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ABSTRACT 

The paper aims to further the understanding of the interaction between reinforcement in tension and the 

surrounding cracked concrete.  This is achieved using the elastic analysis of axi-symmetric prisms 

reinforced with a single central bar.   As a preliminary to the analyses, the behaviour of axially 
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reinforced prisms is described based on previous experiments.  This preliminary analysis confirms that 

the elastic analysis adopted in this investigation is reasonable. 

 

Two analytical exercises are described; the first assumes no slip, plasticity or internal cracking at the 

interface between the steel and the concrete while the second introduces internal cracking and de-

bonding between ribs.  The first analysis indicates that shear deformation of the surrounding concrete 

accounts for a substantial proportion of the surface crack width and therefore that this form of 

deformation cannot be ignored in crack prediction formulae.  The second analytical exercise shows that 

the internal cracking model described by Goto is appropriate. 

 

Keywords: cracking mechanisms; finite element modelling; axi-symmetric tension specimens; crack 

width calculations; cover; shear distortions  
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INTRODUCTION 

The objective of this study is to gain greater understanding of the interaction of reinforcement and 

concrete in tension.  The analysis models used have been kept as simple as possible; the approach has 

been limited to pure elastic behaviour and an assumed internal cracking pattern, based on the work by 

Goto (7), has been adopted (rather than use a non-linear finite analysis software based on, for instance, 

a smeared cracking approach where cracks are predicted regions of damaged material with degraded 

properties).  This keeps difficulties in interpretation to a minimum, though it is recognised that concrete 

does not necessarily behave in a perfectly elastic manner. 

 

Use of elastic modelling, where the cracks being studied are open, is not so unreasonable as might be 

thought by some, as the extensive data obtained by Scott and Gill (1) and Beeby and Scott (2, 3, 4,) 

suggest that much of the behaviour revealed during tension tests is close to what would be expected 

from an assumption of elastic-brittle behaviour for concrete in tension.  This is effectively what will be 

assumed in the study. 

 

RESEARCH SIGNIFICANCE 

In reinforced concrete, the interaction between reinforcement in tension and the surrounding concrete is 

still not fully understood. Two internal failure mechanisms; pure slip and internal cracking, form the 

basis of three approaches which exist in the codes to model the tension zone behaviour under service 

loads. The models presented in this investigation are based only on Goto’s internal cracking 

mechanism. These models predict the experimental behaviour of tension members quite effectively. 

The simpler model proposed here further confirms the concept that crack width is a function of the 

shear deformation of the concrete cover. 
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BASIC BEHAVIOUR AS REVEALED BY TESTS 

The information used here is taken from reference (3) above. Initially, strain data for specimen 100T12 

will be presented as this gives a convenient illustration of a number of aspects of behaviour.  Figure 1 

shows the load – average reinforcement strain response for this specimen. 

   

It will be seen that the response is not a continuous smooth curve as is commonly plotted but is made 

up of a series of linear segments separated by a sudden increase in strain on the occurrence of each 

crack.  Up to a load of about 7.868 kips [35 kN], these linear segments, extrapolated backwards, can be 

seen to pass through the origin.  The behaviour of the tension specimen with a given number of cracks 

is thus elastic.  Using the computer to produce ‘best fit’ lines for each segment enables the stiffness of 

the specimen to be established for each crack configuration.  Figure 2 shows this compliance plotted 

against the number of cracks. It will be seen that there is a linear relationship between stiffness and 

number of cracks.  This implies that the formation of each crack reduces the stiffness of the element by 

a constant amount. The final point for 4 cracks does not quite fit the linear relationship.  This point is 

obtained from the behaviour immediately after formation of the fourth crack.  Figure 1 shows that at 

higher loads there are two further sudden increases in strain.  These increases were not related to the 

formation of visible surface cracks and it may be speculated that they arise from some form of internal 

failure.  It should be noted that both these increases in strain occurred only at very high levels of stress 

in the reinforcement (> 58.02 ksi [400 MPa]). 

 

Figures 1 and 2 show that the behaviour between cracking events is generally elastic and this is the 

assumption which will effectively be made in the finite element analyses. 
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The next aspect of behaviour which needs to be considered is the variation of steel stress or concrete 

stress with distance from a crack.  Figure 3 shows the variation of strain along a reinforcing bar for 

various levels of axial load. 

 

Various pieces of information can be gleaned from this figure.   

 

Firstly, over a considerable part of the distance from a crack or the free end of the specimen, the 

variation in strain is very close to linear.  This can possibly be seen better from Figure 4 which shows 

the variation in concrete stress over the end 11.81 in. [300 mm], enlarged for two levels of load.  At the 

lower load level there is a clear curve over the part of the bar where the stress is close to that for 

uncracked concrete.  This is not really clear for the higher load where it would not be unreasonable to 

consider the relationship to be linear over the whole distance to mid-way between cracks. 

 

Secondly, even at the low level of load, which is below the cracking load for the specimen, the strain in 

the reinforcement over most of the length affected by the end of the specimen (So) is considerably 

greater than the cracking strain of the concrete, which can be assumed to be in the range 100 to 150 x 

10-6.  This implies that some form of internal failure must occur over the whole length So as soon as 

cracking occurs. 

 

A critical factor in crack prediction theories is the definition of the transfer length.  This is the distance 

on one side of a crack over which the stress in the reinforcement is affected by the crack.  In 

References (2), (3) and (4), this is represented by the symbol So.  In some papers, the symbol ltr is used.  

There are various ways of estimating So from experimental results.  Most of these are indirect and 

assume a relationship, for example, between So and crack width.  However, the work reported in (2), 

(3) and (4), recorded the variation in strain at closely spaced intervals along the reinforcing bar, permit 
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the direct measurement of So.  Even with these tests there are, however, difficulties as can be seen from 

the strain variation for the 4.496 kips [20 kN] level of load shown in Figure 4.  It is difficult to define 

exactly the point where the crack no longer influences the strain.  The method used to establish a value 

for So has been illustrated in Figure 4 where So is defined as the distance from the crack (or free end of 

the bar) and the point where a ‘best fit’ line through the strains intersects the strain in the uncracked 

concrete.  This is clearly an imperfect procedure but is consistent and seems to agree well with the 

calculation of So by indirect means.  A good straight line relationship was found between So and cover.  

This is illustrated in Figure 5, which also includes the equation for the straight line. 

 

An issue which has been studied by a number of researchers but is generally ignored by those 

developing theories of cracking is the shape of the crack (i.e. how the width of a crack varies between 

the bar surface and the surface of the concrete).  An assumption generally seems implicit in cracking 

formulae based on the classical theory that the crack width at the concrete surface is the same as that at 

the bar surface.  There is now ample evidence that this is not the case.  The research evidence has been 

reviewed in (5) and this shows that the cracks are tapered, being much smaller near the bar surface than 

at the concrete surface.  Though the results are highly variable, it can be concluded that the width at the 

concrete surface is at least twice that near the bar surface. 

 

SIMPLE ELASTIC ANALYSIS WITHOUT INTERNAL CRACKING 

Initially, a simple 2-D analysis was performed on an axially reinforced circular cross-section prism to 

give some idea of the stress and deformation conditions around a bar.  The axial symmetry greatly 

simplified the analysis.  A fully elastic analysis of the area surrounding a bar, assuming no slip between 

the bar and the concrete was considered.  The situation analysed is illustrated in Figure 6 in which ws is 

the surface crack width.        
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Analyses were carried out using axi-symmetric elements in GSA (General Structural Analysis – an 

OASYS package). For the initial analysis, a 0.79 in. [20 mm] diameter () bar was considered with 

1.97 in. [50 mm] cover (c).  Five mm square elements were used and a length from the free face up to 

the fixed end of 5.91 in. [150 mm] was assumed.  A uniform stress of 14.51 kips / in2 [100 MPa] was 

applied to the free end of the bar.  Figure 7 shows the stress distribution in the concrete along the 

specimen obtained in two ways; the stress in the concrete on the outer face (i.e. the concrete surface) 

and the average stress in the concrete.  The average stress was calculated by taking the force in the 

reinforcing bar at each 0.20 in. [5mm] section, deducting this from the total applied force at the free 

end and dividing this difference by the area of the concrete.  In algebraic terms, if T is the tension force 

applied at the free end, the bar area is As and the concrete area is Ac, the stress in the bar at any section 

a distance x from the crack is sx and the average stress in the concrete is cx then, by equilibrium, 

since the force at section x must be T, the stress in the concrete is given by: 

 

   cx = (T - Assx)/Ac    (1) 

  

The average stress in the concrete has been calculated in this way because it corresponds to the method 

of calculating the concrete stress used in References (2), (3) and (4).  It is also effectively what is used 

in many theoretical derivations of crack prediction formulae.   

 

There are several interesting points which arise from Figure 7.  Firstly, and entirely as one might 

expect, the surface stress is not the same as the average stress but is considerably lower over almost the 

whole of the length analysed.  So for the surface is thus different to So for the average stress, with the 

surface value being considerably longer.  Straight lines have been drawn in passing through the origin 
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and the point where the calculated curves reach 2/3 of the homogeneous stress.  This is simply done to 

permit an easy visual comparison of the curves to be made.  It may also be noted that the surface is 

actually in compression for the area closest to the crack face.  Secondly, the stress in the concrete does 

not actually reach the stress calculated for a homogeneous section.  There is thus no absolutely clear 

definition of So, as is assumed in all theoretical equations for predicting cracking.  This is not 

necessarily a critical point but it may be worth remembering that So is an effective value rather than an 

absolute one. 

 

Figure 8 shows the variation in the deformed shape of the free end over the height of the crack from the 

bar surface to the specimen surface. Quantitative comparisons cannot directly be made in this case as 

the geometries of the available experimental specimens are somewhat different to that analysed.  The 

deformation at the surface in Figure 8 corresponds to a crack width of 0.0019 in. [0.047 mm]. 

 

Analyses have been carried out for different covers and Figure 9 shows the calculated crack widths as a 

function of cover. 

 

It will be seen that crack width decreases with a decrease in cover.  The decrease is not linear as 

suggested from the experimental data (2, 3 and 4), however, certain factors need to be borne in mind.  

The finite element analyses are elastic and therefore any specimen having a geometrically similar 

cross-section to the one for which the crack width has been calculated will give a crack width which 

can be calculated by direct scaling from the previously calculated width.  Thus, for example, the crack 

width for any specimen with a value of c/ of 2.5 will lie on a straight line joining the point for c/ = 

2.5 to the origin.  This applies for any other value of c/.  Thus, all results for any specimens with c/ 

in the range 1 to 2.5 will lie between the two dashed lines drawn in Figure 9.  If a relatively random set 
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of tension specimens are analysed, the result, when plotted on a graph such as Figure 9 will, to the 

engineering eye, be accepted as giving a linear relationship between cover and crack width with some 

relatively small level of scatter. 

 

Figure 10 aims to make an approximate quantitative comparison between calculated and experimental 

crack widths.  The test specimens, from Farra and Jacccoud (6) were 3.94 in. [100 mm] square and 

reinforced with a single axial 0.79 in. [20 mm] bar.  The cover was thus 1.57 in. [40 mm] and results 

from an analysis for 1.57 in. [40 mm] cover have been used in the comparison.  It should be 

remembered, however, that the experimental specimens had a square cross-section whereas this 

analysis considered a circular cross-section.  It will be seen that the analysis underestimates the 

maximum crack width by about 30%.  This is to be expected as no account has been taken in this 

analysis of internal failure (slip or internal cracking) which, as has been discussed earlier, must occur 

and which will reduce the stiffness of the concrete in tension.  This will be considered further later.  

 

 

It seems likely that this initial simple analysis gives a lower bound indication of the deformation of the 

tensile concrete and hence the estimate of the crack width.  In reality, concrete in tension is not 

absolutely elastic-brittle but will undergo some plastic deformation before rupture.  This will result in 

the actual deformation of the concrete being greater than that calculated on the assumption of elasticity.  

Additionally, a short term value has been used for Ec.  There is actually likely to be some creep during 

the test which would result in further deformation of the concrete and steel and hence higher calculated 

crack widths.  Depending on the effect of these two factors, the calculated width could be closer to the 

experimental values. 
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Overall, the analysis seems to have been very successful in predicting the general qualitative behaviour 

of axially reinforced specimens. 

 

ANALYSIS OF THE TENSION ZONE INCLUDING INTERNAL CRACKS 

As mentioned earlier, some form of internal failure must take place over the whole of the length So 

from a very early load stage.  There are two mechanisms which are commonly proposed for this 

internal failure: slip along the steel-concrete interface and internal cracks forming at an angle to the 

axis of the bar.  Slip is the most common mechanism invoked and has been used as the basis for many 

crack prediction theories.  The internal cracking mechanism was first illustrated by Goto (7) and has 

recently been elaborated somewhat by Beeby and Scott (3).  It is Beeby and Scott’s model which will 

be investigated in this paper (it is believed that there are plenty of advocates of the slip model who can, 

if they wish carry out further modelling of this option).  It needs to be noted that the type of modelling 

which will be attempted here will not prove that a particular model is the actual behaviour; at best it 

can simply show that the particular model gives a reasonable simulation of reality. There may exist 

other models which are as good or better.  It could, however, show that a particular model was 

unreasonable. 

 

As before, an axially symmetrical specimen has been chosen for the analysis.  Initially, the analysis 

will be carried out on a specimen the same basic size as that used to produce the results detailed in 

Figures 7 and 8. However, it will now also model a number of internal cracks.  The length of the model 

specimen has now been doubled to 11.81 in. [300 mm] partly because the length So was expected to be 

greater than in the case with no internal cracks and partly because it was felt that the length used in the 

earlier analysis may have been slightly short for the largest cover. The number of cracks, the angle of 

the cracks to the bar axis and the length of the cracks is somewhat arbitrary but is based on photographs 

from Goto (7) and Otsuka and Ozaka (8) and the analysis presented in Beeby and Scott (3). 
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Experimental work by Goto and others suggest that internal cracks form at each rib on the bar.  The 

spacing used in the model analysed here is rather larger than the rib spacing for reasons of practicality. 

An angle of 60o to the axis of the bar was chosen, although this angle could only be approximately 

maintained as the basic grid of 5 mm did not permit exactly 60o to be maintained for all cracks.  

Furthermore, the aim was to use a linear decrease in crack height with distance from the crack face.  

Again, the 0.20 in. [5mm] grid meant that this could only be achieved approximately. The elastic finite 

element model used is illustrated in Figure 11 and 12.  Others have carried out analyses aimed at 

studying internal cracking (for example, Gerstle and Ingraffea (9)). The difference between these and 

this analysis is that most of the other analyses have attempted to study the development of the internal 

cracking as a function of applied load whereas, in this study, in order to be able to study a larger range 

of variables, a crack pattern has been assumed. 

 

The results from the analysis are shown in Figures 13 to 18. 

 

Figure 15 shows a number of interesting changes from the stress results shown in Figure 7 resulting 

from the element without internal cracks.  Firstly, the relationship between the average stress and 

distance from the crack is much closer to linear.  It now models more closely the experimental result 

shown in Figure 4.  

 

The deformed shape of the free end (Figure 16), which is actually a tracing of the FEA graphical output 

(Figure 14) with the elements and nodes removed for clarity, is now possibly less similar to that 

obtained for the specimen without internal cracks and to that of the experimental specimen but it is still 

reasonable.  The surface deformation corresponds to a crack width of 0.0031 in. [0.08 mm]; 60% 

greater than that obtained for the specimen without internal cracks.  This agrees closely with the 
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experimental results, as can be seen from Figure 17 which shows the same data as used for Figure 10 

but with the calculated line shown for the analysis with internal cracks. 

 

The predicted effect of cover is shown in Figure 18, where it can be seen that a reasonably linear 

relationship is predicted between cover and surface crack width. However, there is some scatter in 

these results. This is thought to be due to the difficulty of modelling absolutely geometrically similar 

internal cracks in the analyses for the various covers.   

 

A further assessment of the performance of the model can be performed by considering the work by 

Broms (10) and Taylor and Beeby (11).  Broms (10) carried out a series of tests on short prisms and 

measured the longitudinal extension at various stress levels in the reinforcement.  Results are presented 

in (10) for a circular cross-section specimen, 6 in. [152 mm] in diameter and 8 in. [203 mm] long with 

a central 1 inch diameter bar.  An elastic analysis has been carried out for this specimen and Figure 19 

shows the experimental and calculated results for two levels of stress.  The experimental results have 

been scaled from a figure in Broms’ paper. It will be seen that, in this case, the experimental results 

exceed the calculated results by about 20%.  However, the general trend of the results is well reflected 

by the calculations.  This is not in absolute agreement but it is probably within the range that could be 

covered by judicious adjustment of the model.  

 

A cylindrical specimen was tested by Taylor and Beeby (reported in (11)) where the overall extension 

of a 5.91 in. [150 mm] diameter specimen with an axial 0.87 in. [22 mm] bar at various distances from 

the bar surface were measured. This has been analysed and the extensions scaled off the figure 

presented in (11).  Figure 20 shows the measured extensions compared with the FE calculations for two 

levels of steel stress.  Agreement between experiment and calculation is slightly better than for Broms 

in Figure 19, though the calculation, again, tends to underestimate the measured results. 
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The introduction of the internal cracks (Figures 12 to 14) has, in general, resulted in an improved 

agreement with the experimental behaviour and does suggest that the internal cracking model is a 

reasonable model for the behaviour of tension zones.  The analysis is clearly capable of further 

refinement and has only been carried far enough to demonstrate its inherent reasonableness. 

 

DISCUSSION 

Elastic analyses 

Two basic analyses have been described in this paper.  In the first the concrete is considered to remain 

elastic and uncracked and complete bond is assumed between the reinforcement and the concrete.  In 

the second, a pattern of internal cracking has been assumed, based on the findings of Goto (7).  In 

neither of the analyses is any form of bond-slip relationship assumed and so bond-slip can have no 

influence on the results obtained. 

 

In the first analysis (without internal cracking) it was expected that the predicted crack widths would be 

less than obtained experimentally, and this proved to be the case.  Nevertheless, the analyses were not 

trivial and the results illustrate a significant point which has commonly been ignored.  If a shear stress 

is applied to a material then shear strains and displacements must occur.  Bond stress is simply a shear 

stress and therefore the concrete surrounding a bar in the region of a crack must undergo shear 

deformations.  Though we have not seen this explicitly stated, the classical theories of cracking which 

lie behind many crack prediction equations implicitly assume that this shear deformation is negligible.  

The analyses show that this is not so; the elastic shear deformation of the concrete in the analyses 

reported here account for around two thirds of the crack width.  Had other material factors such as 

creep or inelasticity of the concrete in tension been taken into account in the analyses, the shear 

deformations and hence their contribution to the crack widths would have been even greater.  This 
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substantial contribution of the shear deformation of the cover concrete seems inescapable and suggests 

that any approach to the prediction of crack widths which ignore this are fundamentally flawed. 

 

In the second analysis, the output from the model with internal cracks generally agreed with the 

experimental data, where comparisons could be made.  This suggests that the internal cracking model 

of behaviour can provide a good model of cracking behaviour.  It does not prove that the mechanism 

accommodating excess tensile strains above those which the concrete can support in tension is internal 

cracking; it shows that it is a viable alternative to the bond-slip model and should not be dismissed. 

 

The analyses carried out are somewhat limited and can be considered to make a prima facie case for the 

reasonableness of the internal cracking model rather than a fully developed analytical study.  Some of 

the more obvious limitations of the model are given below. 

 Circular cross-sections are analysed not square or rectangular ones. 

Due to difficulties in manufacture, very few circular specimens have been made and tested 

so it is not possible to compare the analytical results rigorously with test results which are 

almost all from specimens with square or rectangular cross-sections.   

 Location and size of internal cracks is somewhat arbitrary. 

As mentioned in an earlier section, no attempt has been made to refine the form of the 

internal cracking.  From the existing experimental evidence, the pattern assumed seems 

reasonable but it cannot be said to be rigorously justified. 

 Rib pattern 

By it’s nature, the axi-symmetric analysis assumes that the ribs are perpendicular to the bar 

axis and extend round the full circumference of the bar.  This is not normally so for modern 

ribbed bars where the ribs tend to be staggered.  There is also frequently a longitudinal rib.  
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The result of this is that, in reality, the pattern of internal cracks may be considerably more 

complicated than is modelled in this analysis. 

 The spacing of the internal cracks, which would be expected to follow the spacing of the 

ribs, is rather too large in the model. 

 

Issues requiring further study. 

What is measured when crack widths are being investigated is the crack width on the surface.  It is 

found that the surface crack width is strongly dependent on where the cracks are measured relative to 

the position of the reinforcement.  If the cracks are measured at points on the surface directly over the 

bar, they are found to be substantially smaller than if they were measured, say, close to the corner of an 

axially reinforced prism.  The variation is less in situations where there are multiple bars and the crack 

width over the bars is compared with that at mid-spacing.  This behaviour is illustrated in Table 1, 

containing data from (12). 

 

This effect seems perfectly rational for crack widths resulting from shear deformation of the concrete; 

the shear displacement will increase with increasing distance from the bar in any direction.  Since the 

corner of the specimens used in Table 1 are further from the bar than a point directly over the bar, the 

deformation will be greater and the crack width larger.  This effect was recognised by Broms and in the 

work carried out at the Cement and Concrete Association.  It is implicitly included in the ACI code 

formula and taken into account directly in the UK code. 

 

The analyses performed here have been exclusively concerned with members subjected to pure tension.  

There is evidence that flexural members behave rather differently.  Studies by Beeby (13) showed that, 

in shallow members (such as slabs) the depth of the tension zone has a significant effect on the crack 
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width.  This is explicitly taken into account in the UK code (see below) and is also recognised in 

Eurocode 2 (14). 

 

Although it is hoped to do so in the future, these effects have not been investigated in this study 

because the finite element package used did not permit the analysis of three-dimensional specimens 

(with the exception of axi-symmetric situations). 

 

Issues relating to the development of a valid design formulae for crack width prediction. 

It will help further discussion if a brief outline is given of the development of crack theories and code 

provisions. 

 

The earliest developed theory of cracking assumed that the widths of cracks accommodated slip 

between the bar and the concrete.  The theory ignored any contribution to the crack width from the 

shear deformation of the cover concrete. To develop equations it required assumptions to be made 

about the development of the bond stresses as a function of slip.  Many different assumptions were 

considered but all resulted in a basic equation of the form: 

 

    w = kfct/   (2) 

 

where  w    = crack width (variously defined) 

 k     = a constant  

 fct    = the tensile strength of the concrete 

      = strain (variously defined) 

 = the bar diameter 
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     = reinforcement ratio (variously defined) 

 = bond strength 

 

Many design provisions have been based directly on this equation, including those in the CEB Model 

Code 90 (15). 

 

In 1965 Broms (16) and Broms and Lutz (17) published a radically different theory which assumed that 

the crack width arose entirely from the shear deformation of the cover concrete.  He developed the 

formula: 

 

    wav = 2ts    (3) 

   or: wmax = 4ts 

 

where wav     =  the average crack width 

 wmax   =  the maximum crack width 

t         =  distance from the centre of the bar to the point on the surface where the crack width is 

considered. 

 s        =  average strain of the steel.      

 

For multiple bars, t was modified to te , an effective distance, which is defined, for bottom cracks, as 

3(tbA) where tb is the distance from the bottom of the beam to the centre of the lowest layer of bars 

and A is the area of concrete immediately surrounding the tension reinforcement.  This formula, along 

with many others was tested against the available crack width data by Gergely and Lutz (18) and 
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shown to be the best available at the time.  The formula has formed the basis of the ACI code crack 

width control provisions ever since. 

 

At the same time as the work being carried out at the University of Illinois by Broms, Lutz and 

Gergely, a major series of tests were carried out at the Cement and Concrete Association (C and CA) in 

the UK.  The first series of tests consisted of 105 beams and the results were with the publishers at the 

time that Broms’ paper appeared.  The paper (19) concluded that crack width could be predicted by the 

formula: 

 

    wmax  = 3.3acrm    (4) 

 

where wmax  =  the maximum crack width 

acr      =  the distance from the point where the crack width is being considered to the surface of 

the nearest bar. 

m     =   the average strain at the level where the width is considered. 

 

It will be seen that, while acr is slightly larger than t in Broms’ equation and that the equation aims to 

predict the maximum width rather than the average, the C&CA and Broms’ basic formula are almost 

the same.  Like Broms’ theoretical approach, the formula assumes that there is no bond failure or slip at 

the bar-concrete interface and that the crack width results entirely from the deformation of the cover 

concrete. The C&CA work was extended over the following few years by Beeby (20), (21) and (22) 

resulting in modifications to deal with bar spacing and the effect of the depth of the tension zone.  It 

was recognised that some mechanism was necessary to accommodate the strains in the concrete in 

excess of the tensile strain capacity of the concrete and it was proposed that the form of cracking 
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identified by Goto provided that mechanism.  The resulting formula was simplified somewhat and has 

been used in UK codes since 1972 (23).  This formula is: 

 

    w = 3acrm/{1 + 2(acr – c)/(h – x)}  (5) 

 

where  c   =  the cover to the face of the member where the crack width is being considered. 

 h   =  the overall depth of the section 

 x   =  the neutral axis depth (depth of the compression zone) 

 

Also at a similar time, Ferry-Borges (24) developed a formula which combines the theoretical ideas 

behind the classical bond-slip model and the shear deformation models.  His formula is: 

 

     sav = k1c + k2/   (6) 

     wav =savm 

 

where sav  =  the average crack spacing 

The term k1c is justified in (24) by the following statement: 

 

“The need to consider the influence of the thickness of the cover, c, is easy to understand.  In fact, 

even if perfect bonding between concrete and steel existed, the mean distance between cracks 

would not be zero but proportional to c.” 

 

This formula was adopted in the CEB Model Code of 1978 (25) and also by Eurocode 2 (14). 
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The object of this survey of approaches to crack width calculation is to point out that there are three 

basic approaches used in codes: 

 

(a) The assumption that the crack width arises purely from slip.  This is used in a number of codes and, 

notably, in MC90 (15). 

(b) The assumption that there is no significant slip and that the crack width arises entirely from the 

deformation of the concrete around the bar.  Bond and slip do not feature in formulae derived on 

this basis. Strains beyond those supportable by concrete in tension are accommodated by a 

reduction in the stiffness of the cover concrete by internal cracking.  This is the case for the UK and 

ACI codes and the codes of any country that basically follow either British or American practice. 

(c) The assumption that the crack width arises from a combination of slip and deformation of the 

concrete.  This is true of MC78 (25) and Eurocode 2 (14) and will become the case for all countries 

which either adopt Eurocode 2 or base their national codes on Eurocode 2. 

 

From this investigation, it is apparent that a significant proportion of the crack width must be due to the 

deformation of the concrete surrounding the bar. Therefore, (a) above is not tenable as a basis for a 

rational crack prediction formula; (b) or (c) are tenable depending on whether or not slip plays a 

significant role.  The paper does not aim to show which of these possibilities is closest to the truth, 

merely that the concept of crack width being a function of the deformation of the cover concrete is 

reasonable. 

 

CONCLUSIONS 

In this paper, a number of simple elastic finite element analyses of the concrete in tension surrounding 

tensile reinforcement, in members subject to pure tension, are described and the results compared with 
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the behaviour of actual tension specimens, as revealed by experiment.  The study leads to the following 

conclusions. 

 

1. The analyses show clearly that cover must be an important factor in any approach to the calculation 

of crack widths.  This effect arises from the shear distortion of the concrete between the bar surface 

and the concrete surface. 

 

2. Experimental results show clearly that there must be some form of internal failure in the region of 

the bar over the whole length over which the crack influences the stress distribution.  Two 

mechanisms have been proposed for this internal failure: slip along the bar-concrete interface and 

internal cracks of the form proposed by Goto (7) and elaborated by Beeby and Scott (3).  In this 

paper Beeby and Scott’s model is analysed and is shown to be able describe the experimental 

behaviour of tension members effectively. 

 

3. The results from this study and those described in References (1) to (4) suggest the possibility of a 

model for tension zone behaviour under service loads which is, in principle, simpler and more all 

embracing than current models.  This can be described by the following two assumptions: 

 

(a) Concrete in tension behaves in an elastic-brittle manner 

(b) Force is transferred between ribbed reinforcing bars and concrete by the mechanical action of 

the ribs.  It is assumed that there is no bond between the ribs and no slip past the ribs. 
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Table 1-Comparison of crack widths at centre and near corner of axially reinforced tension specimens 

(from (12)) 

 

 

 

 

 

 

 

 

Specimen      B          Mean values of w/           5% values of w/ 
    a     b     b/a     a      b      b/a 

    Z2      80      76     113     1.48     174     203     1.17 

    Z6     130     104     171     1.64     253     354     1.40 

    Z7     180      91     254     2.79     231     535     2.32 

    Z9     230     101     259     2.56     282     580     2.06 

  

Note:  B, a and b are in mm; 1 mm = 0.0394 in. 

 w/ = average crack width / average surface strain. 
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Fig. 1-Load – Deformation response of Specimen 100T12 (Figure taken from (3)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2-Stiffness of element as a function of number of cracks for Specimen 100T12. 
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Fig. 3-Specimen T16B1 - Reinforcement strains along the bar at various loads. 

      (1 kN = 0.225 kips: 1 mm = 0.0394 in.) 
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Fig. 4-Concrete stresses at right-hand end of Specimen T16B1. 

           (1 MPa = 145 psi: 1 kN = 0.225 kips: 1 mm = 0.0394 in.) 
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Fig. 5-Relationship between So and cover. 

           (1 mm = 0.0394 in.) 
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Fig. 6-Schematic illustration of situation analysed. 
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Fig. 7-Variation in calculated stresses in concrete with distance from free end. 

           (1 MPa = 145 psi: 1 mm = 0.0394 in.) 

 Note: S*0s = surface spacing; S*0m = mean spacing. 
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Fig. 8-Variation in calculated crack width with distance from bar surface. 

           (1 mm = 0.0394 in.) 
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Fig. 9-Variation in maximum surface crack width with cover. 

           (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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Fig. 10-Maximum crack widths from Farra and Jaccoud specimens N-20-20 (6) compared with FE 

analysis. (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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Fig. 11-Finite element model of axially reinforced tension specimen with internal cracks. 
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Fig. 12-Axi-symmetric model created using OASYS – GSA software. 
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Fig.13-Axi-symmetric model - detail of assumed crack pattern. 
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Fig.14-Axi-symmetric model – deformed state. 
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Fig. 15-Concrete stresses calculated by finite element analysis for specimen with 7 internal cracks. 

             (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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Fig. 16-Calculated deformation of specimen with 7 internal cracks. 

             (1 mm = 0.0394 in.) 
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Fig. 17-Maximum crack widths from Farra and Jaccoud specimens N-20-20 (6) compared with finite 

element analyses with- and without internal cracks. (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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Fig. 18-Predicted maximum crack widths as a function of cover for analyses including internal cracks. 

             (1 mm = 0.0394 in.) 
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Fig. 19-Comparison of calculated and measured crack widths for Broms’ specimen T-C-5 (10). 

             (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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Fig. 20-Comparison of calculated and measured overall extension for specimen reported in (11). 

             (1 MPa = 145 psi: 1 mm = 0.0394 in.) 
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