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Numerical | mplementation and Test of the Modified Variational
Multiconfigurational Gaussian Method for High-dimensional

Quantum Dynamics

Miklos Ronto and Dmitrii V. Shalashilin
School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Abstract

In this paper a new numerical implementation and a test of the modifetional
Multiconfigurational Gaussian (VMCG) equations are presented. In vVMCG the waeéohf is
represented as a superposition of trajectory guided Gaussian Coherent Statestane derivatives
of the wave function parameters are found from a system of lineati@ug which in turn follows
from the variational principle applied simultaneously to all wave functioarpeters. In the original
formulation of vMCG the corresponding matrix was not well behavedaaded regularisation, which
required matrix inversion. The new implementation of the modified vMCG equaserss to have
improved the method, which now enables straightforward solutiomeodlitear system without matri
inversion, thus achieving greater efficiency, stability and robustié=e the new version of the
VMCG approach is tested against a number of benchmarks, which previesl been studied by
split-operatoy Multiconfigurational Time Dependent Hartree (MCTDH) and Multilayer MCTDH (ML-
MCTDH) techniques. The accuracy and efficiency of the new implementftioMCG is directly
compared with the method of Coupled Coherent States (CCS), another tieclvhigh uses trajectory
guided grids. More generally we demonstrate that trajectory guided Gaussian based methods are
capable of simulating quantum systems with tens or even hundréégrees of freedom previously
accessible only for MCTDH and ML-MCTDH.

I INTRODUCTION

Exact analytical solvability of the time-dependent Schrddinger-equation $tensy with large
number of degrees of freedom (DOF) is limited to a few simple modkekreTare two problems
which make multidimensional quantum mechanics difficult to deal.witfirst, determining the
potential energy surface is a complicated problem, which is also present in classieallan
dynamics. Recently substantial progress has been'radeh various forms of PES parametrisations
and fits. The second problem is the scaliigguantum mechanics with the number of degrees of
freedom (DOF): the number of quantum states increases exponentiallyheitsize of quantum
system. Impressive progress has been made in calculations of qustatie®m for the systems
comprised of large numbers of coupled vibrational mbsi@se of which can be very “floppy”® 4 In
dynamical calculations when evolution of the wave packet is not restricted to a certain-atiea
“exponential curse” of quantum mechanics is perhaps the most severe. If a static grid of [ states is used

for a single-mode, a problem of DOF requires
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n=[m (1.2)

grid points making the challenge of exponential scaling almost insutatdan

In the last few decades a family of concepts based on trajectory ge@essians, which rely on
locally defined adaptable basis sets, gained considerable importance. A numbethotls both
semiclassical and formally exact have been developed. The list of mostanipechniques can be
divided into two categories. Semiclassical methods include but not limithe tarly application of
Frozen Gaussiahsand semiclassical Herman-Kluk propagatdr For more details and new
developments of the semiclassical Gaussian based methods seé.relvidly quantum techniques
which at least in principle can be converted to fully quantum result includiéipd Spawning,
Gaussian Multiconfigurational Time Dependent Hartree (G-MCY¥RHCoupled Coherent States
CCS*13 variational Gaussian approdttand variational Multiconfigurational Gaussians (VMEG)
All these techniques use grids (or basis sets) of trajectory guided FromssidbaCoherdrStates,
which follow the wave function thus economising the basis set sizeothénadvantage of such
techniques is that a randomly sampled basis can be used, which is adweniageigh dimensional
problems because Monte Carlo techniques scale with dimensionality much thetter(1.1).
Importance sampling, which is the crucial part of all above methods, ath@nsasis to be built only
around the dynamically important phase-space region. With sucbmasaimpling the Gaussian based
methods can potentially scalera$, although in reality the scaling is often worse than that. However,
even with the ever increasing computational power, the methods based dorrgjaced Gaussians
sometimes suffer from two difficulties: scaling and robustness.

Variational Multiconfigurational Gaussial{s!® (vMCG) is potentially one of the most efficient
methods of high dimensional quantum dynamics. In vMCG theewarction is represented as a

superposition of N trajectory guided Gaussian wave packets

@) = ) a®IPa(®),a1©) = ) an(®)lza®) (1.2)

n=1,N n=1,N
The time evolution of the wave function can be determined from tlegtieaal principle. It yields time

derivatives of its parameters which can be obtained from a system ofdqestions

Da=0»b (2.3)
wherea is the vector of wave function parameters, which includes both the adeslit, and all

positionsz, of N coherent states (each one of them M-dimensmnal z,(ll), ...,z,SM)) andD is the
matrix which can be derived for example using the elegant formalism gedeloy Kramer and
Saracent (See Ret’ for more details). MatrixD in (1.3), as well as similar matrices in other
variational approach&s?!, is often numerically nearly singular and has to be regularised. mEtyise
done by matrix inversion, during which the lowest eigenvalueP afre increased by a small and
somewhat arbitrary regularisation parameter so that the inverse matgxndbhave extremely large

elements. As a result the equation is eventually written as

a=D""b (1.4)
which is of course equivalent to (1.3) from the formal point ofvwwiBlumerically however matrix

inversion is much more expensive than the solution of systéimeaf equations (1.3).
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In a recent papé&rthe equations of vMCG were modified and writtenaifiorm similar to the
equations of the Couple Coherent States (CCS) tecHAjgumther method based on trajectory guided
Gaussians. In CCS special efforts were made to minimise coupling bettvecamplitudes by making
the coupling matrix small, smooth and sparse. CCS introduces gpnesial factor to smooth out
the rapid oscillations of quantum amplitudes. It appears that this simple tikk aiso for yvMCG and
makes matrixD sufficiently well behaved. In the tests of the vMCG equatiopeesented here we
were able to solve the equations (1.3) without inverting the matniceSour version of vMCG is
closely connected to the CCS theory we also compare accuracy and efficfehe two techniques.
With the same basis size VMCG is more accurate simply because it employs anat@nal
parameters, as the time dependence of all the parameters in (1.2) are ddteemationally. For the
same number of variational parameters however the accuracy ofdhedniques is close and both
methods show similar levels of robustness and stability.

In the Chapter Il we briefly sketch our version of the vMCG thewhjch in the original papéf
was presented for 1D case only. Here we present the theory in metiglonal form, which is
conceptually simple but involves long algebra, given in the AppeitlixChapter Il provides details
of the numerical tests. First, our implementation of vYMCG was testesinople Morse oscillator
because a 1D problem allows to visualise complicated variational trajectories. Then Hensn-Heile
(HH) model was investigated and the accuracy and efficiency of vYMCG wagsacednwith those of
CCS, using MCTDH benchmark obtained previously for 2D, 6D, 100 &8D Henon-Heiles
system&. To demonstrate the limitations of vMCG and its scaling with the numbeegrees of
freedom we also performed CCS calculation for 1458D model previstgljed in the réf by ML-
MCTDH, and show that vMCG calculation for a system of such size iseastble but CCS yeilds a
good result We also use this example to make some general remarks about the aendacy
convergence of vMCG, CCS and MCTDMIL-MCTDH method$* of high-dimensional quantum
mechanics

Throughout this paper natural units were used With 1, and the Coherent States were set to have

w=1landm=1.

Il THEORY

2.1 Coherent states

Coherent state (CS) based approaches gained considerable importance in molegolasdys they
are minimum uncertainty states and Gaussian-functions they are compatibleothi semiclassical
and quantum mechanical descriptions. A single-mode coherent &tada element of the phase-space

I' = {(q,p)} where gand pare canonically conjugated variables. Using phase-space coordinates a 1D

_J?+i 1
2229w |2y?

coherent state € C can be written as

(2.1)

and



*—\F 1T (2.2)
N R A

withy = % where z and"zre eigenstates of the annihilation and creation operators:
dl|z) = z|z) (2.3)

(z|at = (z|z" (2.4)

A multidimensional CS is a product of m single-mode CSs

m (2.5)
jz:0) = | [12%@)
k=1

and represents a point in M-dimensional phase sfipee{(qn, Pm); m = 1,2, ..., M} The overlap of

two M-dimensional CS’s

. Z,Z] Z;Z] (2.6)
Qi = (z|z)) = exp <zizj - % —%>

M
N H(Zi(k)|zj(k))

k=1

M ) ? |Z(k)|2
_ (k) (k) _m_ j
=| |exp| z "z 5 5

k=1
is a product of M 1D overlaps. Although continuum basis of cohestat¢s is overcomplete in
numerical calculations we always deal with a finite set of CSs whichysneptesent a non-orthogonal

basis with the overlap matrix (2.6). In this finite basis of Coherent Statetetiidy becomes

I= Z |z;)Q 71 (z;] 2.7)
Lj
whereﬂ‘ll-]- are the elements of the inverse overlap matrix of CSs. The idenTjyig2 discretisation

of that of the continuous manifold covering all z-space wiigsethe product of M 1D integral

identities

Moo (2.8)

I= H (Eflz(k)xz(k)l dzz(k)>

with the single-mode integral measulez = %. For more details about CS notations refer to'Ref.

With the coherent state representation any time-dependent wave functiors &odjitgate can be
written up in coherent state basis in the general form (1.2). In coordamésentation a CS is simply

a multidimensional Gaussian wave packet with the following ansatz

m . .
Y\% 14 l p;q;
(x;|z)) = (E) exp (_E(Xi -q)"(x;—q) + gpj(xi -q)+ #) (2.9)
Matrix elements of an arbitrary operator can be found via its norrdaremt form: 0(at, a): in
which the powers of the creation operator precede those of the annihilptoatas ifa’,a are

replaced by corresponding z or its complex conjugate and the result is multiptiesl dverlap



(z|:0(a%,a): 12"y = (2|2")0py4 (2", 2) (2.10)
This is also applicable to the single mode Hamilton operators:

(Zl: H(d-r’&): |Z’> = (lel)Hord(Z*:Z) (211)
The index “ord” simply reminds about the terms which originated from commuting af,a. The
Hamilton operator of the system is the sum over the dimensiontheofndividual single-mode

Hamiltonians and their coupling terms:

-0 (at",a%):1z) = @ Hora (2], 2)) (2.12)

2.2 Dynamics

Time dependent variational principle (TDVP) provides a generic way to derive véoions of the
time-dependent Schrodinger-equation. Several formulations of TDVP®e%ist our description here

is based on the approdélvhere TDVP is presented in a form similar to the principle of least action i
classical mechanics and defining equations of motion through Euler-lgegeguiations. According to
the principle of least action, the equations of motion can be obtained from tteen@x of the

functional

ty
o= f Ae, ", @, @)dt (2.13)
t

1
where the Lagrangian is
A= ()i, — Hw () (2.14)
with the differential—operatoﬁt acting separately on bras and kets. Any state v¢@tprcan be
rewritten in coherent state form (1| (a(t))) = |¥(a(t), z(t))), and therefore the Lagrangian can be

reparametrised with amplitudes and coherent states phase space pasitions

Ala,a",a,&") = A(a,z,a",2",4,2,0",2")
“'No lea —aa
=3 ijlaia; —ajaq

ij

1
+ ajq; <z;‘zj —Zjzj— E(z}‘zj +2jz; — 2;2; — z]z;) + 2iH0rd(zi*,z]-)

(2.15)
Wherea = {qa, z} is the vector of the wave function parameters which includes all Nx M comizooie
the M-dimensional complex vectazs.; y describing the phase space positions of all basis coherent
states and N their amplitudeg.; . Quantum equations of motion can now be written as standard

Lagrange equations for the wave function parameters

— =0 (2.16)

which after introduction ofa conjugated momentum, = 2 Z—; can be presented in the form of

Hamilton’s equations*®



D& = o)

2.17
e (2.17)

omg

whereD is the matrix with the elementy; =

aa*i- and(H) is the effective Hamiltonian obtained from
J

the Lagrangian (2.14) in the usual way(#8) = T, a — A. The operato(#f) should not be confused
with the actual physical Hamiltonian of the system. The Lagrangiamd the effective Hamiltonian
(#) are simply a tool to formally work out the quantum equations of moti/e have used Greek
lettersm, o, A to denote general momentum, action and Lagrangian associated withistibguish
them from p, S and L the momentum, action and Lagrangigheofctual trajectory of a physical
coordinate g. More details about the equations and their derivation can be fouamdinn Appendix

Al. Here we only point out that equatidhbave been written not for the oscillating amplitude

a; = d;exp(iS;) (2.18)
but for smooth preexponential factdy, wheres; is the action along the trajectory. As a result matrix
D in (2.17) has many small elements and therefore sparse and smooth.

In vYMCG at each time step one has to find the derivatives of tlzenpéers from the system of
coupled Nx (M+1) linear equations (2.17), where N is the basiszeetisd M is the number of degrees
of freedom. Coupled Coherent States (CCS) is another method, wtiises exactly the same
parametrisation of the wave function (1.2) as vMCG. The difference is tt@€8 the trajectories
z,(t) are predetermined and calculated from essénticlhssical equations of motion. Only N
amplitudesa,, (t) are found from a quantum variational principle. As a result thieraysf linear
equations for the derivatives @f(t) is much smaller and much simpler than in vMCG. Malix
used in VMCG has the size of [Nx(M+1)]x[ Nx(M+1)] and includkat of CCS as a small NxN
block. The elements of this small Nx N matrix are simply those of tleglap matrix multiplied by the
exponentials of the classical actions. CCS trajectories are driven by a classidtbriamwith
guantum correctiond,,;, EQ.(2.12), which is simply the expectation value of the classical
Hamiltonian with the Gaussian CS. The mathematical structure of thmeéttmds has been compared
in'”. In this paper we compare their computational cost and accuracy. Astigdince vMCG appears
more expensive than CCS. However, as it will be shown below that @&wbrks with a smaller

basis than CSs, the computational cost of the two related methods is @olepar

[Il NUMERICAL IMPLEMENTATION AND RESULTS

3.1 Basis set sampling

First we have tested vVMCG in the form givei’ion the examples of 1D harmonic and 1D Morse
oscillators. Then we employed multidimensional Henon-Heiles model in RD,16D, 18D and
1458D The results were compared with CCS and with the benchmarks provitied eaMCTDH??
and ML-MCTDH?, Since both CCS and vMCG utilise the grids of trajectory guided cohstiatas
we also compare their accuracy and efficiency. In both CCS and vM@@dsethe initial propagating

wave function is itself a coherent state



¥(0)) = |z,) (3.1)
In both approaches the sampling of the Gaussian Coherent State basjsimportant andve have
used the same techniques suggested previousiyarselect initial conditions for the basis g&f).
The simplest way to bias the basis to the dynamically important region vibeultb use the

“compressed swarm”. The initial phase space positions of G589 have been chosen randomly from

a Gaussian distribution centred around

f(zj) = nimexp (—6|zj — zo|2) (3.2)

Then the initial amplitudes g#;) are calculated by applying the identity (2.7) as follows

#O) =D @ 50) =) [50))0 iz 0)¥(0) (3.3)
j ij
In (3.2) the “compression” parameter § determines the degree of bias of the basis set to its agntre
The smalleris the basis set, the more compressed the distribution should be. Pathisetbosen

such that the norm of the wave function

WO =) (@020 iz O)¥(O) ~1 (3.4)
L
is close to 1, which is not the case for a small basis which is not “compressed” well enough. The norm
(W|¥) was always kept in the range between 0.990 and 0.995. With tipfirgadiscussed above, the
two methods (CCS and vMCG) can be compared on equal footing.ahtisg described above is
called Sampling 1 (S1) and used for the majority of the tests.
We also tried another sampling called S2, where the propagating @Y = |z,) was

included into the basis, such that the first basis function is

12j1) = |2,) (3.5)

The rest of the basis was chosen randomly as in the samplihig &flmpling S2 the initial conditions
for the amplitudes aré; = 1ifj =1 andd; = 0ifj # 1. These conditions are further described in
Appendix A2.

Another type of sampling strategy (S3) was used for the 1458DnHdeiles model where
only two modes are excited initially and the rest of the modes are act like a “bath”. For a
multidimensional initial wave functioh}'(")(O)) for every mode k a different compression parameter
5% can be chosen, therefore different compression can be applied fociteel &xystem” modes and
for the “bath” modes. This allows to treat more important modes with less compression arefdte
with less bias. This sanip} strategy is called “pancake” distribution and has successfully been used
for CCS previoushi* 25 In the 1458D Henon-Heiles system investigated, two adjacent moges (
andexc,) are excited in the middle of the chain for these modes no compression was epfied
sampling (i.e5©*V = §(€x¢2) = 1) For the “bath” modes the compression was applied according to

the function



o — X6+ excy\ (3.6)

2

§™ = exp 7

where parametet gives the width of the discrete Gaussian distribution. Geometrically this riedns
the compression rapidly increases for the sampling of less impobtaht modes which are far from

the excited modesxc, andexc,.

3.2 Harmonic oscillator and 1D Morse oscillator
For the Harmonic oscillator both CCS and vMCG give exact solution and their atepliand
trajectories are identical. This is due to the faet thith the Hamiltonian of the harmonic oscillator
VMCG equations are equivalent to CCS equations. The simple 1D Hamiltonian of@ddoiitator
2
p
H==—
2

with the energy parametdd, = 10.25 au, the parameter3 = 0.2209 and initial condition at

+ D, (exp(—Zﬁx) - 2exp(—[>’x)) (3.7

[#(0)) =|z,) = |qg = 5,p = 0), has also been investigated. This system has been previously used to
test CC%* 27 and other related techniques. Methods like VMCG and CCS are suited for high
dimensional problems and for a 1D problem coherent state based mdthoad have advantages
before standard techniques. Moreover if the CS basis becomes too large (wfih jisso few tens of
CSs) the overlap matrix in CCS and matix of vMCG become singular making propagation
numerically unstable. This challenge justifies using simple 1D Harmonid/lansk oscillator models

as a test problem. Also a 1D problem allows to visualise complicates vVMCG trigiectbig 1 shows

the autocorrelation function obtained by the vMCG method and compares it withf thanerically

exact Split-Operator propagation. Fig 2 shows the guiding trajectories fronGviié&hods, which are
very different from those of classical mechanics and almost classical CESdrigis. The quantum
vMCG trajectories are “pushed” by each other and by their amplitudes.

We found that for the sampling S1 the equations of vMC@roduce an accurate
autocorrelation function without matrix inversion and regularisation. $amnpling S2 when
propagation of the C&,) is included into the basis and all initial amplitudes except one are zero the
VMCG system of linear equations is not well defined and the propagatioumerically unstable.
Inspection of the matri® reveals the presence of rows and columns with all elements equal to zero
(Appendix A2), which makes its determinant zero. This has also betdl ffior the standard
implementation of vYMC®&. Propagation with the CCS method is stable for both sampling S1 and S2
For the S1 sampling vMCG propagation for 1D Harmonic and Morse oscillatoked with the same
time step as CCS and therefore the new version of yYMCG was &t eotnlias stable as CC# the
case of sampling S2 vMCG can be made free of numerical instabilitiehby r@gularising the matrix
at the first step as it has been done in thé*Refby propagating the system with CCS for a few steps

and switching back to vMCG as soon as all amplitudes become nonzero.



3.3 Henon-Helles model
Multidimensional Henon-Heiles (HH) potential with strong coupling betweenntbdes provides a
more challenging benchmark for vMCG and other methods of dilglkensional quantum mechanics.

The potential

1 m m—-1 1 3 8
V(q) = Ez q+2 Z (qiqkﬂ + §61§+1> (3:8)
k=1 k=1

is multidimensional, anharmonic, unbound and includes coupling teetmgeén the modes wittie
coupling constant = 0.111803. The vMCG calculations were compared with CCS for 2D, 6D and
10D and 18DHH systems. In the 2D case comparison can be made with the split-opesdtod,
while 6D and 10D results can be compared with the benchmark M&Tdid CCS calculations. In
the case of 18D model ML-MCTDH benchmark is availdbfer the standard HH model and the
“strong coupling” model with coupling constant twice that of the standard parameter2 x
0.111803. In addition the réf reported a calculation for 1458D Henon-Heiles model. HH model
previously was also used to test semiclassical Gaussian based tecrfitjues

For 2D, 6D and 10D models the initial conditions were the same for both QICBMAEG: the
initial state is placed d¥(0)) = |zy) =g = 2,p = 0) ...|qg = 2,p = 0) (i.e. initially all modes are
stretched and have zero momentum). Those basis Coherent States whiah $eeeoergetic that they
escape to the distance g>10 were automatically removed from the calculdtfengigures 3-8 show
the real part of the autocorrelation function (ACF) for 2D, 6D and 10D Henon-Hetkgtipb

For the 2D model the time step of vYMCG propagation was reducéd=00.01 to be able to
run it stably, while CCS was still robust wittt = 0.1 in all the cases.Therefore vYMCG can be less
stable for lower dimensional systems (1D or 2D) but reducing time shegssghe problem and it still
works well. For the basis set size used (i.e. 100) the result of vMG&ihif/\better than that of CCS.
However CCS improves if the basis is increased to 300 CSstbaththe number of variational
parameters for both methods is the same.

For both vMCG and CCS we observed similar behavio@D and 10D cases shown at the
figures 4-8. Running time was,,, = 20 with timestep ofdt = 0.1 for both cases of CCS and
VMCG. The initial norm was kept close & |¥) = 0.9905 by setting the compression parameter. For
the 10D case we compared the deviation of vYMCG and CCS from the MCTDH réswjuantify the
quality of propagation for the 10D case the deviation from benchmark MG¥atixalculated for the
first (Fig. 6-7) and the second recurrence (Fig. 8) for bot® @ad vMCG. The comparison of the
results can be seém Table 1 and Table 2 respectively. Deviation is defined as the square roet of th
integral of the square modulus of the difference between the rdal gfathe two autocorrelation
functions. The conclusion is that for the same number of variational pararbetarCCS and vMCG
perform on the same level of accuracy. In high dimensional 601@DBdcases the time step was the
same for both vMCG and CCS and vMCG performance was sufficietfitlyst and stable.

Two different18D HH systems were investigated and the results are sbovifigures 911,
which present the absolute value of the autocorrelation function. The firstnslyaté the coupling
constantt = 0.111803 as in the previous cases of 2D, 6D and 10D models, the seconu $stea

9



stronger coupling = 0.223606 increased by the factor of 20nly the moded, 8,12 and 16 were
excited | @ (0)) = [¢®(0)) = |[¢D(0)) = [¢19(0)) = |g = 2,p = 0) in both the standard and
stronger coupling cases. For 18D HH simulations running time t#ygs = 60 and the time step had
to be reduced tadt = 0.05 for CCS andit = 0.01 for vMCG. The initial norm was set with the
compression parameter to be closg#¥d¥) = 0.993. The results of the standard and strong coupling
can be seen in the Figures 9-11. Seesults were compared with ML-MCTDH simulatiéhéFig.
9a) and (Fig. 10aJor CCS 3000 basis vectors were used, while in the case of vYMCG thedbasis s
was 150 Coherent States, however essentially the same result can be olithid@@d@CSs for CCS
and 50 CSs for vYMCG (frame (b) on Figured®-so that both vMCG and CCS calculations were well
converged. The strongly coupled Henon-Heiles model isore demanding problem: after a few
oscillations the autocorrelation function decays so rapidly that it almost vanish€#g.ad the CCS
and vMCG results are shown, compared with ML-MCTDH results. Ajhaa relatively large basis
set was used 4000 CSs for CCS and 200 for vMCGQhe running time of the simulationasshorer
compared to the previous case of standard HH model. This is dine tivajectories of the basis
Coherent States escaping from the well of the Henon-Heiles potential and beingdefnmon the
propagation. By the end of the propagation only 300 CSs lefri@ the case of CCS and only 8 for
VMCG, making the basis very small. The quality of basis can be éagifpved by generating new
basis functions instead of escaping ones, but we have not done itvitkis As can be seen from the
figure 11 even a very small basis provides quite accurate result where the alatoarfunction is
not very small.

Since the HH 1458D benchmark result was available for the 1458D Henon-Hedeg&%we
endeavoured to attempt similar calculation with vMCG and CCS methodsf3ltwo cases of 1458D
HH model were investigated. In the first case, called System 1, onlyddesn#86 and 487 were
initially excited to |#“*8®)(0)) = |¥“87)(0)) = |g = 2,p = 0). In the second case called System 2
only the modes 729 and 730 were stretched ®§29(0)) = [#39(0)) = |q = 2,p = 0). In both
systems the excited modes are in the midle of the chain of coupled oscalatbfar from its ends.
Thus, our expectation is, that the results from the two exact propagationld lie very close to one
another. The difference between the two cases is that for the Systemmibdle combination in not
good. Quoting the réf System 1“represents an example of the wrong choiceof tree structure” in
ML-MCTDH. On the contrary the mode combination and ML-MCTDH tree structureddsyitem 2
is correct. Simulations of the 1458D Henon-Heiles model would be weeydonsuming for vMCG
albeit not impossible. Even a basis set as small as 5 Gaussian Coherent @dtsnelode
1458x5+5=7295 variational parameters which would require the solutiansgétem of 7295 linear
equations (1.3) for derivatives of the parameters. On the otherG@8dvas able to tackle this very
high dimensional problem, yielding the results shawnFigures 12t4 for the basis of 500CSs
sampled with Sampling S3Sampling S1 gives similar result. Fig.12 shows that CCS autocorrelation
function deviates from that of ML-MCTDH for the System 1 very quicklut agreement for the
System 2 is much better. Figure 13 indicates that for the Systemigsthe/d recurrences are in good
agreement with ML-MCTDH Unlike ML-MCTDH results from CCS for System 1 and System 2 are
identical as shown at the Figure 14. CCS deviates from ML-MCTDH at later time.
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We know from previous experience with CCS and related techniqueg thager times the quality of
CCS basis always deteriorates because a) the Coherent States run awaghrothezaand eventually
stop exchanging amplitudes, and b) CCS trajectories may guide basisarotigeplace As a result
at longer times CCS works as a semiclassical technique. Good sapfpiivegbasis set is crucial for
the efficiency and convergence of CCS and the same can be said Bli@@®tor any other trajectory
based method. MCTDH is also a short time method and it provides accurateor@guftappropriate
mode combination is found.

V CONCLUSIONS

In this paper the numerical implementation of the modified vMCG equations iseisssked. The
results are directly comped with the results obtained by CCS on equal formal footing. The tedts an
comparisons have been made for 1D harmonic, 1D Morse oscillator a2® f@&D, 10D and 18D
Henon-Heiles models. For the same basis set size vYMCG is more accuratetfeitsame number of
variational parameters the quality of vMCG and CCS propagations is simianef@ence and
efficiency of CCS has been investigated previously and the modifiedGvM@thod shows very
similar numerical behaviour in terms of convergence of results ama-cmnservation. The main result
of this paper is that for the test systems considered here our implenrenfatie modified version of
VMCG equations works without regularising and inverting the matiiix Eq.(1.3), which significantly
reduces computational costs.

It is interesting to discuss the future of various trajectory basedodsefor quantum molecular
dynamics simulations where “on the fly” ab-initio dynamics is the current trend. Mamb-initio
techniques such as Multiple Spawning (AIMS) Multiconfigurational Ehrenfest dynamics (MCE)
which is a generalisation of CCS, and “on the fly” implementation of vVMCG exisf? 33 In such
methods the potential energy surfaces are calculated by applying an elestiumtiore package along
the trajectory, which is the most expensive part of calculations. Havivey f8MICG trajectories may
therefore have an advantage over the methods which use predetermingatitaje©n the other hand
methods like CCS/MCE allow the running of trajectories one by one éndemtly from each other
which is not possible in vVMCG, where trajectories are coupled with each dtiependent
trajectories allow a detailed exploration of the dynamically relevant part of the RiESqgoactual
guantum dynamics calculation. Many electronic structure points can be datednand fit with the
modern algorithmis 2 Perhaps a combination of vYMCG and techniques which use predetermined

trajectories will provide an optimum solution in the future.

Acknowledgement

This work has been supported by EPSRC grants EP/I014508/ERf001481/1. We thank Irene
Burghardt and Graham Worth for useful discussions, Mathias Nespréimiding the MCTDH
benchmark dateHans-Dieter Meyer for providing the ML-MCTDH results and Christopher Sgsion

for useful editorial comments.

11



REFERENCES

1 J. M. Bowman, B. J. Braams, S. Carter, C. Chen, G. Q2akd. Fu, X.
Huang, E. Kamarchik, A. R. Sharma, B. C. Shepler, Y. Wang and Z. Xie, The Journal
of Physical Chemistry Letter$, 1866-1874.

2 J. M. Bowman, G. Czako and B. Fu, Physical Chemistry Chemical PH&ics,
8094-8111.

3 J. M. Bowman, S. Carter and X. Huang, International Reviews in Physical
Chemistry, 200322, 533-549.

4 J. M. Bowman, T. Carrington and H.-D. Meyer, Molecular Physics, 2083,
2145-2182.

5 E. J. Heller, J. Chem. Phys., 1983, 2923-2931.

6 M. F. Herman and E. Kluk, Chemical Physics, 1984 27-34.

7 M. S. Child and D. V. Shalashilin, J. Chem. Phys., 2003,2061-2071.

8 K. G. Kay, in Annual Review of Physical Chemistry, Annual Reviews, Palo
Alto, 2005, vol. 56, pp. 25%-

9 M. Ben-Nun and T. J. Martinez, Advances in Chemical Physics, Volume 121
2002,121, 439-512.

10 |. Burghardt, H. D. Meyer and L. S. Cederbaum, J. Chem. Phys., 1999,
2927-2939.

11 D. V. Shalashilin and M. S. Child, J. Chem. Phys., 2028,054102-054102.

12 D. V. Shalashilin and M. S. Child, Chemical Physics, 2804, 103-120.

13 D. V. Shalashilin and M. S. Child, J. Chem. Phys., 2018,,5367-5375.

14 S. |. Sawada, R. Heather, B. Jackson and H. Metiu, J. Chem. Phys.83 985,
3009-3027.

15 G. A. Worth and I. Burghardt, Chemical Physics Letters, 28683,502-508.

16 P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational
Principle in Quantum Mechanics NewYork, 1981.

17 D. V. Shalashilin and I. Burghardt, J. Chem. Phys., 20883,

18 J. Frenkel, Wave Mechanics, Advanced General Theory, Clarendon Press,
Oxford, 1934.

19 J. Broeckhove, L. Lathouwers, E. Kesteloot and P. Vanleuven, Chemical
Physics Letters, 198849, 547-550.

20 K. G. Kay, Chemical Physics, 19897, 165-175.

21 A. D. McLachlan, Molecular Physics, 19&439.

22 M. Nest and H. D. Meyer, J. Chem. Phys., 20@2, 10499-10505.

23 O. Vendrell and H. D. Meyer, J. Chem. Phys., 2034, 044135.

24 G. F. Meyer H.-D., Worth G.A. ed., Multidimensional Quantum Dynamics.
MCTDH Theory and Applications, Wiley-VCH, 2007.

25 P. A. J. Sherratt, D. V. Shalashillin and M. S. Child, Chemical Physics, 2006,
322, 127-134.

26 D. V. Shalashilin and M. S. Child, J. Chem. Phys., 2008),10028-10036.

27 D. V. Shalashilin and B. Jackson, Chemical Physics Letters, 3080305-

313.

28 T. Sklarz and K. G. Kay, The Journal of chemical physics, 2l34,2606-
2617.

29 M. L. Brewer, J. Chem. Phys., 1999}, 6168-6170.

30 B. G. Levine, J. D. Coe, A. M. Virshup and T. J. Martinez, Chemical Physics
2008,347, 3-16.

12



31 K. Saita and D. V. Shalashilin, The Journal of chemical physics, 2612,
22A506-508.

32 G. A. Worth, M. A. Robb and B. Lasorne, Molecular Physics, 2008,
2077-2091.

33 B. Lasorne, G. A. Worth and M. A. Robb, Wiley Interdiscip. Rev.-Comput.
Mol. Sci., 1, 460-475.

13



APPENDI X

A1l Working equations of modified vM CG
Derivation of the equations of motion fg¥(a,z)) from the time-dependent variational principle
enables us to investigate CCS and vMCG on the same formal footing.uldreLBgrange equations

(2.16) for dynamic parameteas(t) andz;(t) can be obtained separately from the Lagrangian (2.15)

as
A d 6/1 aA d aA
o402 an — = (A1.1)
da dtaa* dz dtoz*
Performing the variation for amplitude3(t) gives
Z;Z; Z;Z;
iz Q;a; — z Q;j ajHord(zf,zj) + iz Q;;a; ((zf - z]’-‘)z} + ]T] - ]Tj> =
j j j
(A1.2)
and the variation of; (t) is
JH z',Z
Zﬂua a](zj z) ZQ” a’ a]< . org;z 1))
L
. . T . . I TR v TR .
iy aia;(z —z;) <(zl~ -z})z; + ’T’ - ’T’ + lHord(zi,zj)) =
(A1.3)

For the sake of greater stability and better robustness it is convenientaduagra smoothing

preexponential factor to describe the rapidly oscillating amplitages
a; = d; exp(iSj) (Al.4)

whereS can be calculated from the classical action:

tz l
5 = f 5 (2% = %j2;) = Hora(2], 7)) dt (A13)

t1

With this preexponential factor equation (A1.2) can be rewritten as
Z Q;; exp(iS;) d; + Z Q;; exp(iS;) d; (i(z} — z)z;)
—LZQU exp(LS)d ( Ord(zl,z]) Hord( zj))

(A1.6)

and equation (A1.3) becomes
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Z QI.] exp =5 )) di (ZJ i) dj
Jj
+(z - 2)(z — 2]y (AL7)
= — Z Ql] exp (l(S] — Sl)) d: d] [(Hord(Z;, z])
j
aI{OT i
Hora(z, Z}')) (2 —z) + giz )]

The time evolution of#(t)) can be described by solving the equationsdfét), S;(t) andz;(t). In

the case of CCS the equations of motionzfdt) are given by Hamilton’s equations:

6H0m( z) (A1.8)
T 0z
This can be obtained from (A1.6) if all terms containing small oveflapbetween different coherent
states are neglected. In CCS the equations for the amplitudes (preexpondotis) &e still the same
as (A1.6). Although the trajectories (A1.8) are not fully variational GS technique is still fully
guantum because it relies on the exact coupled equations for the amplithdesheen shown in CCS
that better stability is achieved by smoothing the amplitude by (Alh4MCG both fully variational
equations (Al.5) and (Al1.6) are used, these are in principle equivalentst dhoriginal vMCG

theory®. The equations are forming a system of linear equations for thenibalavariablesi; (t) and

Zi(t):

(1+m,14n) . (1+ ) _ .(1+m)
ZZD e = p (A1.9)
i

where
(1+n) [ ) Z-(n)] (A1.10)
wr Zj
This set of linear equation can be written in matrix form as

[ D1, D2} ... D2} ]| l [ b1,
M

D3 e} pat™| | bz(” ' (AL11)

3<m)D4(m1>' 4(mn) lZ(n)J lbz(m)J

where in this block matrix every letter represent®&ax N matrix with the following elements:

D1; = Q;;exp(iS;)

DZS.” _ Uexp(lS)d( «() _ fﬂ(n))
DZS.O = Q;;exp(iS))d;(z ( QR T(n))
D3 = Qyexp(i(s; — )i (2™ ~2™)

D48.”’n) = Q;;exp(i(S; — S;))d; d; [6(mn) + (zj(m) - zi(m))(z{‘(") - zj‘("))]

b1 - —i Z Q,;;exp(iS;) d; (Hord(zi*,zj) —Hypa(z), z]-)>

L .
J
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- Sj))d;dj [(Zj(m) - Zi(m)) (Hord (Z;' zj) - Hord (z;' Zj))

JH ,
+ ord (zl )]

92;™
(A1.12)
The only improvement is that they are written for the smoatbxgronential factor d rather than for the
amplitude itself. Although an attempt has been made in the originalG?M@ take oscillating part
away from the amplitude the exact way of how this should Ine dan be important. In the current
formulation the smoothening is done in a fashion similar to the @Clsique and the matrik
appears to be small, smooth and sparse and reasonably well behaved.
Numerically CCS can be implemented easier than vMCG. The two differé@ntiee program code are
the wayd andz are calculated and the derivative matrix of the Hamiltonian. The structure of th
working matrix of CCS is simpler as it contains coefficientsdf@mly, thus it is independent of the
dimension of the system. The other significant difference is that B€$ only the diagonal elements
of the derivative of the Hamiltonian, whereas for vMCG all the elementifdimensions have to be

calculated.

A2 Numerical instabilities of Sampling S2

Let us set one of the initial CS ¥ (0)) = |z,) such as in (3.5)

|Zj=1) = Z,) (A2.1)
Then the initial amplitude is
1
G
Ci =(zilzo) = | ; (A2.2)
Gi
and the overlap-matrix will be:
Q= (zlz) =|? 1 lzlz)| (A2.3)
Cilmilz)
Amplituded is calculated from the set of linear equations
G = Z Q;; d; (A2.4)
J

and the only solution for (A2.4) with matrix (A2.3) and ved#®.2) is
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1
d; = H and d; = [1,0,...,0] . (A2.5)
0

The initial actions; = 0 and thereforexp(iS;) = 1. With these conditions the components of matrix

D and vectob in equations (A1.11) will be as follows:

D1; =

DZS.I) = Qij(zl-*(n) —zj*(n)) if i>2,j=1 and 0 elsewhere

D3g.n) = Qij(z].(m) —zi(m)) if i=2,j>1 and 0 elsewhere

D4g.n'n) = 8mn) if i=j=1 and 0 elsewhere

b, = —iZQU (Hm(z;‘,zj)—Hom(z;,zj)) if i>2,j=1 and 0 elsewhere
j

0H,.4(2;,z;

p2® = —i E M if i=j=1 and 0 elsewhere
i - 0z} n)

j

(A2.6)

It can be seen, that in matri every(n + i)(i + 1)th column and everym + j)(j + 1)th row
contains zeros only. This makBssingular, although the matrix is not inverted; therefore the problem
with det D = 0 is still solvable. The under-determined system of linear equatidhs icase of vYMCG

will lead to numerical difficulties which requires regularisation. In the cas#C& only D1 andbl are
calculated; this system has unambiguous solutions.

The probability that in a Monté-Carlo sampled basis (used for sanfplirand S3) one basis vector
will be equivalent to the initial wave function is practically zero. However sampling condition
similar to S2 is required, vMCG can always be regularised at the vergtépsby either regularising
matrix D or by propagating the first few steps with CCS which is a simpter zhysically more
justifiable solution.
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Figures

‘ Split—operafor +
vMCG

Re(ACF)
o

time [au]
Fig.l Real part of the autocorrelation function of a 1D Morse-potential giveMiBG/with the

basis set size of 10 Gaussians (solid line), compared results from Spht@peethod (crosses)

q [au]

Fig.2 Typical complicated quantum variational trajectories of a 1D Morse-potential with vMCG

(dashed line) and simple CCS (solid line)
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Fig. 3 Real part of the autocorrelation function for 2D Henon-Heiles probler8s. &@ vMCG with
the basis of 100 CSs (frames a and b). CCS with the basBOo€3s and therefore with the same
amount of variational parameters (frame c). The results are compared veighaheplit operator

method (crosses).
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Fig.4 Real part of the autocorrelation function for 6D Henon-Heiles problem. CLC&EGG with
the basis of 100 CSs (frames a and b). CCS with the basBOo€3s and therefore with the same
amount of variational parameters (lower frame c¢). The results areacednwith those of MCTDH

method (crosses).
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Fig.5 Real part of the autocorrelation function for 10D Henon-Heiles problem v@® @ith the
basis of 100 CSs (solid line) compared with results from MCTDH (crostag)e( a) and the first

recurrence (frame b)
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Fig.6 Real part of the autocorrelation function for 10D Henon-Heiles problem v@® W@ith the
basis of 1000 CSs (solid line) compared with results from MCTDH ges)gframe a) and the first

recurrence (frame b)
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Fig. 7 Real part of the autocorrelation function for 10D Henon-Heiles problemwCG with the
basis of 100 CSs (solid line) compared with results from MCTDH (croskas)e( a) and the first

recurrence (framb)
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Fig. 8 Comparison of the second recurrence of the autocorrelation furictid®D Henon-Heiles
problem obtained with CCS (1000 CSs) and vMCG (100 CSs) (fraane &). Results from MCTDH

are shown by crosses.
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Fig. 11 Absolute value of the autocorrelation function for 18D Henon-Heilebl@m of strong
coupling, with CCS 4000 CSs) (frame a) and with vMCG (200 CSs) (frame b). Results vtim

MCTDH are shown by dashed line on both frames.
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Fig. 12 Absolute value of the autocorrelation function for 1458D Henon-Heilgslgm (System 1)

with CCS (500CSs) (frame a and b). Results from ML-MCTDH<m@wn by dashed lines on both
frames.
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Fig. 13 Absolute value of the autocorrelation function for 1458D Henon-Heil@slgm (System 2)
with CCS (500CSs) (frame a and b). Results fidin-MCTDH are shown by dashed lines on both
frames. The difference between CCS and ML-MCTDH autocorrelation function ®1System 2 is
less then the difference between ML-MCTDH results for System 1 ystdi8 2
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Fig. 14 Comparison of absolute value of the autocorrelation function f&8D4Henon-Heiles
problem. The CCS autocorrelation functions for System 1 and Systehown at the frame (a)

coinside. heML-MCTDH results for the two systems are shown at the frame (b).
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Tables

number of
variational
number of | deviation from| deviation from| running . - parameters
initial  basis-| MCTDH MCTDH time co_mpressmn remaining (number of
[n=0.9905] basis-vectors S
vectors 1st recurrence 2nd recurrence [sec] remaining
parameters are i
brackets)
25 0.9495 0.2857 1.7 4.16 10 25 (10)
500 0.3752 0.2213 730.5 1.73 195 500 (195)
1000 0.3062 0.1519 2965.8 | 1.55 425 1000 (425)

Table 1. Deviation of the CCS result from that of MCTDH fardifferent number of initial basis-

vectors
number of
variational

number of | deviation from| deviation from| running . . parameters

initial  basis-| MCTDH MCTDH time C(impressmn remaining (number of

[n=0.9905] basis-vectors S

vectors 1st recurrence 2nd recurrence [sec] remaining
parameters are i
brackets)

10 1.0586 0.2419 0.4 7.055 1 111 (11)

50 0.5252 0.2650 24.7 3.24 20 550 (220)

100 0.2536 0.1639 138.7 2.65 35 1100 (385)

Table 2. Comparison of the vMCG result with that of MCTDH for a diffdrenmber of initial basis-

vectors
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