with E± maximal isotropic and E− = E+.

Definition 2.2. Let M be a manifold and J a bundle endomorphism of PM = TM ⊕ T ∗M

such that J 2 = − idPM
, and J is orthogonal with respect to 〈· , ·〉M . Then J is a generalized

almost complex structure. In the associated eigenbundle decomposition

TCM ⊕ T ∗
CM = E+ ⊕ E−,

if Γ(E+) is closed under the (complexified) Courant bracket, then E+ is a (complex) Dirac
structure on M and one says that J is a generalized complex structure [15, 14].

If E+ is a Dirac structure, then E− must also be a Dirac structure since E− = E+. Indeed
(E+, E−) is a complex Lie bialgebroid in the sense of Mackenzie-Xu [28], in which E+ and E−

are complex conjugate to each other.

Definition 2.3. Let J : PM → PM be a vector bundle morphism. Then the generalized
Nijenhuis torsion associated to J is the map

NJ : PM ×M PM → PM

defined by

NJ (ξ, η) = JJ ξ , J ηK + J 2Jξ , ηK − J (JJ ξ , ηK + Jξ , J ηK)
for all ξ, η ∈ Γ(PM ), where the bracket is the Courant-Dorfman bracket.

Note that if J in the last definition is orthogonal with respect to 〈·,·〉M and satisfies J 2 = − id
(i.e. if J is an almost complex structure), then its Nijenhuis torsion is a tensor.

The following proposition gives two equivalent definitions of a generalized complex structure.

Proposition 2.4. A generalized complex structure is equivalent to any of the following:

(a) A bundle endomorphism J of PM such that J is orthogonal with respect to 〈· , ·〉M ,
J 2 = − idPM

and NJ = 0.
(b) A complex Lie bialgebroid (E+, E−) whose double is the standard Courant algebroid

TCM ⊕ T ∗
C
M , and E+ and E− are complex conjugate.
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For a two-form ω on M we denote by ω♭ : TM → T ∗M the bundle map X 7→ iXω, while for a
bivector π on M we denote by π♯ : T ∗M → TM the contraction with π. Also if π is a Poisson
bivector, we denote by [· , ·]π the Lie algebroid bracket defined on the space of 1-forms on M

by
[ξ, η]π = Lπ♯ξη − Lπ♯ηξ − dπ(ξ, η)

for all ξ, η ∈ Ω1(M).

A generalized complex structure J : PM → PM can be written

J =

(

N π♯

ω♭ −N∗

)

with π is a bivector field on M and π♯ : T ∗M → TM , π♯(α) = π(α, ·) is the vector bundle
morphism defined by π, ω is a two-form on M and ω♭ : TM → T ∗M , X 7→ iXω is the vector
bundle morphism defined by ω, and N : TM → TM is a bundle map. The geometric structures
N , π and ω have to satisfy together a list of identities [9]. In particular π is a Poisson bivector
field.

Let IM : PM → PM be the endomorphism

IM =

(

idTM 0
0 − idT ∗M

)

.

Then we have

〈IM (·) , IM (·)〉M = −〈· , ·〉M ,
JIM (·) , IM (·)K = IM J· , ·K

and the following proposition follows.

Proposition 2.5. If J is a generalized almost complex structure on M , then

J̄ := IM ◦ J ◦ IM (1)

is a generalized almost complex structure. Furthermore,

NJ̄ = IM ◦ NJ ◦ (IM , IM ).

Hence, J̄ is a generalized complex structure if and only if J is a generalized complex structure.

The following are two standard examples [15].

Examples 2.6. (a) Let J be an almost complex structure on M . Then

J =

(

J 0
0 −J∗

)

is 〈· , ·〉M -orthogonal and satisfies J 2 = − id. J is a generalized complex structure
if and only if J is integrable.

(b) Let ω be a nondegenerate 2-form on M . Then

J =

(

0 −
(

ω♭
)−1

ω♭ 0

)

is a generalized complex structure if and only if dω = 0, i.e. if and only if ω is a
symplectic 2-form.
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2.3. Pontryagin bundle over a Lie groupoid.

The tangent prolongation of a Lie groupoid. Let Γ⇉M be a Lie groupoid. Applying the
tangent functor to each of the maps defining Γ yields a Lie groupoid structure on TΓ with base
TM , source T s, target T t, multiplication Tm : T (Γ×M Γ) → TΓ and inversion T i : TΓ → TΓ.
The identity at vp ∈ TpM is 1vp = Tpǫvp. This defines the tangent prolongation TΓ⇉TM of
Γ⇉M or the tangent groupoid associated to Γ⇉M .

The cotangent Lie groupoid defined by a Lie groupoid. If Γ⇉M is a Lie groupoid with
Lie algebroid A→M , then there is also an induced Lie groupoid structure on T ∗Γ⇉A∗. The
source map ŝ : T ∗Γ → A∗ is given by

ŝ(αg) ∈ A∗
s(g) for αg ∈ T ∗

g Γ, ŝ(αg)(a(s(g))) = αg(a
l(g))

for all a ∈ Γ(A), and the target map t̂ : T ∗Γ → A∗ is given by

t̂(αg) ∈ A∗
t(g), t̂(αg)(a(t(g))) = αg(a

r(g))

for all a ∈ Γ(A). If ŝ(αg) = t̂(αh), then the product αg ⋆ αh is defined by

(αg ⋆ αh)(vg ⋆ vh) = αg(vg) + αh(vh)

for all composable pairs (vg, vh) ∈ T(g,h)(Γ×M Γ).

This Lie groupoid structure was introduced in [7], see also [32, 27]. Note that the original
definition was the following: let ΛΓ be the graph of the partial multiplication m in Γ, i.e.

ΛΓ = {(g, h, g ⋆ h) | g, h ∈ Γ, s(g) = t(h)}.
The isomorphism ψ : (T ∗Γ)3 → (T ∗Γ)3, ψ(α, β, γ) = (α, β,−γ) sends the conormal space
(TΛΓ)

◦ ⊆ (T ∗Γ)3|ΛΓ
to a submanifold Λ∗ of (T ∗Γ)3. It is shown in [7] that Λ∗ is the graph of

a groupoid multiplication on T ∗Γ, which is exactly the multiplication defined above.

The “Pontryagin groupoid” of a Lie groupoid. If Γ⇉M is a Lie groupoid with Lie
algebroid A→M , according to [30], there is hence an induced VB-Lie groupoid structure on
PΓ = TΓ⊕T ∗Γ over TM ⊕A∗, namely, the product groupoid, where TΓ⊕T ∗Γ and TM ⊕A∗

are identified with the fiber products TΓ×Γ T
∗Γ and TM ×M A∗, respectively. It is called a

Courant groupoid by Mehta [30].

Proposition 2.7. Let Γ⇉M be a Lie groupoid with Lie algebroid A → M . Then the Pon-
tryagin bundle PΓ = TΓ⊕ T ∗Γ is a Lie groupoid over TM ⊕A∗, and the canonical projection
PΓ → Γ is a Lie groupoid morphism.

We will write Tt for the target map PΓ → TM ⊕ A∗ defined by Tt(vg, αg) =
(

T t(vg), t̂(αg)
)

,
Ts for the source map PΓ → TM ⊕ A∗, and Tǫ, Ti, Tm for the embedding of the units, the
inversion map, and the multiplication of this Lie groupoid.

2.4. Pontryagin bundle over a Lie algebroid. Given any vector bundle qA : A −→ M ,
the map TqA : TA −→ TM has a vector bundle structure obtained by applying the tangent
functor to the operations in A −→M . The operations in TA −→ TM are consequently vector
bundle morphisms with respect to the tangent bundle structures in TA −→ A and TM −→M

and TA with these two structures is therefore a double vector bundle which we call the tangent
double vector bundle of A −→M (see [26] and references given there).

If (qA : A → M, [· , ·]A, ρA) is a Lie algebroid, then there is a Lie algebroid structure on
TqA : TA −→ TM defined in [28], with respect to which pA : TA −→ A is a Lie algebroid
morphism over pM : TM −→M ; this is the tangent prolongation of A −→M .
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For a general vector bundle q : A −→M , there is also a double vector bundle

T ∗A

cA
��

rA
// A∗

q∗

��

A
qA

// M

.

Here the map rA is the composition of the Legendre transformation T ∗A → T ∗A∗ with the
projection T ∗A∗ → A∗. Elements of T ∗A can be represented locally as (ω, a, φ) where ω ∈
T ∗
mM, a ∈ Am, φ ∈ A∗

m for some m ∈M . The Legendre transformation

T ∗A ∋ (ω, φ, a) 7→ (−ω, a, φ) ∈ T ∗A∗

is an isomorphism of double vector bundles preserving the side bundles; that is to say, it
is a vector bundle morphism over both A and A∗. An intrinsic definition of the Legendre
transformation can be found in [28].

Since A is a Lie algebroid, its dual A∗ has a linear Poisson structure, and the cotangent space
T ∗A∗ has a Lie algebroid structure over A∗. Hence, there is a unique Lie algebroid structure
on rA : T ∗A → A∗ with respect to which the projection cA : T ∗A → A is a Lie algebroid
morphism over A∗ →M .

Now one can form the fibered product Lie algebroid TA×A T
∗A→ TM ×M A∗.

Proposition 2.8. Let A→M be a Lie algebroid. Then the Pontryagin bundle PA is naturally
a Lie algebroid. Moreover, the canonical projection PA → A is a Lie algebroid morphism.

The double vector bundle (PA, TM⊕A∗, A,M) is a VB-Lie algebroid in the sense of Gracia-Saz
and Mehta [13].

2.5. Canonical identifications. The canonical pairing * · , · +A : A ⊕ A∗ → R induces a
nondegenerate pairing 〈〈· , ·〉〉A = pr2 ◦T * · , ·+A on TA×TM TA∗, where pr2 : TR = R×R → R

is the map which ‘forgets’ the base point of a tangent vector (see [27]):

A⊕A∗

*·,·+A
��

TA×TM TA∗

〈〈·,·〉〉A

&&

T *·,·+A
��

R TR pr2
// R

That is, if ξ ∈ TA and χ ∈ TA∗ are such that TqA(ξ) = TqA∗(χ), then ξ = d
dt





t=0
a(t) ∈ TA

and χ = d
dt





t=0
ϕ(t) ∈ TA∗ for some curves a : (−ε, ε) → A and ϕ : (−ε, ε) → A∗ such that

qA∗ ◦ϕ = qA◦a and 〈〈ξ, χ〉〉A = d
dt





t=0
*a(t), ϕ(t)+A. For instance, if X ∈ Γ(A) and α ∈ Γ(A∗),

then TX ∈ ΓTM (TA) and Tα ∈ ΓTM (TA∗) are such that TqA(TX) = idTM = TqA∗(Tα) and
we have for all vp = ċ(0) ∈ TpM :

〈〈TX(vp), Tα(vp)〉〉A =
d

dt









t=0

*X,α +A (c(t)) = pr2(Tp(α(X))(vp)). (2)
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If (TqA)∨ : (TA)∨ → TM is the vector bundle that is dual to the vector bundle TqA : TA →
TM , there is an induced isomorphism I

TA∗

TqA∗

��

I
// (TA)∨

(TqA)∨

��

TM // TM

that is defined by
*ξ, I(χ)+TqA = 〈〈ξ, χ〉〉A

for all χ ∈ TA∗ and ξ ∈ TA such that TqA∗(χ) = TqA(ξ). That is, the following diagram
commutes:

TA×TM TA∗ T *·,·+A
//

(id,I)
��

〈〈·,·〉〉A

))

TR

pr2
��

TA×TM (TA)∨
*·,·+TqA

// R

Applying the construction of I above to the case qA = pTM , we get an isomorphism

T (T ∗M)

TcM
��

I
// (TTM)∨

(TpM )∨

��

TM // TM

We also have the canonical involution (see for instance [27])

TTM

TpM
��

σ
// TTM

pTM

��

TM // TM

Recall that for V ∈ X(M) the map TV : TM → TTM is a section of TpM : TTM → TM and
σ(TV ) is a section of pTM : TTM → TM , i.e. a vector field on TM .

We get an isomorphism ς := σ∗ ◦ I : T (T ∗M) → T ∗(TM)

T (T ∗M)

TcM
��

ς
// T ∗(TM)

cTM

��

TM // TM

Proposition 2.9. The map Σ := (σ, ς) : TPM → PTM

TPM

T prM
��

Σ
// PTM

prTM

��

TM // TM

,

where prM : PM →M is the projection, establishes an isomorphism of vector bundles.
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2.6. Lie functor from PΓ to PA.

Proposition 2.10. Let Γ⇉M be a Lie groupoid with Lie algebroid A. Then the Lie algebroid
of PΓ is canonically isomorphic to PA.

Moreover, the pairing 〈· , ·〉Γ is a groupoid morphism: PΓ ×Γ PΓ → R. Its corresponding Lie
algebroid morphism coincides under the canonical isomorphism A(PΓ) ∼= PA with the pairing
〈· , ·〉A : PA ×A PA → R.

This is a standard result, but we recall its proof because it will be useful later on.

For any Lie groupoid Γ⇉M with Lie algebroid A → M , the tangent bundle projection
pΓ : TΓ → Γ is a groupoid morphism over pM : TM → M and applying the Lie functor
gives a canonical morphism A(pΓ) : A(TΓ) → A. This acquires a vector bundle structure by
applying A(·) to the operations in TΓ → Γ. This yields a system of vector bundles

A(TΓ) TM

A M

qA(TΓ)

A(pΓ) pM

qA

in which A(TΓ) has two vector bundle structures, the maps defining each being morphisms
with respect to the other. In other words, A(TΓ) is a double vector bundle.

Associated with the vector bundle qA : A −→M is the tangent double vector bundle

TA

pA
��

TqA
// TM

pM
��

A
qA

// M

.

It is shown in [28] that the canonical involution σ : T (TΓ) → T (TΓ) restricts to a canonical
map σΓ : A(TΓ) → TA which is an isomorphism of double vector bundles preserving the side
bundles. The tangent prolongation TA → TM of the Lie algebroid A and the Lie algebroid
A(TΓ) → TM of TΓ⇉TM are isomorphic via σΓ [28].

Similarly, the cotangent groupoid structure T ∗Γ⇉A∗ is defined by maps which are vector
bundle morphisms and, reciprocally, the operations in the vector bundle cΓ : T ∗Γ −→ Γ are
groupoid morphisms. Taking the Lie algebroid of T ∗Γ⇉A∗ we get a double vector bundle

A(T ∗Γ) A∗

A M

qA(T∗Γ)

A(cΓ) pM

qA

where the vector bundle operations in A(T ∗Γ) → A are obtained by applying the Lie functor
to those in T ∗Γ → Γ.

It follows from the definitions of the operations in T ∗Γ⇉A∗ that the canonical pairing

* · , · +TΓ : TΓ×Γ T
∗Γ → R

is a groupoid morphism into the additive group(oid) R. Hence * · , ·+TΓ induces a Lie algebroid
morphism

A(* · , · +TΓ) : A(TΓ)×A A(T ∗Γ) → A(R) = R.



GLANON GROUPOIDS 11

Note that A(* · , · +TΓ) is the restriction to A(TΓ)×A A(T ∗Γ) of

〈〈· , ·〉〉TΓ : T (TΓ)×TΓ T (T
∗Γ) → R.

As noted in [28], A(*·,·+TΓ) is nondegenerate, and therefore induces an isomorphism IΓ : A(T
∗Γ) →

A(TΓ)∨ of double vector bundles, where A(TΓ)∨ is the dual of A(TΓ) → A. Now dualizing
σ−1
Γ : TA→ A(TΓ) over A, we define

ςΓ = (σ−1
Γ )∗ ◦ IΓ : A(T ∗Γ) → T ∗A.

This is an isomorphism of double vector bundles preserving the side bundles. The Lie alge-
broids T ∗A→ A∗ and A(T ∗Γ) → A∗ are isomorphic via ςΓ [28].

The Lie algebroid of the direct sum PΓ = TΓ⊕ T ∗Γ is equal to

A(PΓ) = TTs
U PΓ,

where we write U for the unit space of PΓ; i.e. U := TM ⊕ A∗. By the considerations above,
we have a Lie algebroid morphism ΣΓ = (σΓ, ςΓ):

A A

A(PΓ) PA = TA⊕ T ∗A

M M

TM ⊕A∗ TM ⊕A∗

id

ΣΓ

id

id

preserving the side bundles A and TM ⊕A∗.

Recall that we also have a map

Σ = (σ, ς) : TPΓ → PTΓ.

Lemma 2.11. Let Γ⇉M be a Lie groupoid and u an element of A(PΓ) ⊆ TPΓ projecting to
am ∈ A and (vm, αm) ∈ TmM × A∗

m. Then, if ΣΓ(u) = (vam , αam) ∈ PA(am) and Σ(u) =
(ṽam , α̃am) ∈ PTΓ(am), we have Tιvam = ṽam and αam = α̃am |TamA.

See Remark 3.32 below for an interpretation of this lemma.

Proof. The first equality follows immediately from the definition of σΓ.

Choose TamA ∋ wam = σΓ(y) for some y ∈ A(TΓ) ⊆ T (TΓ) and w̃am := Tιwam . Write also
u = (x, ξ) with x ∈ A(TΓ) and ξ ∈ A(T ∗Γ) ⊆ T (T ∗Γ), i.e. αam = ςΓ(ξ). Then we have
A(pΓ)(y) = A(cΓ)(ξ) = am and we can compute

*wam , αam+TA = * y, IΓ(ξ)+A(TΓ) = A(* · , · +TΓ)(y, ξ)

=〈〈y, ξ〉〉TΓ = *y, I(ξ)+TpΓ

= * σ(y), ς(ξ)+pTΓ = *w̃am , α̃am+pTΓ = *wam , ι
∗α̃am +pA . �
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The pairing 〈· , ·〉Γ is a groupoid morphism PΓ ×Γ PΓ → R. Hence, we can consider the Lie
algebroid morphism

A(〈· , ·〉Γ) : A(PΓ)×A A(PΓ) → A(R) = R.

We have
A(〈· , ·〉Γ) = (pr2 ◦T 〈· , ·〉Γ) |A(PΓ)×AA(PΓ).

We can see from the proof of the last lemma that A(* · , ·+TΓ) coincides with * · , ·+TA under the
isomorphism ΣΓ. Hence, A(〈· , ·〉Γ) coincides with the pairing 〈· , ·〉A : PA ×A PA → R, under
the canonical isomorphism A(PΓ) ∼= PA.

3. Multiplicative generalized complex geometry

3.1. Glanon groupoids.

Definition 3.1. Let Γ⇉M be a Lie groupoid with Lie algebroid A → M . A generalized
almost complex structure J on Γ is multiplicative if it is an automorphism of the Lie groupoid
TΓ⊕ T ∗Γ ⇉ TM ⊕A∗. We call the pair (Γ⇉M,J ) a generalized almost complex groupoid.
We use the symbol j to denote the induced automorphism of the unit space TM ⊕A∗:

TΓ⊕ T ∗Γ
J

//

Ts

��
Tt

��

TΓ⊕ T ∗Γ

Ts

��
Tt

��

TM ⊕A∗
j

// TM ⊕A∗

.

If J is a generalized complex structure, then we call the pair (Γ⇉M,J ) a Glanon groupoid.

This is equivalent to DJ and DJ , the eigenspaces of J : (TΓ⊕ T ∗Γ)⊗ C → (TΓ⊕ T ∗Γ)⊗ C

corresponding to the eigenvalues i and −i being multiplicative Dirac structures on Γ⇉M [31].

Note also that J is a Lie groupoid morphism if and only if the maps N : TΓ → TΓ, π♯ : T ∗Γ →
TΓ, N∗ : T ∗Γ → T ∗Γ and ω♭ : TΓ → T ∗Γ such that

J =

(

N π♯

ω♭ −N∗

)

are all Lie groupoid morphisms. In particular, we have the following proposition.

Proposition 3.2. If Γ is a Glanon groupoid, then Γ is naturally a Poisson groupoid.

Example 3.3 (Glanon groups). Let G⇉{∗} be a Glanon Lie group. Since any multiplicative
two-form must vanish (see for instance [17]), the underlying generalized complex structure
on G is equivalent to a multiplicative holomorphic Poisson structure. Therefore, Glanon Lie
groups are in bijection with complex Poisson Lie groups.

Example 3.4 (Symplectic groupoids). Consider a Lie groupoid Γ⇉M equipped with a non-
degenerate two-form ω. Then the map

Jω =

(

0 −
(

ω♭
)−1

ω♭ 0

)

,

where ω♭ : TΓ → T ∗Γ is the bundle map X 7→ iXω, defines a Glanon groupoid structure on
Γ⇉M if and only if (Γ, ω) is a symplectic groupoid.
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Example 3.5 (Holomorphic Lie groupoids). Let Γ be a holomorphic Lie groupoid and JΓ : TΓ →
TΓ its complex structure. Then the map

J =

(

JΓ 0
0 −J∗

Γ

)

,

defines a Glanon groupoid structure on Γ.

3.2. Glanon Lie algebroids. Let A be a Lie algebroid over M . Recall that PA = TA⊕T ∗A

has the structure of a Lie algebroid over TM ⊕A∗.

Definition 3.6. A Glanon Lie algebroid is a Lie algebroid A endowed with a generalized
complex structure JA : PA → PA that is a Lie algebroid morphism.

The induced Poisson structure π on A in that case is linear, and the map π♯ : T ∗A→ TA is a
Lie algebroid morphism over some map A∗ → TM . The linear Poisson structure on A is then
equivalent to a Lie algebroid structure on A∗, such that (A,A∗) is a Lie bialgebroid [28].

Proposition 3.7. If A is a Glanon Lie algebroid, then (A,A∗) is a Lie bialgebroid.

Example 3.8 (Glanon Lie algebras). Let g be a Lie algebra. Then Pg = g× (g⊕ g∗) is a Lie
algebroid over g∗. Hence, a map

J : Pg → Pg,

J (x, y, ξ) = (x,Jx,g(y, ξ),Jx,g∗(y, ξ))

can only be a Lie algebroid morphism over j : g∗ → g∗ if Jx,g∗ does not depend on the g-
component. That is, the map Jx : {x} × g× g∗ → {x} × g× g∗ has the matrix

(

nx π
♯
x

0 −n∗x

)

.

It thus follows that it must be equivalent to a complex Lie bialgebra.

Example 3.9 (Symplectic Lie algebroids). Let (M,π) be a Poisson manifold. Let A be the
cotangent Lie algebroid A = (T ∗M)π. Then the map

(

0
(

ω♭
A

)−1

ω♭
A 0

)

where ωA is the canonical cotangent symplectic structure on A, defines a Glanon Lie algebroid
structure on A.

Example 3.10 (Holomorphic Lie algebroids). Let A be a holomorphic Lie algebroid. Let AR

be its underlying real Lie algebroid and j : TAR → TAR the corresponding complex structure.
Then the map

(

j 0
0 −j∗

)

defines a Glanon Lie algebroid structure on AR.
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3.3. Main theorem. Now we are ready to state the main theorem of this paper.

Theorem 3.11. If Γ is a Glanon groupoid with Lie algebroid A, then A is a Glanon Lie
algebroid.

Conversely, given a Glanon Lie algebroid A, if Γ is a s-connected and s-simply connected Lie
groupoid integrating A, then Γ is a Glanon groupoid.

Remark 3.12. Ortiz shows in his thesis [31] that multiplicative Dirac structures on a Lie
groupoid Γ⇉M are in one-one correspondence with morphic Dirac structures on its Lie alge-
broid, i.e. Dirac structures DA ⊆ PA such that DA is a subalgebroid of PA → TM ⊕ A∗ over
a set U ⊆ TM ⊕A∗.

By extending this result to complex Dirac structures and using the fact that a multiplicative
generalized complex structure on Γ⇉M is the same as a pair of tranversal, complex conjugate,
multiplicative Dirac structures in the complexified PΓ, one finds an alternative method for
proving our main theorem. This alternative proof relies crucially on the integration of VB-
algebroids to VB-groupoids described in [5] and hence is far more technical than our approach.

Applying Theorem 3.11 to Example 3.4 and Example 3.9, we obtain immediately the following

Theorem 3.13. Let (P, π) be a Poisson manifold. If Γ is a s-connected and s-simply con-
nected Lie groupoid integrating the Lie algebroid (T ∗P )π, then Γ admits a symplectic groupoid
structure.

Similarly, applying Theorem 3.11 to Examples 3.5 and 3.10, we obtain immediately the fol-
lowing theorem.

Theorem 3.14. If Γ is an s-connected and s-simply connected Lie groupoid integrating the
underlying real Lie algebroid AR of a holomorphic Lie algebroid A, then Γ is a holomorphic
Lie groupoid.

A Glanon groupoid is automatically a Poisson groupoid, while a Glanon Lie algebroid must
be a Lie bialgebroid. The following result reveals their connection

Theorem 3.15. Let Γ be a Glanon groupoid with its Glanon Lie algebroid A, (Γ, π) and
(A,A∗) their induced Poisson groupoid and Lie bialgebroid respectively. Then the corresponding
Lie bialgebroid of (Γ, π) is isomorphic to (A,A∗).

3.4. Tangent Courant algebroid. In [3], Boumaiza-Zaalani proved that the tangent bun-
dle of a Courant algebroid is naturally a Courant algebroid. In this section, we study the
Courant algebroid structure on PTM in terms of the isomorphism Σ: TPM → PTM defined in
Proposition 2.9.

First we need to introduce some notations. For every V ∈ X(M), set TV = σ(TV ) ∈ X(TM).
For every α ∈ Ω1(M), set Tα = ς(Tα) ∈ Ω1(TM). For every f ∈ C∞(M), set Tf = pr2 ◦Tf ∈
C∞(TM,R).

Note that if vm = ċ(0) ∈ TmM , then

Tf(vm) = Tf(ċ(0)) =
d

dt









t=0

(f ◦ c(t)) , (3)

that is, Tf = df : TM → R.
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Now introduce the map T : Γ(PM ) → Γ(PTM ) given by

T(V, α) = Σ(TV, Tα) = (TV,Tα),

for all (V, α) ∈ Γ(PM ).

The main result of this section is the following:

Proposition 3.16. For any e1, e2 ∈ Γ(PM ), we have

JTe1,Te2K = T Je1, e2K , (4)

〈Te1,Te2〉TM = T (〈e1, e2〉M ) . (5)

The following results show that Tf ∈ C∞(TM), TV ∈ X(TM) and Tα ∈ Ω1(TM) are the
complete lifts of f ∈ C∞(M), V ∈ X(M) and α ∈ Ω1(M) in the sense of [39].

Lemma 3.17. For all f ∈ C∞(M) and V ∈ X(M), we have TV (Tf) = T(V (f)).

Proof. Let φ be the flow of V . For any vm = ċ(0) ∈ TmM , we have

(TV (Tf)) (vm) = (TV )(vm)(Tf)

= σ

(

d

dt









t=0

d

ds









s=0

φs(c(t))

)

Tf

=

(

d

ds









s=0

d

dt









t=0

φs(c(t))

)

(Tf)

=

(

d

ds









s=0

Tf

(

d

dt









t=0

φs(c(t))

))

(3)
=

d

ds









s=0

d

dt









t=0

(f ◦ φs) (c(t))

=
d

dt









t=0

d

ds









s=0

(f ◦ φs) (c(t))

=
d

dt









t=0

V (f)(c(t))
(3)
= T(V (f))(vm). �

The following lemma characterizes the sections Tα of Ω1(TM).

Lemma 3.18. (a) For all α ∈ Ω1(M) and V ∈ X(M), we have

*TV,Tα+TTM = T (*V, α+TM ) . (6)

(b) Given ξ ∈ Ω1(TM), we have ξ = 0 if and only if

*TV, ξ+TTM = 0, ∀V ∈ X(M).

Proof. (a) Using σ2 = idTTM , we get:

*TV,Tα+pTM
= *σ(TV ), (σ∗ ◦ I)(Tα)+pTM

= *TV, I(Tα)+TpM

= 〈〈TV, Tα〉〉TM
(2)
= T * V, α +TM .
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(b) Let ξ ∈ Ω1(TM) be such that ξ(TV ) = 0 for all V ∈ X(M). For any u ∈ TM with
u 6= 0 and v ∈ Tu(TM), there exists a vector field V ∈ X(M) such that TV (u) = v.
This yields ξ(v) = 0. Therefore, ξ vanishes at all points of TM except for the zero
section of TM . By continuity, we get ξ = 0. �

Using this, we can show the following formulas.

Lemma 3.19. (a) For all V,W ∈ X(M), we have

[TV,TW ] = T[V,W ].

(b) For any α, β ∈ Ω1(M) and V,W ∈ X(M), we have

£TV Tβ − iTWdTα = T (£V β − iWdα) .

Proof. (a) This is an easy computation, using the fact that if φ is the flow of the vector
field V , then Tφ is the flow of TV (alternatively, see [27]).

(b) For any U ∈ X(M), we can compute

*TU,£TV Tβ − iTWdTα+pTM

=TV * Tβ,TU +pTM
− * Tβ,T[V,U ] +pTM

−TW * Tα,TU+pTM

+ TU * Tα,TW +pTM
+ * Tα,T[W,U ]+pTM

=TV (T * β, U+pM )− T * β, [V,U ] +pM −TW (T * α,U+pM )

+ TU (T * α,W +pM ) + T * α, [W,U ]+pM

=T (V * β, U+pM )− T * β, [V,U ] +pM −T (W * α,U+pM )

+ T (U * α,W +pM ) + T * α, [W,U ]+pM

=T * U,£V β − iWdα+pM

= * TU,T(£V β − iWdα) +pTM
.

We get

*TU,T(£V β − iWdα)− (£TV Tβ − iTWdTα)+pTM
= 0

for all U ∈ X(M) and we can conclude using Lemma 3.18. �

Proof of Proposition 3.16. Equation (5) follows immediately from (6).

Formula (4) for the Dorfman bracket on sections of PTM = T (TM) ⊕ T ∗(TM) follows from
Lemma 3.19. �

3.5. Nijenhuis torsion. Now let J : PM → PM be a vector bundle morphism over the iden-
tity. Consider the map TJ : TPM → TPM and the map TJ defined by the commutative
diagram

TPM
TJ

//

Σ
��

TPM

Σ
��

PTM
TJ

// PTM

,

i.e. TJ = Σ ◦ TJ ◦ Σ−1. Then, by definition, we get, for all e ∈ Γ(PM ),

TJ (Te) = (Σ ◦ TJ ) (Te) = Σ(T (J (e))) = T(J (e)). (7)

The following lemma is immediate.
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Lemma 3.20. (a) T(idPM
) = idPTM

.

(b) We have T(J 2) = (T(J ))2 for every base-preserving endomorphism J of the vector
bundle PM .

If J : PM → PM is now a generalized complex structure, the Nijenhuis torsion is a tensor and
hence can be seen as a vector bundle map

NJ : PM ×M PM → PM .

We consider as above
TNJ : TPM ×TM TPM → TPM .

Define TNJ : PTM ×TM PTM → PTM by the following commutative diagram:

TPM ×TM TPM
TNJ

//

Σ×Σ
��

TPM

Σ
��

PTM ×TM PTM
TNJ

// PTM

.

An easy computation using (7) and (4) yields

TNJ (Te1,Te2) = NTJ (Te1,Te2)

for all e1, e2 ∈ Γ(PM ). As in the proof of Lemma 3.18, this implies that TNJ and NTJ coincide
at all points of TM outside the zero section of TM . By continuity, we obtain the following
theorem.

Theorem 3.21. Let J : PM → PM be a vector bundle morphism. Then TNJ = NTJ .

Let Γ⇉M and Γ′⇉M ′ be Lie groupoids. Recall that a map Φ: Γ → Γ′ is a groupoid morphism
if and only if the map Φ × Φ × Φ restricts to a map ΛΓ → ΛΓ′ , where ΛΓ and ΛΓ′ are the
graphs of the multiplications in Γ⇉M and respectively Γ′⇉M ′.

Consider the graphs of the multiplications on TΓ and T ∗Γ:

ΛTΓ = {(vg, vh, vg ⋆ vh) | vg, vh ∈ TΓ, T t(vh) = T s(vg)} = TΛΓ

and
ΛT ∗Γ = {(αg, αh, αg ⋆ αh) | αg, αh ∈ T ∗Γ, t̂(αh) = ŝ(αg)}.

Recall that if

(ΛT ∗Γ)
op = {(αg, αh,−(αg ⋆ αh)) | αg, αh ∈ T ∗Γ, t̂(αh) = ŝ(αg)},

i.e.
ΛTΓ ⊕ΛΓ

(ΛT ∗Γ)
op = (idPΓ

× idPΓ
×IΓ) (ΛTΓ ⊕ΛΓ

ΛT ∗Γ) ,

then
(ΛT ∗Γ)

op = (TΛΓ)
◦.

A map J : PΓ → PΓ is a groupoid morphism if and only if ΛTΓ ⊕ΛΓ
ΛT ∗Γ is stable under the

map J × J × J . This yields:

Lemma 3.22. The map J is a groupoid morphism if and only if ΛTΓ ⊕ΛΓ
(ΛT ∗Γ)

op is stable
under the map J × J × J̄ , where J̄ is defined by (1).
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Since ΛTΓ = TΛΓ and (ΛT ∗Γ)
op ∼= (TΛΓ)

◦, we get that J is multiplicative if and only if
TΛΓ ⊕ (TΛΓ)

◦ is stable under J × J × J̄ .

Further, if J is orthogonal relative to 〈· , ·〉Γ and satisfies J 2 = − idPΓ
(i.e. if J is a generalized

almost complex structure), then we say for short that the Nijenhuis torsion NJ : PΓ×ΓPΓ → PΓ

is multiplicative if it is a Lie groupoid morphism. Similarly as above, we find that the Nijenhuis
torsion NJ is multiplicative if and only if NJ ×NJ ×NJ restricts to a map

(ΛTΓ ⊕ΛΓ
ΛT ∗Γ)×ΛΓ

(ΛTΓ ⊕ΛΓ
ΛT ∗Γ) → ΛTΓ ⊕ΛΓ

ΛT ∗Γ.

Lemma 3.23. The map NJ is multiplicative if and only if NJ ×NJ ×NJ̄ restricts to a map

(TΛΓ ⊕ΛΓ
(TΛΓ)

◦)×ΛΓ
(TΛΓ ⊕ΛΓ

(TΛΓ)
◦) → TΛΓ ⊕ΛΓ

(TΛΓ)
◦.

The following lemma is easy to prove.

Lemma 3.24. If M is a smooth manifold and N a submanifold of M , then the Courant-
Dorfman bracket on PM restricts to sections of TN ⊕ (TN)◦.

Note that TN ⊕ (TN)◦ is a generalized Dirac structure in the sense of [1].

We get the following theorem.

Theorem 3.25. Let (Γ⇉M,J ) be a generalized almost complex groupoid. Then the Nijenhuis
tensor NJ is a Lie groupoid morphism NJ : PΓ ×Γ PΓ → PΓ.

Proof. Choose sections ξ1, ξ2, ξ3, η1, η2, η3 ∈ Γ(PΓ) such that (ξ1, ξ2, ξ3)|ΛΓ
and (η1, η2, η3)|ΛΓ

belong to Γ(TΛΓ ⊕ΛΓ
(TΛΓ)

◦). Then (J ξ1,J ξ2, J̄ ξ3)|ΛΓ
and (J η1,J η2, J̄ η3)|ΛΓ

belong to
Γ(TΛΓ ⊕ΛΓ

(TΛΓ)
◦). From Lemma 3.24, it follows that

(NJ ×NJ ×NJ̄ ) ((ξ1, ξ2, ξ3), (η1, η2, η3))

takes values in
TΛΓ ⊕ΛΓ

(TΛΓ)
◦

on ΛΓ. By Lemma 3.23, the proof is complete. �

3.6. Infinitesimal multiplicative Nijenhuis tensor.

Definition 3.26. Let J : PΓ → PΓ be a Lie groupoid morphism. The map

A(J ) : PA → PA

is defined by the commutative diagram

A(PΓ) PA

A(PΓ) PA

ΣΓ

A(J ) A(J )

ΣΓ

.

The following lemma can be found in [5].

Lemma 3.27. Let J : PΓ → PΓ be a multiplicative map. Then A(J ) is an endomorphism of
the vector bundle PA if and only if J is an endomorphism of the vector bundle PΓ.
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Now assume that J is orthogonal relative to 〈· , ·〉Γ and that J 2 = − idPΓ
. Since the map

NJ : PΓ ×Γ PΓ → PΓ is then also a Lie groupoid morphism by Theorem 3.25, we can also
consider

A(NJ ) : PA ×A PA → PA

defined by

A(PΓ)×A A(PΓ) PA ×A PA

A(PΓ) PA

A(NJ )

Σ2
Γ

A(NJ )

ΣΓ

.

The main result of this section is the following.

Theorem 3.28. Suppose that a map J : PΓ → PΓ is simultaneously a vector bundle morphism
and a Lie groupoid morphism.

(a) Then the map A(J ) is 〈· , ·〉A-orthogonal if and only if J is 〈· , ·〉Γ-orthogonal.
(b) Moreover,if J is orthogonal w.r.t. 〈· , ·〉Γ and J 2 = − idPΓ

, then A(NJ ) = NA(J ).

For the proof, we need a couple of lemmas.

Definition 3.29. Let M be a smooth manifold and ι : N →֒M a submanifold of M .

(a) A section eN =: XN + αN is ι-related to eM = XM + αM if ι∗XN = XM |N and
αN = ι∗αM . We write then eN ∼ι eM .

(b) Two vector bundle morphisms JN : PN → PN and JM : PM → PM are said to be
ι-related if for each section eN of PN , there exists a section eM ∈ PM such that
eN ∼ι eM and JN (eN ) ∼ι JM (eM ).

(c) Two vector bundle morphisms NN : PN ×N PN → PN and NM : PM ×M PM →
PM are ι-related if for each pair of sections eN , fN ∈ Γ(PN ), there exist sections
eM , fM ∈ Γ(PM ) such that eN ∼ι eM , fN ∼ι fM and NN (eN , fN ) ∼ι NM (eM , fM ).

Lemma 3.30. Let M be a manifold and N ⊆ M a submanifold. If eN , fN ∈ Γ(PN ) are
ι-related to eM , fM ∈ Γ(PM ), then JeN , fN K ∼ι JeM , fM K, for the Courant-Dorfman bracket.

Proof. This is an easy computation, see also [33]. �

Lemma 3.31. Let M be a manifold, N ⊆ M a submanifold and JN : PN → PN and
JM : PM → PM two ι-related generalized almost complex structures. Then the generalized
Nijenhuis tensors NJN

and NJM
are ι-related.

Proof. This follows immediately from Lemma 3.30 and the definition. �

Recall that the Lie algebroid A of a Lie groupoid Γ⇉M is an embedded submanifold of TΓ,
ι : A →֒ TΓ.

Remark 3.32. Note that Lemma 2.11 states that if u ∈ ΓA(A(PΓ)) and ũ ∈ ΓTΓ(TPΓ) is an
extension of u, then ΣΓ ◦ u ∼ι Σ ◦ ũ.
Lemma 3.33. Let Γ⇉M be a Lie groupoid and J : PΓ → PΓ a vector bundle morphism. If
J is multiplicative, then

(a) A(J ) : PA → PA and TJ : PTΓ → PTΓ are ι-related, and
(b) if J is a generalized almost complex structure, then A(NJ ) and TNJ are ι-related.
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Proof. (a) Choose a section eA of PA. Then we have Σ−1
Γ (eA) =: u ∈ Γ(A(PΓ)) and since

A(PΓ) ⊆ TPΓ, we find a section ũ of TPΓ such that ũ restricts to u. Set eTΓ := Σ◦ ũ.
By Lemma 2.11, we have then eA ∼ι eTΓ. Furthermore, by construction of A(J ),
we know that A(J ) ◦ u = (TJ ) ◦ ũ on TM ⊕A∗ = TM ⊕TM◦ ⊆ PΓ. We have then

A(J )(eA) = ΣΓ ◦ A(J ) ◦ u ∼ι Σ ◦ TJ ◦ ũ = TJ (eTΓ).

(b) By definition of A(NJ ), this can be shown in the same manner. �

Proof of Theorem 3.28. (a) The map A(J ) is 〈· , ·〉A-orthogonal if and only if

〈· , ·〉A ◦ (A(J ),A(J )) = 〈· , ·〉A.
We have

〈· , ·〉A = A(〈· , ·〉Γ) = A(〈· , ·〉Γ) ◦ (Σ−1
Γ ,Σ−1

Γ )

by definition and so

〈· , ·〉A ◦ (A(J ),A(J ))

=A(〈· , ·〉Γ) ◦ (Σ−1
Γ ,Σ−1

Γ ) ◦ (ΣΓ,ΣΓ) ◦ (A(J ),A(J )) ◦ (Σ−1
Γ ,Σ−1

Γ )

=A
(

〈· , ·〉Γ ◦ (J ,J )
)

◦ (Σ−1
Γ ,Σ−1

Γ ).

Since ΣΓ : A(PΓ) → PA is an isomorphism, we get that A(J ) is 〈· , ·〉A-orthogonal if
and only if

A(〈· , ·〉Γ) = A
(

〈· , ·〉Γ ◦ (J ,J )
)

and we can conclude.
(b) Choose sections eA, fA ∈ Γ(PA) and u, v ∈ ΓA(A(PΓ)) such that eA = ΣΓ ◦ u, fA =

ΣΓ ◦ v. Choose as in the proof of Lemma 3.33 two extensions ũ and ṽ ∈ ΓTΓ(TPΓ)
of u and v and set eTΓ := Σ ◦ ũ and fTΓ := Σ ◦ ṽ ∈ Γ(PTΓ). Then we have

eA ∼ι eTΓ, fA ∼ι fTΓ,

A(J )(eA) ∼ι TJ (eTΓ), A(J )(fA) ∼ι TJ (fTΓ), (8)

and A(NJ )(eA, fA) ∼ι TNJ (eTΓ, fTΓ).

But by Lemma 3.31, (8) yields also

NA(J )(eA, fA) ∼ι NTJ (eTΓ, fTΓ).

Since NTJ = TNJ by Theorem 3.21, we get that

A(NJ )(eA, fA) ∼ι NTJ (eTΓ, fTΓ) and NA(J )(eA, fA) ∼ι NTJ (eTΓ, fTΓ).

This yields

A(NJ )(eA, fA) = NA(J )(eA, fA)

and the proof is complete. �

The following corollary is immediate.

Corollary 3.34. Let J : PΓ → PΓ be a multiplicative generalized almost complex structure.
Then NA(J ) = 0 if and only if NJ = 0.
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3.7. Proof of the integration theorem.

Proof of Theorem 3.11. By Lemma 3.27, the map A(J ) : PA → PA is a vector bundle mor-
phism. Since J 2 = − idPΓ

, it follows from Lemma 3.20 that (A(J ))2 = − idPA
. From

Corollary 3.34 and Theorem 3.28, we infer that NA(J ) = 0 and A(J ) is 〈· , ·〉A-orthogonal.

Since

A(PΓ)
A(J )

//

��

A(PΓ)

��

TM ⊕A∗ // TM ⊕A∗

is a Lie algebroid morphism and

A(PΓ)
Σ|A(PΓ)

//

��

PA

��

TM ⊕A∗ // TM ⊕A∗

is a Lie algebroid isomorphism over the identity, the map

A(J ) = Σ|A(PΓ) ◦ A(J ) ◦
(

Σ|A(PΓ)

)−1
= Σ|A(PΓ) ◦ A(J ) ◦ Σ−1|PA

,

is a Lie algebroid morphism

PA

A(J )
//

��

PA

��

TM ⊕A∗ // TM ⊕A∗

.

For the second part, consider the map

AJ := Σ−1|PA
◦ JA ◦ Σ|A(PΓ) : A(PΓ) → A(PΓ).

Since JA : PA → PA is a Lie algebroid morphism, AJ is a Lie algebroid morphism and there
is a unique Lie groupoid morphism J : PΓ → PΓ such that AJ = A(J ). By Lemma 3.27, J
is a morphism of vector bundles.

We get then immediately JA = A(J ). Since J 2
A = − idA, we get A(J 2) = − idA = A(− idPΓ

)
and we can conclude by Theorem 3.28. �

4. Application

4.1. Holomorphic Lie bialgebroids. Given a complex manifold X, let ΘX denote the sheaf
of holomorphic vector fields on X.

Let A → X be a holomorphic vector bundle and let ρ : A → TX be a holomorphic vector
bundle map, which we call anchor. When the sheaf A of holomorphic sections of A→ X is a
sheaf of complex Lie algebras, the anchor map ρ induces a homorphism of sheaves of complex
Lie algebras from A to ΘX , and the Leibniz identity

[V, fW ] =
(

ρ(V )f
)

·W + f [V,W ]
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holds for all V,W ∈ A(U), f ∈ OX(U), and all open subsets U of X, we say that A is a
holomorphic Lie algebroid. Holomorphic Lie algebroids were studied in various contexts, see
for instance [4, 12, 23, 16, 36].

Since the sheaf A locally generates the C∞(X)-module of all smooth sections of A, each
holomorphic Lie algebroid structure on a holomorphic vector bundle A → X determines a
unique smooth real Lie algebroid structure on A.

Proposition 4.1 ([23]). Let A → X be a holomorphic vector bundle and let ρ : A → TX be
a holomorphic vector bundle map. Given a structure of holomorphic Lie algebroid on A with
anchor ρ, there exists a unique structure of smooth real Lie algebroid on A with the same
anchor ρ such that the inclusion of the sheaf of holomorphic sections into the sheaf of smooth
sections is a morphism of sheaves of Lie algebras over R.

Conversely, given a real Lie algebroid A → X, it is a holomorphic Lie algebroid if A → X

is a holomorphic vector bundle, with the sheaf of holomorphic sections denoted A, such that
the Lie bracket on smooth sections induces a C-linear bracket on A(U), for all open subsets
U ⊂ X. We write AR to denote the real Lie algebroid underlying a holomorphic Lie algebroid
A.

Assume that (A → X, ρ, [·, ·]) is a holomorphic Lie algebroid. Multiplication by the scalar√
−1 in each fiber of A determines an automorphism j of the vector bundle A. It is simple

to see that the Nijenhuis torsion of j vanishes [23]. Hence one can define a new (real) Lie
algebroid structure on A (see [21]), with anchor ρ ◦ j and Lie bracket

[V,W ]j := [jV,W ] + [V, jW ]− j[V,W ] = −j[jV, jW ], ∀V,W ∈ Γ(A), (9)

which we call underlying imaginary Lie algebroid of A and write AI . It follows immediately
that j : AI → AR is an isomorphism of Lie algebroids [21].

Given a holomorphic vector bundle A→ X, we use the symbols A, Ak, and A• to denote the
sheaves of holomorphic sections of the holomorphic vector bundle A → X, its k-th exterior
power ∧kA→ X, and the Whithney sum

⊕

k≥0

(

∧k A) respectively.

Definition 4.2. If a holomorphic vector bundle A (with sheaf of holomorphic sections A) and
its dual A∗ are both holomorphic Lie algebroids and the Chevalley-Eilenberg differential d∗ of
the Lie algebroid A∗ is a derivation of the (sheaf of) complex Lie algebras A•, i.e.

d∗[V,W ] = [d∗V,W ] + [V, d∗W ], ∀V,W ∈ A•(U) (10)

for all open subsets U of the base manifold X, we say that the pair (A,A∗) is a holomorphic
Lie bialgebroid.

As in the smooth case, a holomorphic vector bundle A→ X is a holomorphic Lie algebroid if
and only if (A•,∧, [·, ·]) is a sheaf of Gerstenhaber algebras [23].

Proposition 4.3. Let A → X be a holomorphic vector bundle. The pair (A,A∗) is a holo-
morphic Lie bialgebroid if and only if (A•,∧, [·, ·], d∗) is a sheaf of differential Gerstenhaber
algebras over X.

Proof. Since the proof is exactly the same as in the smooth case [38, 25, 20], we only sketch
it briefly. If (A,A∗) is a holomorphic Lie bialgebroid, the holomorphic Lie algebroid structure
on A∗ induces a complex of sheaves d∗ : Ak → Ak+1 over X. Since d∗ is a derivation with



GLANON GROUPOIDS 23

respect to the exterior multiplication, it follows immediately, as in [20], from the compatibility
condition (10) that

d∗[X, f ] = [d∗X, f ] + [X, d∗f ], ∀X ∈ A(U), f ∈ OX(U). (11)

Therefore, since the exterior algebra A• is generated by its homogeneous elements of degree 0
and 1, we have

d∗[X,Y ] = [d∗X,Y ] + [X, d∗Y ], ∀X,Y ∈ A•(U).

Thus (A•,∧, [·, ·], d∗) is a sheaf of differential Gerstenhaber algebras over X. The converse is
obvious. �

Proposition 4.4. Let (A,A∗) be a holomorphic Lie bialgebroid with anchors ρ : A→ TX and
ρ∗ : A

∗ → TX . Then

(a) LdfV = −[d∗f, V ] for any f ∈ OX(U) and V ∈ A(U);
(b) [d∗f, d∗g] = d∗{f, g}, ∀f, g ∈ OX(U);
(c) ρ◦(ρ∗)

∗ = −ρ∗◦ρ∗. Therefore,the holomorphic bundle map

π
#
X = ρ ◦ (ρ∗)∗ : T ∗

X → TX .

is skew-symmetric and defines a holomorphic Poisson bivector on X.

Proof. The proof is similar to the proofs of Proposition 3.4, Corollary 3.5 and Proposition 3.6
in [28]. �

4.2. Associated real Lie bialgebroids. Given a holomorphic Lie algebroid A, we denote
its underlying real and imaginary Lie algebroids by AR and AI and their respective Chevalley-
Eilenberg differentials by dR and dI . When the dual A∗ of A is also a holomorphic Lie
algebroid, its underlying real and imaginary Lie algebroids are written A∗

R and A∗
I and their

respective Chevalley-Eilenberg differentials dR∗ and dI∗.

Lemma 4.5. Let A be a holomorphic Lie algebroid over a complex manifold X. Then

(a) dIα = −(j∗◦dR◦j∗)α, for all α ∈ Γ(A∗);
(b) dIf = (j∗◦dR)f , for all f ∈ C∞(M).

Proof. For all V,W ∈ Γ(A), we have

(dIf)(V ) = ρI(V )(f) = ρ(jV )(f) = (dRf)(jV )

and

(dI(j∗α))(V,W ) = ρI(V )α(jW )− ρI(W )α(jV )− α(j[V,W ]j)

= ρ(j(V ))α(jW )− ρ(j(W ))α(jV )− α([j(V ), j(W )])

= (dRα)(j(V ), j(W )). �

If the dual A∗ of a holomorphic Lie algebroid A→ X is also endowed with a holomorphic Lie
algebroid structure, we can conclude that

dI∗V = −(j◦dR∗ ◦j)V, ∀V ∈ Γ(A), (12)

dI∗f = (j◦dR∗ )f, ∀f ∈ C∞(X),

since j∗ is the multiplication by the scalar
√
−1 in each fiber of A∗.
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Proposition 4.6. Let A be a holomorphic vector bundle over a complex manifold X. Assume
that A and its dual A∗ are both holomorphic Lie algebroids. The following assertions are
equivalent:

(a) (A,A∗) is a holomorphic Lie bialgebroid;
(b) (AR, A

∗
R) is a Lie bialgebroid;

(c) (AR, A
∗
I) is a Lie bialgebroid.

Proof. (b)⇒(a) It is clear that if (AR, A
∗
R) is a real Lie bialgebroid then the compatibility

condition for (A,A∗) to be a holomorphic Lie bialgebroid is automatically satisfied.

(a)⇒(b) Fix an arbitrary open subset U of X and an arbitrary holomorphic section V ∈ A(U).
Consider the operator C∞(U,C) → Γ(AR|U ⊗ C) defined by

LV f = dR∗ [V, f ]− [dR∗ V, f ]− [V, dR∗ f ] (13)

for all f ∈ C∞(U,C). Here dR∗ : Γ(∧•AR ⊗ C) → Γ(∧•+1AR ⊗ C) is the Chevalley-Eilenberg
differential with the trivial complex coefficients of the Lie algebroid A∗

R, and V is seen as a
section of AR|U . It is simple to check that LV is a derivation, i.e.

LV (fg) = fLV g + gLV f.

Since (A,A∗) is a holomorphic Lie bialgebroid, it follows from (11) that LV f = 0, for all
f ∈ OX(U). Here we use the fact that d∗f = dR∗ f for all f ∈ OX(U). On the other hand,
we also have LV f = 0 for all f ∈ OX(U) since each term of (13) vanishes [23]. Therefore, we
have LV f = 0 for all f ∈ C∞(U,C). Finally, since the restricted vector bundle A|U is trivial
and Γ(A|U ⊗ C) is C∞(U,C)-linearly spanned by A(U) when the subset U is contractible, it
follows that d∗[X,Y ] = [d∗X,Y ] + [X, d∗Y ] for any X,Y ∈ Γ(A|U ⊗ C). Hence (AR, A

∗
R) is a

real Lie bialgebroid.

(a)⇔(c) The equivalence between (a) and (c) can be proved similarly, using the equality
dI∗f = i · d∗f for all f ∈ A(U). �

It is well known that Lie bialgebroids are symmetric, viz. (AR, A
∗
R) is a Lie bialgebroid if and

only if (A∗
R, AR) is a Lie bialgebroid. This is obviously still true in the holomorphic setting.

Proposition 4.7. The pair (A,A∗) is a holomorphic Lie bialgebroid iff the pair (A∗, A) is a
holomorphic Lie bialgebroid.

Proposition 4.8. Let A be a holomorphic vector bundle over a complex manifold X. Assume
A and its dual A∗ are both holomorphic Lie algebroids.

(a) (AR, A
∗
R) is a Lie bialgebroid if and only if (AI , A

∗
I) is a Lie bialgebroid,

(b) (AR, A
∗
I) is a Lie bialgebroid if and only if (AI , A

∗
R) is a Lie bialgebroid.

Proof. Recall from (9) that the Lie bracket on AI is given by [V,W ]j = −j[jV, jW ] for all
V,W ∈ Γ(AI).
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(a) Assume that (AR, A
∗
R) is a Lie bialgebroid. Then, for all V,W ∈ Γ(AI), we have

dI∗[V,W ]j
(12)
= (j◦dR∗ ◦j)(−j[jV, jW ]) = (j◦dR∗ )([jV, jW ])

= j
([

dR∗ (jV ), jW
]

+
[

jV, dR∗ (jW )
])

(12)
= −j

([

j(dI∗V ), jW
]

+
[

jV, j(dI∗W )
])

=
[

dI∗V,W
]

j
+
[

V, dI∗W
]

j
,

which shows that (AI , A
∗
I) is a Lie bialgebroid. The converse can be shown in the

same manner.
(b) Assume that (AI , A

∗
R) is a Lie bialgebroid. Then, for all V,W ∈ Γ(AR), we have

dI∗[V,W ] = −(j◦dR∗ ◦j)([V,W ]) = −(j◦dR∗ ◦j)(−j[j(V ), j(W )]j)

= −(j◦dR∗ )([j(V ), j(W )]j)

= −j[dR∗ (jV ), jW ]j − j[jV, dR∗ (jW )]j

= −j[j(dI∗V ), jW ]j − j[jV, j(dI∗W )]j

= [dI∗V,W ] + [V, dI∗W ],

which shows that (AR, A
∗
I) is a Lie bialgebroid. The converse can be proved similarly.

�

Proposition 4.9. Let A be a holomorphic vector bundle over a complex manifold X. Assume
A and its dual A∗ are both holomorphic Lie algebroids. Then (AR, A

∗
I) is a Lie bialgebroid if

and only if AR is a Glanon Lie algebroid when endowed with the generalized complex structure
JAR

: PAR
→ PAR

with block-matrix representation

JAR
=

(

JAR
π
♯
A∗

I

0 −J∗
AR

)

(where πA∗
I

is the Poisson structure on AR that is induced by the Lie algebroid structure on

A∗
I).

Proof. Assume first that (AR,JAR
) is a Glanon Lie algebroid. Then the map π♯A∗

I
is a morphism

of Lie algebroids T ∗A→ TA, and it follows that (AR, A
∗
I) is a Lie bialgebroid [29].

Conversely, if (AR, A
∗
I) is a Lie bialgebroid, the map π♯A∗

I
is a morphism of Lie algebroids T ∗A→

TA. According to Proposition 3.12 in [24] up to a scalar, πA(·, ·) = πA∗
I
(·, ·)+iπA∗

I
(J∗

AR
·, ·) is the

holomorphic Lie Poisson structure on A induced by the holomorphic Lie algebroid A∗. By [23,
Theorem 2.7], JAR

is hence a generalized complex structure. Since A is a holomorphic Lie
algebroid, the map JAR

: TAR → TAR is a morphism of Lie algebroids according to [24]. �

We summarize our results in the following:

Theorem 4.10. Let A be a holomorphic vector bundle over a complex manifold X. Assume A
and its dual A∗ are both holomorphic Lie algebroids. The following assertions are equivalent:

(a) (A,A∗) is a holomorphic Lie bialgebroid;
(b) (AR, A

∗
R) is a Lie bialgebroid;

(c) (AR, A
∗
I) is a Lie bialgebroid;

(d) (AI , A
∗
R) is a Lie bialgebroid;
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(e) (AI , A
∗
I) is a Lie bialgebroid;

(f) the Lie algebroid AR endowed with the map JAR
: PAR

→ PAR
,

JAR
=

(

JAR
π
♯
AI

0 −J∗
AR

)

is a Glanon Lie algebroid.

Example 4.11. Given a holomorphic Poisson tensor π = πR+iπI ∈ Γ(∧2T 1,0X) on a complex
manifold X, let A denote the canonical holomorphic Lie algebroid structure on the tangent
bundle of X and let A∗ denote the holomorphic Lie algebroid structure associated to π on
the cotangent bundle of X. Then (A,A∗) is a holomorphic Lie bialgebroid with AR = TX ,
AI = (TX)J , A∗

R = (TX)∗4πR
and A∗

I = (TX)∗4πI
.

4.3. Holomorphic Poisson groupoids.

Definition 4.12 ([35, 28, 37]). A holomorphic Poisson groupoid is a holomorphic Lie groupoid
Γ⇉M endowed with a holomorphic Poisson tensor πΓ ∈ Γ(∧2T 1,0Γ) such that the graph Λ of
the groupoid multiplication is a coisotropic submanifold of Γ × Γ × Γ̄, where Γ̄ stands for Γ
endowed with the opposite Poisson structure.

Many properties of (smooth) Poisson groupoids generalize in a straightforward manner to the
holomorphic setting. In particular, if Γ⇉X is a holomorphic Poisson groupoid, then X is
naturally a holomorphic Poisson manifold. More precisely, there exists a unique holomorphic
Poisson tensor on X with respect to which the source map s : Γ → X is a holomorphic Poisson
map and the target map is an anti-Poisson map.

Theorem 4.13 ([37, 25]). Let Γ ⇉ X be a holomorphic Lie groupoid with associated Lie
algebroid A→ X and let πΓ be a holomorphic Poisson tensor on Γ. Then πΓ is multiplicative

if and only if π#Γ : T ∗Γ → TΓ is a morphism of holomorphic groupoids. In this case, the

restriction of the groupoid morphism π
#
Γ : T ∗Γ → TΓ to the unit spaces is a map A∗ → TX.

For any open subset U ⊂M and X ∈ Ak(U), it follows as in [37, Theorem 3.1] that [Xr, πΓ] is
a right-invariant holomorphic (k+1)-vector field on ΓU

U . Hence it defines an element, denoted
d∗X, in Ak+1(U), i.e. (d∗X)r = [Xr, πΓ]. As in [38], one proves that (A•,∧, [· , ·], d∗) is a sheaf
of differential Gerstenhaber algebras over M . This proves the following proposition.

Proposition 4.14. Let Γ ⇉ X be a holomorphic Lie groupoid and let A→ X be the associated
holomorphic Lie algebroid. If Γ ⇉ X is a holomorphic Poisson groupoid, then the pair (A,A∗)
is a holomorphic Lie bialgebroid.

The notation A(Γ ⇉ X,πΓ) = (A,A∗) means that (Γ ⇉ X,πΓ) is a Poisson groupoid and
(A,A∗) is its associated Lie bialgebroid.

Proposition 4.15. If πΓ is a multiplicative Poisson tensor on a holomorphic groupoid Γ ⇉ X,
πR and πI are the real and imaginary parts of πΓ ∈ Γ(∧2T 1,0Γ), and A(Γ ⇉ X,πΓ) = (A,A∗),
then (Γ⇉X,πR) and (Γ⇉X,πI) are smooth Poisson groupoids, A(Γ⇉X,πR) = (AR, A

∗
1
4
·R
),

and A(Γ⇉M,πI) = (AR, A
∗
1
4
·I
). Here A∗

1
4
·R

(respectively A∗
1
4
·I
) stands for the Lie algebroid

(A∗
R,

1
4 [· , ·]A∗

R
, 14ρA∗

R
) (respectively (A∗

I ,
1
4 [· , ·]A∗

I
, 14ρA∗

I
)).
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Proof. If πΓ is a multiplicative holomorphic Poisson structure on Γ⇉M , then its real and
imaginary parts are also multiplicative. It is shown in [23] that both πR and πI are Poisson
bivector fields.
We have Im((T ∗Γ)πΓ) = (T ∗Γ)4πI

and Re((T ∗Γ)πΓ) = (T ∗Γ)4πR
[23]. The Lie algebroid

structure on (T ∗Γ)πΓ restricts to the holomorphic Lie algebroid structure on A∗ as follows;
the map ρ : A∗ → TM is just the restriction of πΓ♯ to A∗ = TM◦ seen as a subbundle of
T ∗
MΓ, and the bracket on T ∗Γ restricts to a bracket on A∗. In the same manner, the Lie

groupoid (Γ⇉M,π
♯
R) induces a Lie algebroid structure on (AR)

∗ that is the restriction of the
Lie algebroid structure on (T ∗Γ)πR

. Hence, we can conclude easily. �

Proposition 4.16. (a) Every holomorphic Poisson groupoid (Γ ⇉ X,π) inherits a
canonical Glanon groupoid structure: the automorphism Jπ of PΓ given by the matrix

(

JΓ π
♯
I

0 −J∗
Γ

)

(where JΓ denotes the complex structure of Γ) is a multiplicative generalized complex
structure on Γ.

(b) The matrix representation of the Lie algebroid morphism A(Jπ) : PA → PA (see
Definition 3.26) is





JAR
π
♯
A∗

1
4
·I

0 −J∗
AR



 ,

where πA∗
1
4
·I

is the linear Poisson structure on AR determined by the Lie algebroid

A∗
1
4
·I
.

Proof. (a) By [23, Theorem 2.7], Jπ is a generalized complex structure. Since (Γ⇉X, JΓ)
is a holomorphic Lie groupoid and (Γ⇉X,πI) is a Poisson groupoid, JΓ : TΓ → TΓ,
its dual J∗

Γ : T
∗Γ → T ∗Γ, and π♯I : T

∗Γ → TΓ are multiplicative maps.

(b) It is shown in [24] that σΓ◦A(JΓ)◦σ−1
Γ = JAR

, and in [29] that ςΓ◦A(π♯I)◦ς−1
Γ = π

♯
A∗

1
4
·I

,

since (AR, A
∗
1
4
·I
) is the Lie bialgebroid of (Γ⇉M,πI), where σΓ : A(TΓ) → TA and

ςΓ : A(T
∗Γ) → T ∗A are the morphisms of Lie algebroids defined in Section 2.6. �

A holomorphic Lie bialgebroid (A,A∗) is said to be integrable if there exists a holomorphic
Poisson groupoid (Γ ⇉ X,π) such that A(Γ ⇉ X,π) = (A,A∗).

As a consequence of Theorem 3.11 and Proposition 4.16, we finally obtain the main result of
this section:

Theorem 4.17. Given a holomorphic Lie bialgebroid (A,A∗), if the underlying real Lie al-
gebroid AR integrates to a s-connected and s-simply connected Lie groupoid Γ, then Γ is a
holomorphic Poisson groupoid.

Remark 4.18. This result was proved in [24] in the special case where (A,A∗) is the holo-
morphic Lie bialgebroid ((T ∗X)π, TX) associated to a holomorphic Poisson manifold (X,π).
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