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ABSTRACT 

The two main challenges facing high data rate visible light communication (VLC) are the low modulation 

bandwidth of the current transmitters (i.e. light emitting diodes, LEDs) and the inter symbol interference (ISI) 

caused by multipath propagation. In this paper, we evaluate laser diodes (LDs) as a source of illumination and 

communication instead of LEDs for a VLC system in conjunction with an angle diversity receiver (ADR). The 

main advantage of using LDs is their high modulation bandwidth that enables communication at data rates of 

multi gigabits per second for VLC when using a suitable receiver, such as an ADR, which mitigates the ISI. Our 

proposed system uses simple on-off keying (OOK) modulation, and it is able to provide data rates of 5 Gbps and 

a bit-error-rate (BER) of 10-6 in the worst case scenario. 

Keywords: laser diodes, angle diversity receiver, multi gigabit VLC. 

1. INTRODUCTION 

Visible light communication (VLC) systems have become promising candidates to complement conventional 

radio frequency (RF) systems due to the increasingly saturated RF band and the potential high data rates that can 

be achieved by VLC systems [1]. Over the last decade, significant research effort has been directed towards the 

development of VLC systems due to their numerous advantages over RF systems, such as the availability of 

simple transmitters (light emitting diodes, LEDs) and receivers (silicon photo detectors), better security at the 

physical layer and hundreds of THz of license-free bandwidth. However, there are several challenges facing 

VLC systems to achieve high data rates (multi gigabit per second). These challenges include the low modulation 

bandwidth of the LEDs and inter symbol interference (ISI) due to multipath propagation. Significant efforts are 

being directed towards finding solutions for the VLC system limitations. Among the most notable solutions are 

the use of pre or post equalization (or both) [2], complex multiple access and modulation techniques [3], [4], 

RGB LEDs [5] and parallel communication [6]. Recently, a 3 Gbps VLC system based on a single �LED using 

orthogonal frequency division multiplexing (OFDM) has been successfully demonstrated [7]. The highest 

throughput achieved by LEDs was reported in [4], which was an aggregate throughput of 3.4 Gbps using discrete 

multi-tone modulation (DMT), wavelength division multiplexing (WDM) and RGB LEDs. However, the 

complexity of the design and implementation are a major concern in these systems. 

A combination of RGB lasers with a diffuser can be used to generate white light that has high quality colour 

rendering and efficiency [8]. Therefore, visible laser diodes (LDs) can be used as a main source of illumination 

instead of LEDs due to their high efficiency, especially in high power applications [9]. One of the main potential 

issues associated with using laser lighting is that lasers can be dangerous to human eyes. Therefore, it should be 

noted that while the original sources indeed have laser properties (i.e. RGB lasers), once they have been 

combined and had the beam scattered and diffused, the light no longer has the characteristics of laser light, but 

resembles white light [9]. Previous work has shown that significant enhancements in the VLC system data rates 

can be achieved by replacing LEDs with LDs and using an imaging receiver instead of wide field-of-view (FOV) 

receiver [10]. In addition, significant improvements can be achieved when VLC relay assistance is combined 

with the imaging receiver and delay adaptation technique [11].   

Various techniques have been proposed to combat ISI in optical wireless (OW) systems. Adaptive equalization 

with a least mean square (LMS) algorithm has been used to achieve 1 Gbps [12]. An angle diversity receiver 

(ADR) is considered as a simple and efficient technique that can be used to mitigate the effects of ambient light 

and pulse spread in OW systems [13], [14]. ADR employs multiple photo detectors with relatively small FOVs, 

and each photo detector is aimed in a different direction with a specific azimuth and elevation angle to collect 

information signals [15].  

In this paper, we introduce LDs as the source of illumination and communication for a VLC system (LD-VLC 

system) in conjunction with two different receivers (wide FOV and ADR). The main goal of using LDs is to 

enable the VLC system to achieve multi-gigabits when employing a simple modulation technique (on-off 

keying, OOK), and this adds simplicity to the VLC system. In addition, an ADR is proposed for a VLC system 

instead of wide FOV receiver to mitigate the impact of ISI, reduce the delay spread and increase the signal to 

noise ratio (SNR) when the VLC system operates at high data rates under the effects of mobility and multipath 

dispersion. The reminder of this paper is divided into sections as follows: Section 2 introduces the design of the 

laser VLC system and room setup. Section 3 presents the receivers’ configurations. Simulation results and 

discussions are presented in Section 4. Finally, conclusions are drawn in Section 5.�   
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2. LASER VLC SYSTEM AND ROOM SETUP 

To evaluate our proposed system, a simulation was conducted in an empty room with dimensions 4 m×8 m×3 m 

(width × length × height). Experimental measurements of plaster walls have shown that they are roughly a 

Lambertian reflector [16]. Therefore, all the walls (including ceiling) and the floor were modelled as Lambertian 

reflectors with high reflectivity (reflection coefficients of 0.3 for the floor and 0.8 for the walls and ceiling). 

These relatively high reflectivities (within the typically range) were selected as they result in the greatest 

multipath dispersion (worst case scenario), and consequently considerable pulse spread. Reflections from doors 

and windows are considered to be the same as reflections from walls. To model the reflections, the room was 

divided into a number of equally sized squares with an area of �� and reflection coefficient of��. Each reflection 

element was treated as a small transmitter that transmits an attenuated version of the received signals from its 

centre in the same form as a Lambertian pattern with �=1, where � is the Lambertian emission order as defined 

in [17]. 

Previous research considered only line of sight (LOS) and reflections up to a first order  [4], [7], [18]. 

However, this may not provide a full description of the characteristics of the system. Therefore, in this work, 

reflections up to a second order were considered, since the second reflection has a greater impact on system 

performance (especially at high data rates). It should be noted that reducing �� leads to improved resolution in 

the impulse response evaluation together with an increase in the computation time exponentially. To keep 

computations within practical parameters, surface elements with sizes of 5 cm × 5 cm for first-order reflections 

and 20 cm × 20 cm for second-order reflections were used. 

The room’s illumination was provided by eight RGB-LD light units that were used to ensure that ISO and 

European standards are satisfied [19]. Each LD light unit had nine (3×3) RGB-LD. The LD lights were installed 

at a height of 3 m above the floor. The specifications of the RGB-LD used in this study were adapted from 

practical results reported in [20]. Fig. 1a shows the architecture of the LD light units, where the light from three 

lasers (i.e. RGB) is combined using beam combiners, then passed through multiple ground glass diffusers to 

reduce speckle before illuminating the room. This design is similar to the one studied in [20]. The VLC room 

with the coordinates of the RGB-LD light units is shown in Fig. 1b. A number of different uniformly distributed 

LD light unit configurations (i.e. four, six and eight LD light units) were tested to find the optimum number of 

units that ensures that ISO and EU standards for illumination are satisfied in the room. We found that eight units 

were the optimum for illumination, and we used this in our study: four and six light units in the room did not 

achieve the minimum illumination requirement (i.e. 300 lx [19]). The height of the work desks where the 

transmitters and receivers associated with the user equipment were placed was 1 m. This horizontal plane was 

referred to as the “communication floor” (CF). The transmitted power from each RGB-LDs was 2 W. Fig. 1c 

shows the horizontal illumination distributions from the eight RGB-LD light units at the CF level. It is clear 

from this figure that there is sufficient illumination according to EU and ISO standards [19]. 

The simulations and calculations reported in this paper were carried out using the MATLAB program. Our 

simulation tool is similar to one developed by Barry et al. [21]. In our evaluation channel characteristics, optical 

power received, delay spread, 3 dB channel bandwidth and SNR calculations were determined in similar ways to 

those used in [10], [13], [17], [22].       

3. RECEIVER CONFIGURATIONS 

We used two types of receiver, an ADR with three branches and a single wide FOV (FOV =�90�) element with 

photo sensitive area of 1 cm2. The latter is the most basic receiver configuration widely investigated in previous 

research [16]-[18]. An ADR is a group of narrow FOV detectors pointed in different directions. The ADR 

consists of three branches with photodetectors that have a responsivity of 0.4 A/W each. The ADR uses a photo 

detector area of 4 mm2. The ADR was always placed on the CF, and results were obtained along the lines x = 1 

m or x = 2 m. The direction of each branch in an ADR is defined by two angles: the azimuth angle (�	) and the 

elevation angle (
�). The �	s of the three detectors were set at 0o, 180o and 0o, and the 
�s for the three 

branches were fixed at 90o, 60o and 60o. The corresponding FOVs were fixed to 30o, 25o and 25o. The �	s, 
�s 

and FOVs were chosen through an optimisation process to achieve high SNR and low delay spread. The 

reception angle calculations for any detector in the ADR are given in detail in [11], [13].  Fig. 1d illustrates the 

physical structure of the ADR. The photocurrents received in each branch can be amplified separately and can be 

processed using different methods, such as selection combining (SC), equal gain combining (EGC) or maximum 

ratio combining (MRC), to maximise the power efficiency of the system. MRC can achieve better performance 

compared to the other methods [10], [13], [23]. Therefore, in this work the ADR LD-VLC system employed an 

MRC approach.  

4. SIMULATION RESULTS 

We evaluated the performance of the proposed LD-VLC system using a wide FOV receiver and an ADR in an 

empty room in the presence of multipath dispersion and mobility. The proposed systems were examined in 14 
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different locations when the receivers moved along the y-axis. The results are presented in terms of impulse 

response, delay spread, 3 dB channel bandwidth and SNR. Due to the symmetry of the room, the results for x = 3 

equal the results for x = 1, therefore only results for x = 1 m and x = 2 m are shown along the y-axis. 

 

 

 
Figure 1. RGB-LD architecture, VLC system room, illuminace distribution and physical structure of ADR (a) 

architecture of RGB-LD white light; light from three lasers is combined using chromatic beam-combiners, then 

passes through multiple ground glass diffusers to reduce speckle before illuminating the room (b) VLC room (c) 

distribution of horizontal illumination at the communication floor, Min. 336 lx and Max. 894 lx (d) ADR with 

three branches. 

4.1 Impulse Response 

The impulse responses and magnitude responses of the two receivers (wide FOV and ADR) at the room centre 

are depicted in Fig. 2. It can be seen that the ADR’s impulse response (Fig. 2b) is better than that of the wide 

FOV receiver in terms of signal spread. The impulse response of the wide FOV receiver (Fig. 2a) contains many 

peaks that correspond to different direct LOS components coming from different RGB-LD light units. The 

impulse response of the wide FOV receiver also shows that the LOS as well as first and second order reflection 

components have a great impact on the signal, because these components cause the signal to spread over a large 

time-range, which is due to the wide FOV of this receiver (90�). Our simulation results show that the LD-VLC 

system in conjunction with an ADR increases the communication channel bandwidth from the 114 MHz offered 

by the wide FOV LD-VLC system to about 3.7 GHz (see Fig. 2). 

4.2 Delay Spread and 3 dB Channel Bandwidth Analysis 

Fig. 3a presents the communication system delay spread associated with the wide FOV and ADR LD-VLC 

systems. The results show that the ADR LD-VLC system has a lower delay spread than the wide FOV LD-VLC 

system at all the receiver locations considered. In the ADR LD-VLC system, the results indicate that employing 

an ADR instead of a wide FOV receiver can reduce the delay spread by a factor of 12 in our system (when 
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operating in a typical room) from 0.65 ns to 0.053 ns for the worst communication path (centre of the room, x = 2 

m and y = 4 m). This improvement is due to the limited range of the rays accepted by the narrow FOV associated 

with each branch of the ADR. In addition, it can be noticed that when the wide FOV receiver is located under one 

of the LD light units (i.e. at locations x = 1 and y = 1, 3, 5, 7), the delay spread is higher than in other locations. 

This is attributed to the rays coming from the other LD light units (seven other LD light units) having to travel a 

longer distance to reach the receiver (distance between transmitters and receiver is maximum). In contrast, when 

the receiver is located midway between LD light units (i.e. at locations x = 2 and y = 2, 4, 6) the delay spread is 

the lowest. The ADR performance does not follow the wide FOV receiver, because it uses multiple detectors 

aimed towards different locations in the room, and each detector has a certain FOV.      

Although, the transmitter modulation bandwidth problem in the VLC system can be solved by replacing LEDs 

with LDs, the channel bandwidth remains an issue that needs to be solved to achieve multi-gigabit per second 

data rates. We dealt with channel bandwidth by using an ADR instead of a wide FOV receiver. The 3 dB channel 

bandwidth achieved by the two receivers is shown in Fig. 3b. The results show that the ADR provides a larger 

bandwidth compared to the traditional wide FOV receiver. The minimum communication channel bandwidth of 

the wide-FOV receiver was 70 MHz at x = 1 m and y = 1 m. In contrast, the minimum channel bandwidth in the 

ADR LD-VLC system was 3.7 GHz at x = 2 m and y = 4 m (this value enables a data rate of up to 5.2 Gbps 

[24]). This increased channel bandwidth enables the VLC system to operate at higher data rates while using a 

simple modulation technique (OOK) [25]. At the least successful receiver location (x = 2 m and y = 4 m), a 

significant bandwidth enhancement can be achieved (a factor of 32 - from 114 MHz to 3.7 GHz) when our ADR 

VLC-LD is used instead of the wide FOV VLC-LD system. Note that the variation in channel bandwidth in 

tandem with the delay spread is due to the effects explained. 

 
Figure 2. Impulse and frequency responses of the two receivers, (a) wide FOV receiver (b) ADR at room centre 

(x=2m, y=4m, z =1m). 

 

Figure 3. Delay spread and 3 dB channel bandwidth, (a) delay spread in fourteen different locations when all 

the receivers move along the y-axis, (b) the 3 dB channel bandwidth of the two systems, when the receivers move 

along x=1m and x=2m. 
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4.3 SNR Analysis       

In this study, for the bit rate of 50 Mbps we used the p-i-n BJT transimpedance preamplifier in [26]. A higher 

data rate of 5 Gbps was also considered, and here we used the p-i-n FET receiver design in [27]. A significant 

improvement in the SNR at low data rates (50 Mbps) was achieved when the ADR LD-VLC system was used 

instead of the wide FOV LD-VLC system. It can be clearly seen that the ADR achieves about 7 dB SNR gain 

over the wide FOV receiver at the centre of the room (x = 2 m and y = 4 m), which represents the worst 

communication paths for the ADR receiver (SNR gain is higher in other locations as shown in Fig. 4a). To 

evaluate the performance of the ADR system at higher bit rates, the SNR was calculated at 5 Gbps. Fig. 4b 

shows the SNR of the ADR when it is operated at 5 Gbps; the lowest SNR achieved by the ADR LD-VLC 

system was 13.5 dB in the room corner. This means that the bit error rate (BER) provided by our ADR LD-VLC 

system is better than 10-6 at 5 Gbps. The 3 dB channel bandwidth achieved by the wide FOV receiver (see Fig. 

3b) does not enable it to transfer data at a rate of 5 Gbps; therefore, we only present results for the ADR at high 

data rates (i.e. 5 Gbps). 

 

Figure 4. SNR of the wide FOV and the ADR LD-VLC systems, (a) SNR of the two systems operating at 50 Mbps 

(b)  SNR of the ADR LD-VLC system operating at 5 Gbps and using MRC combing scheme, at x=1m and at 

x=2m along the y-axis. 

5. CONCLUSIONS 

We proposed, designed and investigated a novel LD-VLC system that uses LDs instead of LEDs as the 

transmitters in conjunction with two different receivers (wide FOV receiver and an ADR) to deal with the main 

constraints of a traditional VLC system, namely the low modulation bandwidth of the LEDs and ISI caused by 

multipath dispersion. Our ADR LD-VLC system has the ability to decrease the delay spread of the wide FOV 

LD-VLC system by 91% from 0.65 ns to 0.053 ns at the room centre (x = 2 m and y = 4 m), which leads to an 

increase in the channel bandwidth by a factor of 32 from 114 MHz to 3.7 GHz. Our ADR LD-VLC system 

provides full mobility within the test area in the presence of multipath propagation and achieves a BER better 

than 10-6 at 5 Gbps when using a simple modulation format (OOK). Future work will address methods to 

enhance the SNR of the ADR LD-VLC system to achieve data rates higher than 5 Gbps. 
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