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Abstract—Inspired by the success in sparse signal recovery,
compressive sensing has already been applied for the pilot-based
channel estimation in massive multiple input multiple output
(MIMO) orthogonal frequency division multiplexing (OFDM)
systems. However, little attention has been paid to the pilot design
in the massive MIMO system. To obtain the near-optimal pilot
placement, two efficient schemes based on the block coherence
(BC) of the measurement matrix are introduced. The first scheme
searches the pilot pattern with the minimum BC value through
the simultaneous perturbation stochastic approximation (SPSA)
method. The second scheme combines the BC with probability
model and then utilizes the cross-entropy optimization (CEO)
method to solve the pilot allocation problem. Simulation results
show that both of the methods outperform the equispaced search
method, exhausted search method and random search method
in terms of mean square error (MSE) of the channel estimate.
Moreover, it is demonstrated that SPSA converges much faster
than the other methods thus are more efficient, while CEO could
provide more accurate channel estimation performance.

Keywords—Massive MIMO, optimal pilot allocation, compres-
sive sensing.

I. INTRODUCTION

The combination of massive (or large-scale) multiple-input
multiple-output (MIMO) and orthogonal frequency division
multiplexing (OFDM) is expected to be the key technology
for future communications [1]. However, this technique suffers
from high complexity load in channel estimation due to the
high dimensional channel matrix to be estimated. To solve this
problem, more and more attentions have been focused on the
sparse recovery algorithms in compressive sensing (CS), which
could estimate the sparse channel by relatively less pilots [2].
One of the challenges in sparse channel estimation is pilot pat-
tern design, which significantly affects the channel estimation
performance. To optimize the pilot allocation, a promising idea
is to utilize the restricted isometry property (RIP) [3], which
demonstrates that random sampling may guarantee the sparse
recovery with a decent probability, indicating that an optimal
way to design the pilot pattern is random search. However,
this method encounters difficulties in implementation due to
its large storage and low efficiency [4].

In [5] and [6], two near-optimal pilot allocation schemes
based on the mutual incoherence property (MIP) are proposed.
In [7] a pilot allocation method based on the mean square error
(MSE) is proposed. However, all of these schemes are based
on the single-input-single-output (SISO) OFDM. To the best
of the authors’ knowledge, few works have been done on the
near optimal pilot allocation for the massive MIMO OFDM
systems.

In this paper, we investigate the block coherence (BC) of
the measurement matrix of the massive MIMO systems [8]
and then propose two efficient pilot allocation methods for the
sparse channel estimation. The first method obtains the near-
optimal pilot pattern by minimizing the BC through the simul-
taneous perturbation stochastic approximation (SPSA) method
[9]. The second method combines BC with a probability model
and then employs the cross-entropy optimization (CEO) [10] to
solve the minimization problem of BC. The proposed schemes
are compared with the equispaced search method, exhaustive
search method and random search method. Simulation results
show that the SPSA has advantage in convergence speed
while the CEO is superior to the others in terms of the BC
performance and the mean square error (MSE) performance.

The rest of the paper is organized as follows. We first
describe the massive MIMO OFDM system model and define
the problem in Section II. Then the proposed pilot design
methods are addressed in Section III. Numerical experiments
are presented in Section IV. Finally, section V concludes the
paper.

The notations used in this paper are concluded as follows.
Matrices and vectors are denoted by symbols in bold letters.
Operators (·)T , ⌈·⌉, | · | and ‖ · ‖ represent transpose, ceiling
function, complex modulus and norm function, respectively.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Considering a downlink massive MIMO OFDM system
where the receiver and transmitter are equipped with Nr and
Nt antennas, respectively. The ith MIMO OFDM symbol for
the kth transmitting antenna (1 ≤ k ≤ Nt) is composed of N
subcarriers, among which Np subcarriers are used to transmit
the pilot signals. The transmitting pilots of the kth antenna can

be expressed as x
(k)
i = [x

(k)
i (P1), x

(k)
i (P2), · · · , x

(k)
i (PNp

)]
where p = [P1, P2, · · · , PNp

] (1 ≤ P1 < P2 < · · · <
PNp

≤ N) contains the corresponding indices of the pilots.
To distinguish the channels corresponding to different transmit

antennas at the receiver, the pilot sequence x
(k)
i (1 ≤ k ≤ Nt)

is generated respectively, based on the identically and indepen-
dently distributed (i.i.d) random Bernoulli distribution (±1)
[11]. Therefore, we have xmi 6= xni if m 6= n.

In wireless communications, the channel impulse response

(CIR) h
(k)
i of the ith OFDM symbol between the kth transmit-

ting antenna and a certain receiving antenna can be represented
as

h
(k)
i = [h

(k)
0,i , h

(k)
1,i , . . . , h

(k)
L−1,i]

T ,
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where L is the maximum channel spread. Note that identical
channel estimation processing will be adopted on every re-
ceiving antenna, so we have omitted the index of receiving
antennas in this paper. On the receiver side, we have

yi =

Nt
∑

k=1

diag{x
(k)
i }Fp,Lh

(k)
i + w

(k)
i

=

Nt
∑

k=1

D
(k)
i Fp,Lh

(k)
i + w

(k)
i ,

(1)

where yi is the ith received pilot sequence coming from Nt dif-

ferent transmit antennas, D
(k)
i = diag{x

(k)
i } is a diagonal ma-

trix with x
(k)
i on its diagonal, Fp,L is a partial discrete Fourier

transform (DFT) matrix indexed by p = [P1, P2, · · · , PNp
]

in row and [1, 2, · · · , L] in column from a standard N × N

DFT matrix, w
(k)
i denotes the additive white Gaussian noise

(AWGN). For the sake of brevity, we hereafter omit part of
the scripts in (1) and rewrite (1) as [11]

y = Ψh̃ + w, (2)

where Ψ = [D
(1)
i Fp,L,D

(2)
i Fp,L, · · · ,D

(Nt)
i Fp,L] of size

Np × NtL and h̃ = [(h
(1)
i )T , (h

(2)
i )T , · · · , (h

(Nt)
i )T ]T is

the CIR vector of size NTL × 1. Moreover, we rear-
range h̃ as b = [bT0 , · · · , bT

l , · · · , bT
L−1]

T with bl =

[h
(1)
l,i , · · · , h

(k)
l,i , · · · , h

(Nt)
l,i ]. Then the system can be modeled

by

y =
L−1
∑

l=0

Albl + w̃l = Ab + w̃, (3)

where Al = [Ψl,ΨL+l, · · · ,Ψ(Nt−1)L+l] is the lth Np × Nt

block (submatrix) of Ψ with Ψl the lth column of Ψ, A =
[A0, , · · · ,Al, · · · ,AL−1]. In the same way, w̃l is the lth block
of the reordered AWGN w̃.

It has been proved that the wireless channel of massive
MIMO system is sparse in nature, where the significant paths
(non-zero taps) of the channel, denoted as S, is much smaller
than the maximum channel spread L, e.g., S ≪ L. Moreover,
it is shown recently in [11] that the CIR of different trans-
mit antennas shares a common support in downlink massive
MIMO systems since the antenna spacing at the BS side is
negligible compared to the long distance between BS and the
receivers. In other words, although the paths amplitudes and
phases may be distinct, the path delays of different transmit
antennas are identical, e.g.,

supp(h
(m)
i ) = supp(h

(n)
i ),m 6= n. (4)

As a result, we can jointly consider the channel estimation
problem of massive MIMO systems by exploiting their joint
sparsity.

According to the recent progress in CS, a necessary
condition for successfully reconstructing b from y is that
measurement matrix A satisfies the RIP [8]. However, it is
computationally complex to validate whether a given matrix
could satisfy the RIP. To solve this problem, former works have
utilized the MIP of A as an alternative, which obtains the near-
optimal pilot allocation by minimizing the mutual coherence
of A, denoted as [12]

popt = argmin
p

µ(p), (5)

where popt denotes the near-optimal pilot pattern, and

µ(p) = max
1≤m<n≤L

|〈am, an〉|, (6)

where am is the mth column of A, and 〈·〉 is the correlation
function.

In traditional SISO or MIMO systems, orthogonal pilot
pattern is always adopted, which could be optimized according
to the MIP. However, the superimposed pilot pattern based on
the block CS [11] becomes more popular in massive MIMO
systems since the overhead of orthogonal pilot pattern increas-
es with the number of transmit antennas, which reduces the
spectral efficiency significantly in the massive MIMO system.
Note that MIP is no longer applicable for the superimposed
pilot pattern, we exploit the block coherence as an alternative
in this paper.

III. PILOT DESIGN METHODS

A. Analysis of block coherence

We first define the block coherence of A as [8]

µB(p) =
1

Nt
max

0≤m<n≤L−1
ρ(AH

mAn), (7)

where ρ(X) is the spectrum norm of a given matrix X defined

as ρ(X) = λ
1/2
max(X

HX), with λ
1/2
max(X

HX) denoting the
largest eigenvalue of the positive semi-definite matrix XHX.
It is obvious that computing the spectrum norm of AH

mAn is
computationally expensive. To solve this problem, we need

to simplify the expression in (7). Note that |x
(k)
i (Pj)| = 1

(1 ≤ j ≤ Np) and

Fp,L =













1 ϕP1
. . . ϕP1×(L−1)

1 ϕP2
. . . ϕP2×(L−1)

...
...

...

1 ϕPNp
. . . ϕPNp×(L−1)













,

where ϕκ = e−j2κπ/N , we have

µB(p) =
1

Nt
max

0≤m<n≤L−1
ρ(AH

mAn)

≤
1

Nt
max

0≤m<n≤L−1
|ΨH

mΨn| (8)

=
1

Nt
max

0≤m<n≤L−1

Np
∑

j=1

|ϕPj×(n−m)|

=
1

Nt
max

1≤d≤L−1

Np
∑

j=1

|ϕPj×d|, (9)

where d = n−m. Note that (8) is derived from Geršgorin′s
disc theorem in [14, Corollary 6.1.5]. Therefore, we could
obtain the near-optimal pilot allocation by solving the follow-
ing optimization problem

popt = argmin
p

µB(p). (10)



B. Pilot allocation method based on the block coherence

By observing (9) and (10), it is obvious that the most
intuitive approach to optimize the superimposed pilot pattern
is to perform an exhaustive search over all the possible
pilot patterns. However, the effort for computing µB(p) with
different pilot patterns is prohibitive due to the huge number of
ways to allocate Np pilots in N subcarriers. For example, we
have 5.82×1040 possible pilot allocations when Np = 32 and
N = 256 are considered. Therefore, we propose two efficient
methods to search the near-optimal pilot pattern.

1) Simultaneous Perturbation Stochastic Approximation (SP-
SA)

The simultaneous perturbation stochastic approximation
(SPSA) algorithm has been proved to be efficient for solving
the multivariate optimization problems [9]. By using a rela-
tively small number of measurements of the objective func-
tion, SPSA could provide a desirable solution without direct
reference to the first derivative of the objective function. As
an alternate method for calculating the first derivative, it uses
two performance function observations whose variables are
simultaneously varied randomly to approximate the gradient
during each iteration, regardless of the dimension of target
signals. Due to this essential feature of SPSA, it could become
a powerful and efficient tool for the pilot pattern design in
massive MIMO systems.

Assume ̺t = [̺t1, · · · , ̺
t
j , · · · , ̺

t
N ] where ̺tj denotes the

probability of the jth subcarrier to be the pilot subcarrier (e.g.,
j ∈ p) at the tth iteration. Starting from ̺t=0

j = 0.5 for 1 ≤
j ≤ N , at the tth iteration we perturb all the elements in
̺t−1 simultaneously according to a vector δt whose elements
are generated following Bernoulli distribution. After that, we
update ̺t as

̺t = ̺t−1 + αtµB(̺
t−1 + βtδt)− µB(̺

t−1 − βtδt)

2βt
(δt)−1,

(11)
where all the parameters are set empirically as follows [14]:
αt , α/(B + t+ 1)γ with α = 1, B = 1000 and γ = 0.602;
βt , β/(t + 1)λ is a positive time-varying constant where
β = 0.01 and λ = 0.101; the inverse of (δt)−1 is equal to δt

since δt follows Bernoulli distribution. The inverse function
here is defined to be element-wise inverse. Moreover, since
the probability is finite, we set 0 and 1 as the lower bound
and upper bound of ̺t, respectively. The SPSA terminates
when the maximum number of iterations tmax is reached.
After that, we can obtain the near-optimal pilot allocation popt
by collecting the Np indices with the maximum probability
in ̺. The detailed algorithm is summarized in Algorithm 1.

2) Cross Entropy Optimization (CEO)

Consider equation (10) as an minimization problem,

popt = min
p∈Λ

µB(p), (12)

where popt is the near optimal pilot pattern and Λ is the
set of pilot patterns with cardinality Np. Firstly we define
the probability distribution function (PDF) of p based on the

Algorithm 1

Initialization:
̺0 = 0.5, and t = 1.
while t ≤ tmax do

1. Generate δt following Bernoulli distribution,
2. Set αt = α/(B + t+ 1)γ and βt = β/(t+ 1)λ,
3. Update ̺t according to (11).

end while
Obtain the near-optimal pilot allocation popt by collecting
the Np indices with the maximum probability in ̺.
Output: popt.

Bernoulli distribution as

f(p; v) =

N
∏

n=1

(vn)
pn(1− vn)

1−pn , (13)

where v is a probability vector contains N elements {vn}
N
n=1,

pn equals to 0 or 1 with probability P(pn = 0) = 1 − vn
or P(pn = 1) = vn respectively. In each iteration, we only
concern the probability that µB(p) is lower than or equal to
some real number Γ, which can be denoted as

ℓ = Pu(µB(p) ≤ Γ) = Eu

{

I{µB(p) ≤ Γ}

}

, (14)

where Pu and Eu represent the probability operator and ex-
pectation operator, respectively, and I{·} is a indicator function
where I{µB(p) ≤ Γ} = 1 if µB(p) ≤ Γ and I{µB(p) ≤ Γ} =
0 if µB(p) > Γ. To solve (14) efficiently, we adopt the CEO
method which makes adaptive changes to the probability vector
v towards the direction of the theoretically optimal PDF f(p; v∗)
where v∗ is the optimal probability vector of p [10]. In details,
we choose a sample quantile factor ρ, e.g., ρ = 0.1, and then
proceed the algorithm as follows:

1. Updating Γt. For some vt−1 at the tth iteration, let Γt be
the (1− ρ) quantile of µB(p) under PDF f(p; vt−1). Thus we
have

Pvt−1
(µB(p) ≤ Γt) ≥ 1− ρ,

Pvt−1
(µB(p) ≥ Γt) ≥ ρ.

To update Γt, we first draw a random sample p1, p2, · · · , pz
from f(p; vt−1). After that we calculate their BC respectively
and then sort them in ascending order. Thus we can get the
quantile Γ̂t easily from

Γ̂t = µ⌈(1−ρ)z⌉, (15)

where {µj}
z
j=1 is the BC in new order.

2. Updating vt. With Γ̂t and vt−1, we can obtain the optimal
vt by solving the the following program [10]

1

z

z
∑

j=1

I{µB(pj) ≤ Γ̂t}∇ ln f(pj ; vt) = 0. (16)

Note that as p is generated based on the Bernoulli distribution
[7], we could obtain vt by substituting (13) into (16) as

vt,n =

∑N
n=1 I{µB(pn) ≤ Γ̂t}I{pn = 1}

∑N
n=1 I{µB(pn) ≤ Γ̂t}

, (17)

where vt,n is the nth element of vt at the tth iteration.



Consequently, we can update the vt,n iteratively to raise
the possibility of µB(p) ≤ Γ. However, once a vt,n turns to 0
or 1, it will be fixed so forever, which is undesirable. One of
the efficient ways to solve this problem is to update the vt,n
from vt−1,n smoothly, e.g., vt = ι× vt+(1− ι)× vt−1, where
ι is a small positive constant. This method is summarized in
Algorithm 2.

Algorithm 2

Input: sample size z, sample quantile factor ρ, smoothing
rate ι, and the maximum iterations tmax.
Initialization:
v0,n = Np/N for 1 ≤ n ≤ N , and t = 1.
while t ≤ tmax do

1. Generate z random samples p1, . . . , pz based on PDF
f(p; vt−1),
2. Calculate the BC µB(pj) for each 1 ≤ j ≤ z, and then
sort them in ascending order,
3. Let Γ̂t be the (1−ρ) sample quantile as Γ̂t = µ⌈(1−ρ)z⌉,
4. Calculate vt,n according to (17), for n = 1, 2, . . . , N ,
5. Smooth out vt by

vt = ι× vt + (1− ι)× vt−1,

6. t = t+ 1.
end while
Obtain the near-optimal pilot allocation popt by collecting
the Np indices with the maximum probability in vt.
Output: popt.

IV. SIMULATION RESULTS

In this section, simulation studies are conducted to inves-
tigate the performance of the proposed pilot design schemes.
Consider a 16×16 MIMO configuration with N = 256 OFDM
subcarriers, among which G = 32 subcarriers are used as pilot
subcarriers. Suppose the maximum channel spread L = 60, the
sparsity S = 6 while ρ = 0.1, ι = 0.8 and tmax = 10000.
Note that the BC values have been normalized for brevity.
Moreover, all the simulations are performed using MATLAB
2012a, running on a standard computer with an Intel Core i3-
2100 CPU at 3.10GHz and 4GB of memory.

In Fig. 1 we show the BC performance of the CEO method
for different values of the sample size z. It is obvious that z
has a significant influence on the BC performance. In details,
the CEO with z = 50 has the poorest performance due to its
limited sample size. Meanwhile we observe that z = 150 has
a slight edge over z = 100, indicating CEO converges to its
best performance with z = 150 when the number of iterations
reaches 21. Therefore, we choose z = 150 for the CEO method
in the following simulations.

Next, we evaluate the updating process of BC as a function
of running time for both of the proposed methods in Fig.
2. Meanwhile, the conventional equispaced search method,
exhaustive search method as well as random search method
are included for comparison. It is observed in Fig. 2(a) that the
SPSA converges much faster than the other methods. In details,
it exceeds the best BC performance of random search could
achieve in 1 second by using no more than 0.03 second. On
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Fig. 2. BC performance comparisons of different pilot design methods.

the other hand, though CEO takes more time for convergence,
it outperforms the other method in BC performances within
0.2 second. From Fig. 2(b) where the run time is set to 1000
seconds, we can see that similar performances are achieved for
all the evaluated methods. Specifically, both of the proposed
methods maintain their advantages over the conventional meth-
ods, which confirms the reliable performance of the proposed
methods. Moreover, we observe that although the exhaustive
search can obtain the optimal pilot pattern in theory, it is unable
to find a desirable solution within the given time.

In Fig. 3, we compare the channel estimation performances
using different pilot patterns. All the pilot patterns are obtained
from the simulation in Fig. 2(b) where 1000 seconds are
carried out by the corresponding pilot design methods. The
structured subspace pursuit (SSP) is employed for the channel
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pilot design schemes.

estimation [11]. We observe from Fig. 3 that the pilot pattern
obtained from CEO performs slightly better than that of SPSA,
while both of the proposed schemes outperform the other
conventional schemes. For example, at the MSE of = 10−3, the
SPSA outperforms the conventional schemes by more than 5.1
dB signal noise ratio (SNR) gain while CEO performs at least
6.4 dB better than those schemes. Moreover, it is noticed that
there is no benefit using the equispaced pilot pattern for sparse
channel estimation although it is proved to be the best choice
in traditional channel estimation. This result is also consistent
with its bad BC performance in Fig. 2.

V. CONCLUSION

In this paper, we have investigated the pilot allocation for
sparse channel estimation in massive MIMO OFDM systems.
Based on the BC, we have proposed two pilot design methods
for searching the near-optimal pilot pattern off-line. Simulation
results have shown that both of the proposed methods are
superior to the conventional methods in terms of MSE per-
formance. Moreover, it has demonstrated that SPSA converges
much faster than the other methods while CEO provides better
BC performance and thus MSE performance.
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