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Abstract 

 In this paper a new numerical implementation and a test of the modified variational 
Multiconfigurational Gaussian (vMCG) equations are presented. In vMCG the wave function is 
represented as a superposition of trajectory guided Gaussian Coherent States and the time derivatives 
of the wave function parameters are found from a system of linear equations, which in turn follows 
from the variational principle applied simultaneously to all wave function parameters. In the original 
formulation of vMCG the corresponding matrix was not well behaved and needed regularisation, which 
required matrix inversion. The new implementation of the modified vMCG equations seems to have 
improved the method, which now enables straightforward solution of the linear system without matrix 
inversion, thus achieving greater efficiency, stability and robustness. Here the new version of the 
vMCG approach is tested against a number of benchmarks, which previously have been studied by 
split-operator, Multiconfigurational Time Dependent Hartree (MCTDH) and Multilayer MCTDH (ML-
MCTDH) techniques.  The accuracy and efficiency of the new implementation of vMCG is directly 
compared with the method of Coupled Coherent States (CCS), another technique which uses trajectory 
guided grids.  More generally we demonstrate that trajectory guided Gaussian based methods are 
capable of simulating quantum systems with tens or even hundreds of degrees of freedom previously 
accessible only for MCTDH and ML-MCTDH.  
 

 

I INTRODUCTION 

 Exact analytical solvability of the time-dependent Schrödinger-equation for systems with large 

number of degrees of freedom (DOF) is limited to a few simple models. There are two  problems 

which make multidimensional quantum mechanics difficult to deal with.  First, determining the 

potential energy surface is a complicated problem, which is also present in classical molecular 

dynamics.  Recently substantial progress has been made1, 2 with various forms of PES parametrisations 

and fits.  The second problem is the scaling of quantum mechanics with the number of degrees of 

freedom (DOF): the number of quantum states increases exponentially with the size of quantum 

system. Impressive progress has been made in calculations of quantum states for the systems 

comprised of large numbers of coupled vibrational modes3 some of which can be very “floppy”3, 4. In 

dynamical calculations – when evolution of the wave packet is not restricted to a certain area – the 

“exponential curse” of quantum mechanics is perhaps the most severe. If a static grid of ݈  states is used 

for a single-mode, a problem of ݉ DOF requires 
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݊ ൌ ݈௠ (1.1) 

grid points making the challenge of exponential scaling almost insurmountable. 

 In the last few decades a family of concepts based on trajectory guided Gaussians, which rely on 

locally defined adaptable basis sets, gained considerable importance. A number of methods both 

semiclassical and formally exact have been developed. The list of most important techniques can be 

divided into two categories.  Semiclassical methods include but not limited to the early application of 

Frozen Gaussians5 and semiclassical Herman-Kluk propagator6, 7. For more details and new 

developments of the semiclassical Gaussian based methods see review8.  Fully quantum techniques 

which at least in principle can be converted to fully quantum result include Multiple Spawning9, 

Gaussian Multiconfigurational Time Dependent Hartree (G-MCTDH10), Coupled Coherent States 

CCS11-13, variational Gaussian approach14 and variational Multiconfigurational Gaussians (vMCG)15.  

All these techniques use grids (or basis sets) of trajectory guided Frozen Gaussian Coherent States, 

which follow the wave function thus economising the basis set size.  Another advantage of such 

techniques is that a randomly sampled basis can be used, which is advantageous in high dimensional 

problems because Monte Carlo techniques scale with dimensionality much better than (1.1). 

Importance sampling, which is the crucial part of all above methods, allows the basis to be built only 

around the dynamically important phase-space region. With such random sampling the Gaussian based 

methods can potentially scale as ݉ଶ, although in reality the scaling is often worse than that. However, 

even with the ever increasing computational power, the methods based on trajectory guided Gaussians 

sometimes suffer from two difficulties: scaling and robustness. 

 Variational Multiconfigurational Gaussians10, 15 (vMCG) is potentially one of the most efficient 

methods of high dimensional quantum dynamics. In vMCG the wave function is represented as a 

superposition of N trajectory guided Gaussian wave packets ȁߖሺݐሻۄ ൌ ෍ ܽ௡ሺݐሻȁܘ௡ሺݐሻǡ ௡ୀଵǡேۄሻݐ௡ሺܙ ൌ ෍ ܽ௡ሺݐሻȁܢ௡ሺݐሻۄ௡ୀଵǡே  (1.2) 

The time evolution of the wave function can be determined from the variational principle. It yields time 

derivatives of its parameters which can be obtained from a system of linear equations  ࢻࡰሶ ൌ  (1.3) ࢈

where ࢻ is the vector of wave function parameters, which includes both the amplitudes ܽ ௡  and all 

positions ܢ௡ of N coherent states (each one of them M-dimensional ܢ௡ ൌ ௡ሺଵሻǡݖ ǥ ǡ  is the ࡰ ௡ሺெሻ) andݖ

matrix which can be derived for example using the elegant formalism developed by Kramer and 

Saraceno16 (See Ref17 for more details). Matrix D in (1.3), as well as similar matrices in other 

variational approaches18-21, is often numerically nearly singular and has to be regularised.  This may be 

done by matrix inversion, during which the lowest eigenvalues of D are increased by a small and 

somewhat arbitrary regularisation parameter so that the inverse matrix does not have extremely large 

elements. As a result the equation is eventually written as  ࢻሶ ൌ  (1.4) ࢈ଵିࡰ

which is of course equivalent to (1.3) from the formal point of view. Numerically however matrix 

inversion is much more expensive than the solution of system of linear equations (1.3). 
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 In a recent paper17 the equations of vMCG were modified and written in a form similar to the 

equations of the Couple Coherent States (CCS) technique12, another method based on trajectory guided 

Gaussians.  In CCS special efforts were made to minimise coupling between the amplitudes by making 

the coupling matrix small, smooth and sparse. CCS introduces a preexponential factor to smooth out 

the rapid oscillations of quantum amplitudes. It appears that this simple trick works also for vMCG and 

makes matrix D sufficiently well behaved. In the tests of the vMCG equations17 presented here we 

were able to solve the equations (1.3) without inverting the matrix. Since our version of vMCG is 

closely connected to the CCS theory we also compare accuracy and efficiency of the two techniques. 

With the same basis size vMCG is more accurate simply because it employs more variational 

parameters, as the time dependence of all the parameters in (1.2) are determined variationally. For the 

same number of variational parameters however the accuracy of the two techniques is close and both 

methods show similar levels of robustness and stability.  

 In the Chapter II we briefly sketch our version of the vMCG theory, which in the original paper17 

was presented for 1D case only.  Here we present the theory in multidimensional form, which is 

conceptually simple but involves long algebra, given in the Appendix A1.  Chapter III provides details 

of the numerical tests.  First, our implementation of vMCG was tested on simple Morse oscillator 

because a 1D problem allows to visualise complicated variational trajectories.  Then Henon-Heiles 

(HH) model was investigated and the accuracy and efficiency of vMCG was compared with those of 

CCS, using MCTDH benchmark obtained previously for 2D, 6D, 10D and 18D Henon-Heiles 

systems22.  To demonstrate the limitations of vMCG and its scaling with the number of degrees of 

freedom we also performed CCS calculation for 1458D model previously studied in the ref23 by ML-

MCTDH, and show that vMCG calculation for a system of such size is not feasible but CCS yeilds a 

good result.  We also use this example to make some general remarks about the accuracy and 

convergence of vMCG, CCS and MCTDH, ML-MCTDH methods24 of high-dimensional quantum 

mechanics.  

 Throughout this paper natural units were used with ԰ ൌ ͳ, and the Coherent States were set to have ߱ ൌ ͳ a�d ݉ ൌ ͳǤ  
 

 

II THEORY 

2.1 Coherent states 

Coherent state (CS) based approaches gained considerable importance in molecular dynamics. As they 

are minimum uncertainty states and Gaussian-functions they are compatible with both semiclassical 

and quantum mechanical descriptions. A single-mode coherent state z is an element of the phase-space ߁ ൌ ሼሺݍǡ  ሻሽ where qi and pi are canonically conjugated variables. Using phase-space coordinates a 1D݌

coherent state ݖ א ԧ can be written as 

ݖ ൌ ටʹߛ ݍ ൅ ԰݅ ඨ ͳʹߛ  ݌
(2.1) 

and  
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כݖ ൌ ටʹߛ ݍ െ ԰݅ ඨ ͳʹߛ  ݌
(2.2) 

with ߛ ൌ ௠ఠ԰ , where z and z* are eigenstates of the annihilation and creation operators: ොܽȁۧݖ ൌ ȁݖۃ (2.3) ۧݖȁݖ ොܽற ൌ  (2.4) כݖȁݖۃ

A multidimensional CS is a product of m single-mode CSs  

ȁܢ௜ሺݐሻۄ ൌ ෑ ȁݖ௜ሺ௞ሻሺݐሻۧ௠
௞ୀଵ  

(2.5) 

and represents a point in M-dimensional phase space ߁ெ ൌ ሼሺݍ௠ǡ ௠ሻǢ݌ ݉ ൌ ͳǡʹǡ ǥ ǡ  ሽ The overlap ofܯ

two M-dimensional CS’s 

ષ௜௝ ൌ ۄ௝ܢ௜หܢۃ ൌ exp ቆܢ௜ܢכ௝ െ ʹכ௜ܢ௜ܢ െ ʹכ௝ܢ௝ܢ ቇ
ൌ ෑݖۃ௜ሺ௞ሻหݖ௝ሺ௞ሻۄெ

௞ୀଵൌ ෑ exp ቌݖ௜כሺ௞ሻݖ௝ሺ௞ሻ െ หݖ௜ሺ௞ሻหଶʹ െ หݖ௝ሺ௞ሻหଶʹ ቍெ
௞ୀଵ  

(2.6) 

is a product of M 1D overlaps.  Although continuum basis of coherent states is overcomplete in 

numerical calculations we always deal with a finite set of CSs which simply represent a non-orthogonal 

basis with the overlap matrix (2.6).  In this finite basis of Coherent States the identity becomes ॴ ൌ ෍    ȁܢ௜ۧષି૚௜௝ܢۃ௝ȁ    ௜ǡ௝  (2.7) 

where ષି૚௜௝ are the elements of the inverse overlap matrix of CSs.  The identity (2.7) is a discretisation 

of that of the continuous manifold covering all z-space where ॴ is the product of M 1D integral 

identities 

ॴ ൌ ෑ ൬ͳߨ නȁݖሺ௞ሻൿൻݖሺ௞ሻȁ  ݀ଶݖሺ௞ሻ൰ெ
௞ୀଵ  

(2.8) 

with the single-mode integral measure ݀ଶݖ ൌ ௗ௤ௗ௣ଶ԰ .  For more details about CS notations refer to Ref.12. 

With the coherent state representation any time-dependent wave function and its conjugate can be 

written up in coherent state basis in the general form (1.2). In coordinate representation a CS is simply 

a multidimensional Gaussian wave packet with the following ansatz 

ۄ௝ܢ௜หܠۃ ൌ ቀߨߛቁ௠ସ exp ൬െ ߛʹ ሺܠ௜ െ ௜ܠ௜ሻ்ሺܙ െ ௜ሻܙ ൅ ԰݅ ௜ܠሺ࢐ܘ െ ௜ሻܙ ൅ ௝ʹ԰ܙ௝ܘ݅ ൰ (2.9) 

 Matrix elements of an arbitrary operator can be found via its normal ordered form ǣ ࣩሺ ොܽறǡ ොܽሻǣ in 

which the powers of the creation operator precede those of the annihilation operator if ܽොறǡ ොܽ  are 

replaced by corresponding z or its complex conjugate and the result is multiplied by the overlap 
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ȁǣݖۃ ࣩሺ ොܽறǡ ොܽሻǣ ȁݖᇱۄ ൌ ǡכݖ௢௥ௗሺࣩۄᇱݖȁݖۃ  ሻ (2.10)ݖ

This is also applicable to the single mode Hamilton operators: ݖۃȁǣ ሺܪ ොܽறǡ ොܽሻǣ ȁݖᇱۄ ൌ ǡכݖ௢௥ௗሺܪۄᇱݖȁݖۃ  ሻ (2.11)ݖ

The index “ord” simply reminds about the terms which originated from commuting ොܽறǡ ොܽ . The 

Hamilton operator of the system is the sum over the dimensions of the individual single-mode 

Hamiltonians and their coupling terms: ܢۃ௜ȁǣ ۶ ቀ ොܽறሺ௞ሻǡ ොܽሺ௞ሻቁ ǣ ȁܢ௝ۄ ൌ ષ௜௝۶௢௥ௗ൫ܢ௜כǡ  ௝൯ (2.12)ܢ

 

 

2.2 Dynamics 

Time dependent variational principle (TDVP) provides a generic way to derive various forms of the 

time-dependent Schrödinger-equation. Several formulations of TDVP exist16, 18-21; our description here 

is based on the approach16 where TDVP is presented in a form similar to the principle of least action in 

classical mechanics and defining equations of motion through Euler-Lagrange equations. According to 

the principle of least action, the equations of motion can be obtained from the extremum of the 

functional 

ߪ ൌ න ǡࢻሺ߉ ǡכࢻ ሶࢻ ǡ ሶࢻ ௧మ௧భݐሻ݀כ  (2.13) 

where the Lagrangian is  ߉ ൌ ሻห݅ݐሺߖۃ ി߲௧ െ  (2.14) ۄሻݐሺߖหܪ

with the differential-operator ߲ി௧  acting separately on bras and kets. Any state vector ȁۄߖ  can be 

rewritten in coherent state form (1.2) ȁߖሺࢻሺtሻሻۄ ൌ ȁߖሺܽሺtሻǡ  and therefore the Lagrangian can be ,ۄሺtሻሻܢ

reparametrised with amplitudes and coherent states phase space positions as17: ߉ሺࢻǡ ǡכࢻ ሶࢻ ǡ ሶࢻ ሻכ ൌ ሺܽǡ߉ ǡܢ ǡכܽ ǡכܢ ሶܽ ǡ ሶܢ ǡ ሶܽ ǡכ ሶܢ ሻൌכ ݅ʹ ෍ ષ௜௝௜௝ ቈܽ௜כ ሶܽ௝ െ ሶܽ௜כ ௝ܽ
൅ ܽ௜כ ௝ܽ ቆܢ௜ܢכሶ௝ െ ሶܢ ௜ܢכ௝ െ ͳʹ ൫ܢ௝ܢכሶ௝ ൅ ௝ܢכሶ௝ܢ െ ሶܢכ௜ܢ ௜ െ ሶܢ ௜ܢכ௜൯ ൅ ʹ݅۶௢௥ௗ൫ܢ௜כǡ  ௝൯ቇ቉ܢ

 (2.15) 

Where ࢻ ൌ ሼܽǡ  ሽ is the vector of the wave function parameters which includes all N×M components ofܢ

the M-dimensional complex vectors ܢ௝ୀଵǡே  describing the phase space positions of all basis coherent 

states and N their amplitudes ௝ܽୀଵǡே. Quantum equations of motion can now be written as standard 

Lagrange equations for the wave function parameters ߲ࢻ߲߉ െ ddt ሶࢻ߲߉߲ ൌ Ͳ (2.16) 

which after introduction of a conjugated momentum ߨఈ ൌ ʹ డ௸డࢻሶ  can be presented in the form of 

Hamilton’s equations16 
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ሶࢻࡰ ൌ כࢻ߲ۄऒۃ߲  (2.17) 

where D is the matrix with the elements ܦ௜௝ ൌ డగഀ೔డఈכೕ and ۃऒۄ is the effective Hamiltonian obtained from 

the Lagrangian (2.14) in the usual way as ۃऒۄ ൌ હહ࣊ െ  should not be confused ۄऒۃ The operator .߉

with the actual physical Hamiltonian of the system. The Lagrangian ߉ and the effective Hamiltonian ۃऒۄ are simply a tool to formally work out the quantum equations of motion.  We have used Greek 

letters ߨǡ ǡߪ  to denote general momentum, action and Lagrangian associated with it to distinguish ߉

them from p, S and L the momentum, action and Lagrangian of the actual trajectory of a physical 

coordinate q. More details about the equations and their derivation can be found in17 and in Appendix 

A1. Here we only point out that equations17 have been written not for the oscillating amplitude  

௝ܽ ൌ ௝݀exp൫݅ ௝ܵ൯ (2.18) 

but for smooth preexponential factor ௝݀, where ܵ௝ is the action along the trajectory. As a result matrix 

D in (2.17) has many small elements and therefore sparse and smooth. 

 In vMCG at each time step one has to find the derivatives of the parameters from the system of 

coupled N×(M+1) linear equations (2.17), where N is the basis set size and M is the number of degrees 

of freedom. Coupled Coherent States (CCS) is another method, which utilises exactly the same 

parametrisation of the wave function (1.2) as vMCG. The difference is that in CCS the trajectories ܢ௡ሺݐሻ  are predetermined and calculated from essentially classical equations of motion.  Only N 

amplitudes ܽ ௡ሺݐሻ are found from a quantum variational principle.  As a result the system of linear 

equations for the derivatives of ܽ௡ሺݐሻ is much smaller and much simpler than in vMCG.  Matrix D 

used in vMCG has the size of [N×(M+1)]×[ N×(M+1)] and includes that of CCS as a small N×N  

block.  The elements of this small N×N matrix are simply those of the overlap matrix multiplied by the 

exponentials of the classical actions.  CCS trajectories are driven by a classical Hamiltonian with 

quantum corrections ۶௢௥ௗ  Eq.(2.12),  which is simply the expectation value of the classical 

Hamiltonian with the Gaussian CS.  The mathematical structure of the two methods has been compared 

in17. In this paper we compare their computational cost and accuracy. At the first glance vMCG appears 

more expensive than CCS.  However, as it will be shown below that as vMCG works with a smaller 

basis than CSs, the  computational cost of the two related methods is comparable. 

 

 

III NUMERICAL IMPLEMENTATION AND RESULTS 

3.1 Basis set sampling  

First we have tested vMCG in the form given in17 on the examples of 1D harmonic and 1D Morse 

oscillators.  Then we employed multidimensional Henon-Heiles model in 2D, 6D, 10D, 18D and 

1458D. The results were compared with CCS and with the benchmarks provided earlier by MCTDH22 

and ML-MCTDH23.  Since both CCS and vMCG utilise the grids of trajectory guided coherent states 

we also compare their accuracy and efficiency. In both CCS and vMCG methods the initial propagating 

wave function is itself a coherent state z0: 
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ȁߖሺͲሻۄ ൌ ȁܢ௢(3.1) ۄ 

In both approaches the sampling of the Gaussian Coherent State basis is very important and we have 

used the same techniques suggested previously in11 to select initial conditions for the basis set ȁܢ௝ۄ.  
The simplest way to bias the basis to the dynamically important region would be to use the 

“compressed swarm”.  The initial phase space positions of CSs ȁܢ௝ۄ  have been chosen randomly from 

a Gaussian distribution centred around ܢ௢ 

݂൫ܢ௝൯ ൌ ͳߨ௠ exp ቀെߜหܢ௝ െ  ௢หଶቁ (3.2)ܢ

Then the initial amplitudes of ȁܢ௝ۄ are calculated by applying the identity (2.7) as follows   

ȁߖሺͲሻۄ ൌ ෍  ௝ܽ  ሺͲሻ ȁܢ௝ሺͲሻൿ   ൌ௝ ෍    ȁܢ௝ሺͲሻൿષି૚௝௜ܢۃ௜ሺͲሻȁߖሺͲሻۄ    ௜ǡ௝  (3.3) 

In (3.2) the “compression” parameter ߜ determines the degree of bias of the basis set to its centre ܢ௢. 

The smaller is the basis set, the more compressed the distribution should be. Parameter ߜ is chosen 

such that the norm of the wave function  ߖۃሺͲሻȁߖሺͲሻۄ ൌ ෍ ۄሺͲሻߖ௜ሺͲሻȁܢۃષି૚௝௜ۄ௝ሺͲሻܢሺͲሻหߖۃ     ൎ ͳ   ௜ǡ௝  (3.4) 

is close to 1, which is not the case for a small basis which is not “compressed” well enough. The norm ߖۃȁۄߖ was always kept in the range between 0.990 and 0.995. With the sampling discussed above, the 

two methods (CCS and vMCG) can be compared on equal footing. The sampling described above is 

called Sampling 1 (S1) and used for the majority of the tests.  

We also tried another sampling called S2,  where the propagating CS ȁߖሺͲሻۄ ൌ ȁܢ௢ۄ was 

included into the basis, such that the first basis function is ȁܢ௝ୀଵൿ ൌ ȁܢ௢(3.5) ۄ 

The rest of the basis was chosen randomly as in the sampling S1. In sampling S2 the initial conditions 

for the amplitudes are ௝݀ ൌ ͳ if ݆ ൌ ͳ and ݀ ௝ ൌ Ͳ if ݆ ് ͳ. These conditions are further described in 

Appendix A2.   

 Another type of sampling strategy (S3) was used for the 1458D Henon-Heiles model where 

only two modes are excited initially and the rest of the modes are act like a “bath”. For a 

multidimensional initial wave function หߖሺ௞ሻሺͲሻۄ for every mode k a different compression parameter  ߜሺ௞ሻ can be chosen, therefore different compression can be applied for the excited “system” modes and 

for the “bath” modes.  This allows to treat more important modes with less compression and therefore 

with less bias.  This sampling strategy is called “pancake” distribution and has successfully been used 

for CCS previously11, 25  In the 1458D Henon-Heiles system investigated, two adjacent modes (݁ܿݔଵ 

and ݁  ଶ) are excited in the middle of the chain for these modes no compression was applied in theܿݔ

sampling (i.e. ߜሺ௘௫௖ଵሻ ൌ ሺ௘௫௖ଶሻߜ ൌ ͳ). For the “bath” modes the compression was applied according to 

the function 
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ሺ௞ሻߜ ൌ exp ቌ݇ െ ଵܿݔ݁ ൅ ߂ʹଶܿݔ݁ ቍଶ
 

(3.6) 

where parameter ߂ gives the width of the discrete Gaussian distribution. Geometrically this means that 

the compression rapidly increases for the sampling of less important “bath” modes which are far from 

the excited modes ݁ܿݔଵ and ݁  .ଶܿݔ

 

 

3.2 Harmonic oscillator and 1D Morse oscillator 

For the Harmonic oscillator both CCS and vMCG give exact solution and their amplitudes and 

trajectories are identical. This is due to the fact that with the Hamiltonian of the harmonic oscillator 

vMCG equations are equivalent to CCS equations. The simple 1D Hamiltonian of a Morse oscillator  

ܪ ൌ ʹଶ݌ ൅ ሻݔߚʹ௘൫expሺെܦ െ ʹexpሺെݔߚሻ൯ (3.7) 

with the energy parameter ܦ௘ ൌ ͳͲǤʹͷ ܽݑ , the parameter ș ൌ ͲǤʹʹͲͻ  and initial condition at ȁߖሺͲሻۄ ൌ ȁݖ଴ۄ ൌ ȁݍ ൌ ͷǡ ݌ ൌ Ͳۄ, has also been investigated. This system has been previously used to 

test CCS26, 27 and other related techniques. Methods like vMCG and CCS are suited for high 

dimensional problems and for a 1D problem coherent state based methods do not have advantages 

before standard techniques. Moreover if the CS basis becomes too large (which is often just few tens of 

CSs) the overlap matrix in CCS and matrix D of vMCG become singular making propagation 

numerically unstable. This challenge justifies using simple 1D Harmonic and Morse oscillator models 

as a test problem. Also a 1D problem allows to visualise complicates vMCG trajectories.  Fig 1 shows 

the autocorrelation function obtained by the vMCG method and compares it with that of numerically 

exact Split-Operator propagation.  Fig 2 shows the guiding trajectories from vMCG methods, which are 

very different from those of classical mechanics and almost classical CCS trajectories.  The quantum 

vMCG trajectories are “pushed” by each other and by their amplitudes.   

We found that for the sampling S1 the equations of vMCG17 produce an accurate 

autocorrelation function without matrix inversion and regularisation.  For sampling S2 when 

propagation of the CS ȁݖ଴ۄ is included into the basis and all initial amplitudes except one are zero the 

vMCG system of linear equations is not well defined and the propagation is numerically unstable.  

Inspection of the matrix D reveals the presence of rows and columns with all elements equal to zero 

(Appendix A2), which makes its determinant zero.  This has also been noted for the standard 

implementation of vMCG15.  Propagation with the CCS method is stable for both sampling S1 and S2.  

For the S1 sampling vMCG propagation for 1D Harmonic and Morse oscillators worked with the same 

time step as CCS and therefore the new version of vMCG was as robust and as stable as CCS.  In the 

case of sampling S2 vMCG can be made free of numerical instabilities by either regularising the matrix 

at the first step as it has been done in the Ref15 or by propagating the system with CCS for a few steps 

and switching back to vMCG as soon as all amplitudes become nonzero. 
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3.3 Henon-Heiles model  

Multidimensional Henon-Heiles (HH) potential with strong coupling between the modes provides a 

more challenging benchmark for vMCG and other methods of high dimensional quantum mechanics. 

The potential  

ܸሺܙሻ ൌ ͳʹ ෍ ௞ଶݍ ൅ ߣ ෍ ൬ݍ௞ଶݍ௞ାଵ ൅ ͳ͵ ௞ାଵଷݍ ൰ି࢓૚
ୀ૚࢑

࢓
ୀ૚࢑  (3.8) 

is multidimensional, anharmonic, unbound and includes coupling terms between the modes with the 

coupling constant ߣ ൌ ͲǤͳͳͳͺͲ͵. The vMCG calculations were compared with CCS for 2D, 6D and 

10D and 18D HH systems. In the 2D case comparison can be made with the split-operator method, 

while 6D and 10D results can be compared with the benchmark MCTDH22 and CCS calculations.  In 

the case of 18D model ML-MCTDH benchmark is available23 for the standard HH model and the 

“strong coupling” model with coupling constant twice that of the standard parameter ߣ ൌ ʹ ൈͲǤͳͳͳͺͲ͵.  In addition the ref23 reported a calculation for 1458D Henon-Heiles model.  HH model 

previously was also used to test semiclassical Gaussian based techniques28, 29.   

For 2D, 6D and 10D models the initial conditions were the same for both CCS and vMCG: the 

initial state is placed at ȁߖሺͲሻۄ ൌ ȁࢠ଴ۄ ൌ ȁݍ ൌ ʹǡ ݌ ൌ Ͳۄ ǥ ȁݍ ൌ ʹǡ ݌ ൌ Ͳۄ  (i.e. initially all modes are 

stretched and have zero momentum).  Those basis Coherent States which become so energetic that they 

escape to the distance q>10 were automatically removed from the calculations.  The Figures 3-8 show 

the real part of the autocorrelation function (ACF) for 2D, 6D and 10D Henon-Heiles potential.   

For the 2D model the time step of vMCG propagation was reduced to ݐ߂ ൌ ͲǤͲͳ  to be able to 

run it stably, while CCS was still robust with ݐ߂ ൌ ͲǤͳ in all the cases.  Therefore vMCG can be less 

stable for lower dimensional systems (1D or 2D) but reducing time step solves the problem and it still 

works well. For the basis set size used (i.e. 100) the result of vMCG is visibly better than that of CCS. 

However CCS improves if the basis is increased to 300 CSs such that the number of variational 

parameters for both methods is the same.  

For both vMCG and CCS we observed similar behaviour in 6D and 10D cases shown at the 

figures 4-8.  Running time was ݐ௠௔௫ ൌ ʹͲ  with timestep of ݐ߂ ൌ ͲǤͳ  for both cases of CCS and 

vMCG. The initial norm was kept close to ߖۃȁۄߖ ൌ ͲǤͻͻͲͷ by setting the compression parameter.  For 

the 10D case we compared the deviation of vMCG and CCS from the MCTDH result.  To quantify the 

quality of propagation for the 10D case the deviation from benchmark MCTHD was calculated for the 

first (Fig. 6-7) and the second recurrence (Fig. 8) for both CCS and vMCG.  The comparison of the 

results can be seen in Table 1 and Table 2 respectively. Deviation is defined as the square root of the 

integral of the square modulus of the difference between the real parts of the two autocorrelation 

functions. The conclusion is that for the same number of variational parameters both CCS and vMCG 

perform on the same level of accuracy.  In high dimensional 6D and 10D cases the time step was the 

same for both vMCG and CCS and vMCG performance was sufficiently robust and stable. 

Two different 18D HH systems were investigated and the results are shown on Figures 9-11, 

which present the absolute value of the autocorrelation function.  The first system had the coupling 

constant ߣ ൌ ͲǤͳͳͳͺͲ͵    as in the previous cases of 2D, 6D and 10D models, the second system had a 
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stronger coupling ߣ ൌ ͲǤʹʹ͵͸Ͳ͸     increased by the factor of 2.   Only the modes 4, 8,12 and 16 were 

excited หߖሺସሻሺͲሻۄ ൌ หߖሺ଼ሻሺͲሻۄ ൌ หߖሺଵଶሻሺͲሻۄ ൌ หߖሺଵ଺ሻሺͲሻۄ ൌ ȁݍ ൌ ʹǡ ݌ ൌ Ͳۄ in both the standard and 

stronger coupling cases.  For 18D HH simulations running time was ݐ௠௔௫ ൌ ͸Ͳ  and the time step had 

to be reduced to  ݐ߂ ൌ ͲǤͲͷ  for CCS and ݐ߂ ൌ ͲǤͲͳ for vMCG. The initial norm was set with the 

compression parameter to be close to  ߖۃȁۄߖ ൌ ͲǤͻͻ͵.   The results of the standard and strong coupling 

can be seen in the Figures 9-11.  These results were compared with ML-MCTDH simulations23 (Fig. 

9a) and (Fig. 10a). For CCS 3000 basis vectors were used, while in the case of vMCG the basis set size 

was 150 Coherent States, however essentially the same result can be obtained with 1000 CSs for CCS 

and 50 CSs for vMCG (frame (b) on Figures 9-10) so that both vMCG and CCS calculations were well 

converged.  The strongly coupled Henon-Heiles model is a more demanding problem: after a few 

oscillations the autocorrelation function decays so rapidly that it almost vanishes. On Fig. 11 the CCS 

and vMCG results are shown, compared with ML-MCTDH results. Although a relatively large basis 

set was used – 4000 CSs for CCS and 200 for vMCG – the running time of the simulation was shorter 

compared to the previous case of standard HH model. This is due to the trajectories of the basis 

Coherent States escaping from the well of the Henon-Heiles potential and being removed from the 

propagation.  By the end of the propagation only 300 CSs were left in the case of CCS and only 8 for 

vMCG, making the basis very small.  The quality of basis can be easily improved by generating new 

basis functions instead of escaping ones, but we have not done it in this work.  As can be seen from the 

figure 11 even a very small basis provides quite accurate result where the autocorrelation function is 

not very small.   

Since the HH 1458D benchmark result was available for the 1458D Henon-Heiles model23 we 

endeavoured to attempt similar calculation with vMCG and CCS methods.  In ref23 two cases of 1458D 

HH model were investigated.  In the first case, called System 1, only the modes 486 and 487 were 

initially excited to หߖሺସ଼଺ሻሺͲሻۄ ൌ หߖሺସ଼଻ሻሺͲሻۄ ൌ ȁݍ ൌ ʹǡ ݌ ൌ Ͳۄ.  In the second case called System 2 

only the modes 729 and 730 were stretched as   หߖሺ଻ଶଽሻሺͲሻۄ ൌ หߖሺ଻ଷ଴ሻሺͲሻۄ ൌ ȁݍ ൌ ʹǡ ݌ ൌ Ͳۄ.  In both 

systems the excited modes are in the midle of the chain of coupled oscillators and far from its ends.  

Thus, our expectation is, that the results from the two exact propagations should lie very close to one 

another. The difference between the two cases is that for the System 1 the mode combination in not 

good.  Quoting the ref23, System 1 “represents an example of the wrong choice of tree structure” in 

ML-MCTDH.  On the contrary the mode combination and ML-MCTDH tree structure for the System 2 

is correct.  Simulations of the 1458D Henon-Heiles model would be very time consuming for vMCG 

albeit not impossible. Even a basis set as small as 5 Gaussian Coherent Sets would include 

1458×5+5=7295 variational parameters which would require the solution of a system of 7295 linear 

equations (1.3) for derivatives of the parameters.  On the other hand CCS was able to tackle this very 

high dimensional problem, yielding the results shown on Figures 12-14  for the basis of 500CSs 

sampled with Sampling S3.  Sampling S1 gives similar result.  Fig.12 shows that CCS autocorrelation 

function deviates from that of ML-MCTDH for the System 1 very quickly, but agreement for the 

System 2 is much better.  Figure 13 indicates that for the System 2 the first two recurrences are in good 

agreement with ML-MCTDH.  Unlike ML-MCTDH results from CCS for System 1 and System 2 are 

identical as shown at the Figure 14.   CCS deviates from ML-MCTDH at later time.   
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We know from previous experience with CCS and related techniques that at longer times the quality of 

CCS basis always deteriorates because a) the Coherent States run away from each other and eventually 

stop exchanging amplitudes, and b) CCS trajectories may guide basis in the wrong place.  As a result, 

at longer times CCS works as a semiclassical technique.  Good sampling of the basis set is crucial for 

the efficiency and convergence of CCS and the same can be said about vMCG or any other trajectory 

based method.   MCTDH is also a short time method and it provides accurate results only if appropriate 

mode combination is found.   

 

 

V CONCLUSIONS 

In this paper the numerical implementation of the modified vMCG equations was discussed. The 

results are directly compared with the results obtained by CCS on equal formal footing. The tests and 

comparisons have been made for 1D harmonic, 1D Morse oscillator and for 2D, 6D, 10D and 18D 

Henon-Heiles models. For the same basis set size vMCG is more accurate but for the same number of 

variational parameters the quality of vMCG and CCS propagations is similar. Convergence and 

efficiency of CCS has been investigated previously and the modified vMCG method shows very 

similar numerical behaviour in terms of convergence of results and norm-conservation. The main result 

of this paper is that for the test systems considered here our implementation of the modified version of 

vMCG equations works without regularising and inverting the matrix D in Eq.(1.3), which significantly 

reduces computational costs.  

 It is interesting to discuss the future of various trajectory based methods for quantum molecular 

dynamics simulations where “on the fly” ab-initio dynamics is the current trend. Many ab-initio 

techniques such as Multiple Spawning (AIMS)9, 30, Multiconfigurational Ehrenfest dynamics (MCE)31, 

which is a generalisation of CCS, and “on the fly” implementation of vMCG exist32, 33. In such 

methods the potential energy surfaces are calculated by applying an electronic structure package along 

the trajectory, which is the most expensive part of calculations. Having fewer vMCG trajectories may 

therefore have an advantage over the methods which use predetermined trajectories.  On the other hand 

methods like CCS/MCE allow the running of trajectories one by one independently from each other 

which is not possible in vMCG, where trajectories are coupled with each other. Independent 

trajectories allow a detailed exploration of the dynamically relevant part of the PES prior to actual 

quantum dynamics calculation. Many electronic structure points can be accumulated and fit with the 

modern algorithms1, 2. Perhaps a combination of vMCG and techniques which use predetermined 

trajectories will provide an optimum solution in the future.  
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APPENDIX 

 

A1 Working equations of modified vMCG 

Derivation of the equations of motion for ȁߖሺܽǡ ۄሻܢ  from the time-dependent variational principle 

enables us to investigate CCS and vMCG on the same formal footing. The Euler-Lagrange equations 

(2.16) for dynamic parameters ܽ௜ሺݐሻ and ܢ௜ሺݐሻ can be obtained separately from the Lagrangian (2.15) 

as ߲߲ܽ߉ െ ddt ߲߉߲ ሶܽ כ ൌ Ͳ     and    ߲ܢ߲߉ െ ddt ሶܢ߲߉߲ כ ൌ ͲǤ    (A1.1) 

Performing the variation for amplitudes ܽ௜כሺݐሻ gives ݅ ෍ ષ௜௝௝ ሶܽ௝ െ ෍ ષ௜௝௝ ௝ܽ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ ൅ ݅ ෍ ષ௜௝௝ ௝ܽ ൭൫ܢ௜כ െ ሶ௝ܢ൯כ௝ܢ ൅ ʹሶ௝ܢכ௝ܢ െ ʹ௝ܢכሶ௝ܢ ൱ ൌ Ͳ 

 (A1.2) 

and the variation of ܢ௜כሺݐሻ is ݅ ෍ ષ௜௝ܽ௜כ௝ ሶܽ௝൫ܢ௝ െ ௜൯ܢ െ ෍ ષ௜௝௝ ܽ௜ܽכ௝ ቆ݅ܢሶ௝ െ ߲۶௢௥ௗ൫ܢ௜כǡ כ௜ܢ௝൯߲ܢ ቇ ൅ 

݅ σ ષ௜௝௝ ܽ௜ܽכ௝൫ܢ௝ െ ௜൯்ܢ ቆ൫ܢ௜כ െ ሶ௝ܢ൯כ௝ܢ ൅ ሶܢכೕܢ ೕଶ െ ሶܢ ೕܢכೕଶ ൅ ݅۶௢௥ௗ൫ܢ௜כǡ ௝൯ቇܢ ൌ Ͳ. 

 (A1.3) 

For the sake of greater stability and better robustness it is convenient to introduce a smoothing 

preexponential factor to describe the rapidly oscillating amplitudes ௝ܽ: 

௝ܽ ൌ ௝݀ exp൫݅ ௝ܵ൯ (A1.4) 

where ܵ  can be calculated from the classical action: 

௝ܵ ൌ න ݅ʹ ൫ܢ௝ܢכሶ௝ െ ௝൯ܢכሶ௝ܢ െ ۶௢௥ௗ൫ܢ௝כǡ ௧మ௧భݐ௝൯݀ܢ  (A1.5) 

With this preexponential factor equation (A1.2) can be rewritten as ෍ ષ௜௝௝ exp൫݅ ௝ܵ൯ ሶ݀௝ ൅ ෍ ષ௜௝௝ exp൫݅ ௝ܵ൯ ௝݀൫݅൫ܢ௝כ െ ሶ௝൯ܢ൯כ௜ܢ
ൌ െ݅ ෍ ષ௜௝௝ exp൫݅ ௝ܵ൯ ௝݀ ቀ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ െ ۶௢௥ௗ൫ܢ௝כǡ  ௝൯ቁܢ

(A1.6) 

and equation (A1.3) becomes 
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෍ ષ௜௝௝ exp ቀ݅൫ ௝ܵ െ ௜ܵ൯ቁ ݀௜כ൫ܢ௝ െ ௜൯ܢ ሶ݀௝൅ ෍ ષ௜௝௝ exp ቀ݅൫ ௝ܵ െ ௜ܵ൯ቁ ݀௜כ ௝݀ൣͳ൅ ൫ܢ௝ െ כ௝ܢ௜൯൫ܢ െ ሶ௝ൌܢ൯൧כ௜ܢ െ݅ ෍ ષ௜௝௝ exp ቀ݅൫ ௝ܵ െ ௜ܵ൯ቁ ݀௜כ ௝݀ ቈቀ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ
െ ۶௢௥ௗ൫ܢ௝כǡ ௝൯ቁܢ ൫ܢ௝ െ ௜൯ܢ ൅ ߲۶௢௥ௗ൫ܢ௜כǡ כ௜ܢ௝൯߲ܢ ቉ 

(A1.7) 

The time evolution of ȁߖሺݐሻۄ can be described by solving the equations for ݀௜ሺݐሻ, ܵ ௜ሺݐሻ and ܢ௜ሺݐሻ. In 

the case of CCS the equations of motion for ܢ௜ሺݐሻ are given by Hamilton’s equations: 

ሶ௝ܢ ൌ െ݅ ߲۶௢௥ௗ൫ܢ௝כǡ כ௝ܢ௝൯߲ܢ  
(A1.8) 

This can be obtained from (A1.6) if all terms containing small overlaps ષ௜௝ between different coherent 

states are neglected. In CCS the equations for the amplitudes (preexponential factors) are still the same 

as (A1.6). Although the trajectories (A1.8) are not fully variational the CCS technique is still fully 

quantum because it relies on the exact coupled equations for the amplitudes. It has been shown in CCS 

that better stability is achieved by smoothing the amplitude by (A1.4). In vMCG both fully variational 

equations (A1.5) and (A1.6) are used, these are in principle equivalent to those of original vMCG 

theory15. The equations are forming a system of linear equations for the dynamical variables ݀௜ሺݐሻ and ܢ௜ሺݐሻ: 

෍ ෍ ௜௝ሺଵା௠ǡଵା௡ሻሺ௡ሻ௝ܦ ሶ௝ሺଵା௡ሻߙ ൌ ܾ௜ሺଵା௠ሻ (A1.9) 

where ߙሶ௝ሺଵା௡ሻ ൌ ൣ ሶ݀௝ ǡ ሶ௝ሺଵሻǡݖ ǥ ǡ  ሶ௝ሺ௡ሻ൧ (A1.10)ݖ

This set of linear equation can be written in matrix form as 

ێێۏ
ۍێ ௜௝ሺଵሻ͵ܦͳ௜௝ܦ ௜௝ሺ௠ሻ͵ܦڭͶ௜௝ሺଵǡଵሻܦ௜௝ሺଵሻʹܦ Ͷ௜௝ሺ௠ǡଵሻܦڭ

ڮڮ ڮڰͶ௜௝ሺଵǡ௡ሻܦ௜௝ሺ௡ሻʹܦ ۑۑےͶ௜௝ሺ௠ǡ௡ሻܦڭ
ېۑ

ێێۏ
ۍێ ሶ݀௝ݖሶ௝ሺଵሻݖڭሶ௝ሺ௡ሻۑۑے

ېۑ ൌ ێێۏ
ۍێ ܾͳ௜ܾʹ௜ሺଵሻܾڭʹ௜ሺ௠ሻۑۑے

 (A1.11) ېۑ

where in this block matrix every letter represents an ܰ ൈ ܰ matrix with the following elements: ܦͳ௜௝  ൌ ષ௜௝exp ሺ݅ ௝ܵሻ ܦʹ௜௝ሺ௡ሻ ൌ ષ௜௝exp ሺ݅ ௝ܵሻ ௝݀ቀݖ௜כሺ௡ሻ െ ௜௝ሺ௡ሻ ൌ ષ௜௝exp ሺ݅ʹܦ ሺ௡ሻቁכ௝ݖ ௝ܵሻ ௝݀ቀݖ௜כሺ௡ሻ െ ௜௝ሺ௠ሻ ൌ ષ௜௝exp ሺ݅ሺܵ௝͵ܦ ሺ௡ሻቁכ௜ݖ െ ௝ܵሻሻ݀௜כ൫ݖ௝ሺ௠ሻ െ Ͷ௜௝ሺ௠ǡ௡ሻ ൌ ષ௜௝exp ሺ݅ሺܵ௝ܦ ௜ሺ௠ሻ൯ݖ െ ௝ܵሻሻ݀௜כ ௝݀ ቂߜሺ௠௡ሻ ൅ ൫ݖ௝ሺ௠ሻ െ ሺ௡ሻכ௜ݖ௜ሺ௠ሻ൯ቀݖ െ  ሺ௡ሻቁቃכ௝ݖ
ܾͳ௜  ൌ െ݅ ෍ ષ௜௝exp ሺ݅ ௝ܵሻ௝ ௝݀ ቀ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ െ ۶௢௥ௗ൫ܢ௝כǡ  ௝൯ቁܢ
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ܾʹ௜ሺ௡ሻ ൌ െ݅ ෍ ષ௜௝exp ሺ݅ሺܵ௝௝ െ ௝ܵሻሻ݀௜כ ௝݀ ቈ൫ݖ௝ሺ௠ሻ െ ௜ሺ௠ሻ൯ݖ ቀ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ െ ۶௢௥ௗ൫ܢ௝כǡ ௝൯ቁܢ
൅ ߲۶௢௥ௗ൫ܢ௜כǡ ሺ௡ሻכ௜ݖ௝൯߲ܢ ቉ 

  (A1.12) 

The only improvement is that they are written for the smooth preexponential factor d rather than for the 

amplitude itself. Although an attempt has been made in the original vMCG15 to take oscillating part 

away from the amplitude the exact way of how this should be done can be important.  In the current 

formulation the smoothening is done in a fashion similar to the CCS technique and the matrix D 

appears to be small, smooth and sparse and reasonably well behaved. 

Numerically CCS can be implemented easier than vMCG. The two differences in the program code are 

the way ݀ ሶ  and ݖሶ  are calculated and the derivative matrix of the Hamiltonian. The structure of the 

working matrix of CCS is simpler as it contains coefficients for ሶ݀ only, thus it is independent of the 

dimension of the system. The other significant difference is that CCS uses only the diagonal elements 

of the derivative of the Hamiltonian, whereas for vMCG all the elements for all dimensions have to be 

calculated. 

 

 

 

A2 Numerical instabilities of Sampling S2 

 

Let us set one of the initial CS to ȁߖሺͲሻۄ ൌ ȁܢ௢ۄ such as in (3.5) ȁܢ௝ୀଵൿ ൌ ȁܢ௢ۄ (A2.1) 

Then the initial amplitude is 

௜ܥ ൌ ۄ଴ܢ௜ȁܢۃ ൌ ൦ ͳܥଶܥڭ௜ ൪ (A2.2) 

and the overlap-matrix will be: 

ષ௜௝ ൌ ۄ௝ܢ௜หܢۃ ൌ ێێۏ
ۍ ͳܥଶܥڭכ௜כ

ۄଶܢ௜ȁܢۃڭଶͳܥ
ڮڰڮڮ

ͳڭۄ௝ܢଶหܢۃ௝ܥ ۑۑے
ې
 . (A2.3) 

Amplitude d is calculated from the set of linear equations ܥ௝ ൌ ෍ ષ௜௝௝ ݀௜ (A2.4) 

and the only solution for (A2.4) with matrix (A2.3) and vector (A2.2) is 
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݀௜כ ൌ ቎ͳͲڭͲ቏    a�d ௝݀ ൌ ሾͳǡͲǡ ǥ ǡͲሿ Ǥ (A2.5) 

The initial action ܵ௝ ൌ Ͳ and therefore exp൫݅ ௝ܵ൯ ൌ ͳǤ With these conditions the components of matrix 

D and vector b in equations (A1.11) will be as follows: ܦͳ௜௝  ൌ ષ௜௝ ܦʹ௜௝ሺ௡ሻ ൌ ષ௜௝ቀݖ௜כሺ௡ሻ െ ݅   ሺ௡ሻቁ       ifכ௝ݖ ൐ ʹǡ ݆ ൌ ͳ   a�d   Ͳ   elsewhere  ܦ͵௜௝ሺ௠ሻ ൌ ષ௜௝൫ݖ௝ሺ௠ሻ െ ݅   ௜ሺ௠ሻ൯         ifݖ ൌ ʹǡ ݆ ൐ ͳ   a�d   Ͳ   elsewhere  ܦͶ௜௝ሺ௠ǡ௡ሻ ൌ ߜሺ௠௡ሻ                                       if   ݅ ൌ ݆ ൌ ͳ        a�d   Ͳ   elsewhere 

ܾͳ௜  ൌ െ݅ ෍ ષ௜௝௝ ቀ۶௢௥ௗ൫ܢ௜כǡ ௝൯ܢ െ ۶௢௥ௗ൫ܢ௝כǡ ௝൯ቁܢ   if   ݅ ൐ ʹǡ ݆ ൌ ͳ   a�d   Ͳ   elsewhere 

ܾʹ௜ሺ௡ሻ ൌ െ݅ ෍ ߲۶௢௥ௗ൫ܢ௜כǡ ሺ௡ሻ௝כ௜ݖ௝൯߲ܢ                                        if   ݅ ൌ ݆ ൌ ͳ        a�d   Ͳ   elsewhere 

  (A2.6) 

 
It can be seen, that in matrix D every ሺ݊ ൅ ݅ሻሺ݅ ൅ ͳሻth  column and every ሺ݉ ൅ ݆ሻሺ݆ ൅ ͳሻth  row 
contains zeros only. This makes D singular, although the matrix is not inverted; therefore the problem 
with det ࡰ ൌ Ͳ is still solvable. The under-determined system of linear equations in the case of vMCG 
will lead to numerical difficulties which requires regularisation. In the case of CCS only D1 and b1 are 
calculated; this system has unambiguous solutions. 
The probability that in a Monté-Carlo sampled basis (used for sampling S1 and S3) one basis vector 
will be equivalent to the initial wave function is practically zero. However if a sampling condition 
similar to S2 is required, vMCG can always be regularised at the very first step by either regularising 
matrix D or by propagating the first few steps with CCS which is a simpler and physically more 
justifiable solution. 
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Figures 

 

 

 

 

Fig.1  Real part of the autocorrelation function of a 1D Morse-potential given by vMCG with the 

basis set size of 10 Gaussians (solid line), compared results from Split-Operator method (crosses) 

 

 

 

 

 

Fig.2  Typical complicated quantum variational trajectories of a 1D Morse-potential with vMCG 

(dashed line) and simple CCS (solid line) 
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Fig. 3  Real part of the autocorrelation function for 2D Henon-Heiles problem. CCS and vMCG with 

the basis of 100 CSs (frames a and b).  CCS with the basis of 300 CSs and therefore with the same 

amount of variational parameters (frame c).  The results are compared with those of split operator 

method (crosses).  
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Fig. 4   Real part of the autocorrelation function for 6D Henon-Heiles problem.  CCS and vMCG with 

the basis of 100 CSs (frames a and b).  CCS with the basis of 700 CSs and therefore with the same 

amount of variational parameters (lower frame c).  The results are compared with those of MCTDH 

method (crosses). 
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Fig. 5  Real part of the autocorrelation function for 10D Henon-Heiles problem with CCS with the 

basis of 100 CSs (solid line) compared with results from MCTDH (crosses) (frame a) and the first 

recurrence (frame b) 

 

 

 

 

 

 

Fig. 6  Real part of the autocorrelation function for 10D Henon-Heiles problem with CCS with the 

basis of 1000 CSs (solid line) compared with results from MCTDH (crosses) (frame a) and the first 

recurrence (frame b) 
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Fig. 7  Real part of the autocorrelation function for 10D Henon-Heiles problem with vMCG with the 

basis of 100 CSs (solid line) compared with results from MCTDH (crosses) (frame a) and the first 

recurrence (frame b) 

 

 

 

 

 

 

Fig. 8  Comparison of the second recurrence of the autocorrelation function for 10D Henon-Heiles 

problem obtained with CCS (1000 CSs) and vMCG (100 CSs) (frame a and b). Results from MCTDH 

are shown by crosses. 
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Fig. 9  Absolute value of the autocorrelation function for 18D Henon-Heiles problem with CCS 

(3000CSs) and its convergence (frame a and b). Results from ML-MCTDH are shown by dashed line 

on frame (a). 

 

 

 
 

 

Fig. 10  Absolute value of the autocorrelation function for 18D Henon-Heiles problem with vMCG 

(150CSs) and its convergence (frame a and b). Results from ML-MCTDH are shown by dashed line on 

frame (a). 
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Fig. 11  Absolute value of the autocorrelation function for 18D Henon-Heiles problem of strong 

coupling, with CCS (4000 CSs) (frame a) and with vMCG (200 CSs) (frame b). Results from ML-

MCTDH are shown by dashed line on both frames. 

 

 

 

 
 

 

Fig. 12  Absolute value of the autocorrelation function for 1458D Henon-Heiles problem (System 1) 

with CCS (500CSs) (frame a and b). Results from ML-MCTDH are shown by dashed lines on both 

frames. 
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Fig. 13  Absolute value of the autocorrelation function for 1458D Henon-Heiles problem (System 2) 

with CCS (500CSs) (frame a and b). Results from ML-MCTDH are shown by dashed lines on both 

frames.  The difference between CCS and ML-MCTDH autocorrelation function for the System 2 is 

less then the difference between ML-MCTDH results for System 1 and System 2 

 

 

 

 

 
 

Fig. 14  Comparison of absolute value of the autocorrelation function for 1458D Henon-Heiles 

problem. The CCS autocorrelation functions for System 1 and System 2 shown at the frame (a) 

coinside.  The ML-MCTDH results for the two systems are shown at the frame (b).  
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Tables 

 

 

 

number of 
initial basis-
vectors 

deviation from 
MCTDH 
1st recurrence 

deviation from 
MCTDH 
2nd recurrence 

running 
time  
[sec] 

compression 
[n=0.9905] 

remaining 
basis-vectors 

number of 
variational 
parameters 
(number of 
remaining 
parameters are in 
brackets) 

25 0.9495 0.2857 1.7 4.16 10 25 (10) 

500 0.3752 0.2213 730.5 1.73 195 500 (195) 

1000 0.3062 0.1519 2965.8 1.55 425 1000 (425) 

 

Table 1.  Deviation of the CCS result from that of MCTDH for a different number of initial basis-

vectors 

 

 

 

number of 
initial basis-
vectors 

deviation from 
MCTDH 
1st recurrence 

deviation from 
MCTDH 
2nd recurrence 

running 
time  
[sec] 

Compression 
[n=0.9905] 

remaining 
basis-vectors 

number of 
variational 
parameters 
(number of 
remaining 
parameters are in 
brackets) 

10 1.0586 0.2419 0.4 7.055 1 111 (11) 

50 0.5252 0.2650 24.7 3.24 20 550 (220) 

100 0.2536 0.1639 138.7 2.65 35 1100 (385) 

 

Table 2. Comparison of the vMCG result with that of MCTDH for a different number of initial basis-

vectors 


