
This is a repository copy of Coupled-coherent-states approach for high-order harmonic 
generation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/88788/

Version: Accepted Version

Article:

Symonds, C, Wu, J, Ronto, M et al. (3 more authors) (2015) Coupled-coherent-states 
approach for high-order harmonic generation. Physical Review A, 91 (2). 023427. ISSN 
1050-2947 

https://doi.org/10.1103/PhysRevA.91.023427

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Coupled coherent state approach for high-order harmonic generation

C. Symonds,1 J. Wu,2 M. Ronto,1 C. Zagoya,2 C. Figueira de Morisson Faria,2 and D. V. Shalashilin1

1School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
2Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, United Kingdom

In this paper we report a version of the Coupled Coherent States (CCS) method which is able to
accurately compute the HHG spectrum of an electron in a laser field in one dimension by the use of
trajectory-guided grids of Gaussian wavepackets. It is shown that by periodic re-projection of the
wavefunction and dynamically altering the basis set size, the method can account for a wavefunction
which spreads out to cover a large area in phase space while still keeping computational expense low.
The HHG spectra obtained show good agreement with those from a time dependent Schrödinger
equation solver. We show also that the part of the wavefunction which is responsible for HHG moves
along a periodic orbit which is far from that of classical motion. Although this paper is a proof of
principle and therefore focussed on a simple one-dimensional system, future generalisations for the
multi-electron case are discussed.

PACS numbers: 33.20.Xx, 42.50.Hz

I. INTRODUCTION

High-order harmonic generation (HHG) is a phe-
nomenon in which matter responds highly non-linearly
to an input near-infrared field, generating high-frequency
radiation up to the extreme ultraviolet regime [1]. This
phenomenon has a wide range of applications, such
as coherent light sources in the extreme ultraviolet
[2–4] and soft x-ray [5–7] frequency range, attosecond
(10−18 s) pulse generation [8–10], and attosecond
molecular imaging [11, 12]. HHG can be explained by
means of the well-known semi-classical three-step model
[13–16] or equally well by the fully quantum version
given by Lewenstein et al.[17]. The three step model
splits the process into three distinct stages; firstly an
electron tunnels through the barrier formed by the
Coulomb potential and the laser field, then oscillates
and gains kinetic energy under the influence of the laser
field before finally being pulled back to recombine with
the parent ion when the laser field inverts its direction,
resulting in the emission of a harmonic photon. Both
experimental and theoretical studies have shown that
this process produces a spectrum which has a typical
character, decreasing rapidly for the first few harmonics,
then exhibiting a broad plateau before ending with a
sharp cut-off. This cut-off is related to the maximal
kinetic energy the electron has upon return, and this
kinetic energy is itself related to the ponderomotive
energy UP , which for a monochromatic driving field is
given by UP = E2

0/4ω
2
0 where E0 and ω0 are respectively

the laser field intensity and frequency. If the electron
starts from the core and is acted on by a monochromatic
field, this kinetic energy is equal to 3.17 UP .

At present, several theoretical approaches have been
established to compute HHG spectra. The numerical
solution of the time-dependent Schrödinger equation
contains no physical approximations and is straightfor-
ward for one-dimensional, one-electron systems [18, 19],

but as the numerical effort increases exponentially with
the number of degrees of freedom, it is not applicable to
a three-dimensional complex system. This is a serious
obstacle towards modelling correlated multi-electron
dynamics in the attosecond regime, which are important
as these dynamics play a major role in many strong-field
phenomena such as, for example, electron migration and
attosecond hole creation (for a review see, e.g., [20] and
references therein). Furthermore, as it lacks the clarity
of an orbit-based picture it is difficult to define a physical
interpretation using this method. One may however
employ semi-analytical approaches such as the strong
field approximation (SFA). The SFA underlies many
of the current analytical approaches to HHG and also
other strong-field phenomena such as above-threshold
ionisation (ATI) or non-sequential double ionisation
(NSDI), providing a transparent physical picture for
quantum interference in these phenomena [21–23].
When using the SFA however, the laser field is neglected
when the electrons are bound to atoms or molecules,
the Coulomb potential is neglected when the electrons
are in the continuum, and the internal atomic structure
is over simplified. In particular, approximating the
continuum by field-dressed plane waves poses serious
difficulties when the interplay between the Coulomb
potential and the external field becomes important such
as is the case for the prominent low-frequency structure
[24–27] and fan-shaped interference pattern [28, 29] in
ATI, or for NSDI in circularly polarised fields [30, 31].
Recently, Coulomb-corrected analytical approaches have
been developed and successfully applied to strong field
phenomena [24, 32–34]. These approaches however
require the external field to be dominant.

In light of the above problems, an alternative method
is desirable which is orbit-based, but makes no sim-
plifications on the target/binding potential. One such
alternative is the Coupled Coherent States (CCS)
method [35–39]. This method allows the simulation



2

of multidimensional many-body quantum dynamics by
projecting the wavefunction onto a basis of trajectory-
guided coherent states coupled through time propagation
equations. The trajectories along which the wavefunc-
tion is propagated are not guided by a classical potential
unlike in some other trajectory guided methods (mainly
semi-classical in nature), but instead are guided by a
quantum average over the guiding coherent states. This
incorporates corrections into the potential, accounting
for such effect as zero point energy and resulting in a
shallower potential after the fashion of [40]. As such, the
CCS equations describe a method which is, in principle,
formally exact and is capable of simulating non-classical
events such as quantum interference effects [35] and
multidimensional tunnelling [37]. A variation of the CCS
method has also been applied successfully in the strong
field context [41]. In phenomena for which coherence
is important however there exists a major challenge to
overcome, namely that as the wavefunction propagates
in phase space the interference may not be accurately
represented by a small CCS basis. This happens due to
the fact that at longer times trajectories can misguide
the basis, making propagation less and less accurate.

In this article we endeavour to address these concerns,
and to show that with simple technical modifications to
the standard CCS method, the generation of HHG spec-
tra can be achieved giving a good agreement with spec-
tra generated by use of the time-dependent Schrödinger
equation. A similar version of the CCS method to that
reported here has been used previously in Ref. [42] for the
study of quantum dynamics in phase space. In Section II
we provide the necessary theory in order to understand
our results including an overview of the CCS method
and its governing equations (sections IIA and IIB), a
description of the theoretical model used to show the ef-
ficacy of the CCS method for generating HHG spectra
(section IIC) and a description of the necessary modifi-
cations made to the CCS method in order to model this
system (section IID). In section III we present the results
of our simulation. Since the CCS method models quan-
tum mechanics in phase space our numerical experiment
can be visualised in terms of an orbit which the part
of the wavefunction responsible for HHG follows. We
show that this orbit is very different from that of clas-
sical mechanics. In section IV we draw our conclusions
and discuss the possibility of using CCS with modifica-
tions suggested in this paper for accurate description of
multi-electron systems.

II. THEORY

A. Coupled Coherent States

In the CCS method a wavefunction is represented as a
superposition of trajectory guided coherent states. In the
coordinate representation, these one-dimnensional coher-

ent states are Gaussian wavepackets [43] centred at posi-
tion q with momentum p which can be expressed in the
form

〈x| z〉 =
(γ

π

)
1
4

exp

(

−γ
2
(x− q)

2
+
i

~
p (x− q) +

ipq

2~

)

.

(1)
These coherent states are eigenstates of the annihilation
operator such that

â |z〉 = z |z〉
〈z| â† = 〈z| z∗

(2)

where â and â† are the annihilation and creation opera-
tors respectively, and hence

z =
(γ

2

)
1
2

q +
i

~

(

1

2γ

)
1
2

p

z∗ =
(γ

2

)
1
2

q − i

~

(

1

2γ

)
1
2

p

(3)

where γ, the coherent state width parameter can be as-
sumed to be unchanging with a value of γ = mω/~ where
m is the particle mass and ω is the interior frequency,
and as calculations are in atomic units it is assumed that
m = ω = 1, and also ~ = 1.
The coherent states can be used to construct a non-
orthogonal basis where the basis vectors have a non-zero
overlap given by

〈z′| z〉 = exp

[

z∗z − z∗′z′

2
− z∗z

2

]

(4)

and act upon the Hamiltonian of a system such that
〈

z′
∣

∣

∣
Ĥ

∣

∣

∣
z
〉

= 〈z′| z〉Hord(z
′∗, z) (5)

with Hord(z
′∗, z) being the classical analogue of the

normally ordered Hamiltonian Ĥord(â†, â) in which the
powers of â† precede those of â, as can be seen by
consideration of equation (2). Equation (5) is simply

a way to find
〈

z′
∣

∣

∣
Ĥ

∣

∣

∣
z
〉

by integration, and the use of

the ordered Hamiltonian in this greatly simplifies the
equations in some cases.

It should be noted that the equations as they have
been given are one-dimensional in nature and multi-
dimensional coherent states can be shown as products
of M one-dimensional states such that

|zk(t)〉 =
M
∏

m=1

∣

∣

∣
z
(m)
k (t)

〉

. (6)

In the CCS method, the wavefunction is given in terms of
a finite sum of these coherent states each with a quantum
amplitude such that

|Ψ(t)〉 =
∑

k=1,N

|ψk(t)〉

=
∑

k=1,N

Ak(t) |zk(t)〉
(7)
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for a finite set of N bases where the fast oscillating am-
plitude Ak(t) is chosen such that |Ψ(t)〉 is normalised
over all k and can be split into a smooth pre-exponential
factor and the classical action such that

Ak(t) = Dk(t)e
iSk(t) (8)

where the action Sk is given by

Sk(t) =

∫
[

i
żk(t)z

∗
k(t)− zk(t)ż

∗
k(t)

2
−
〈

zk(t)
∣

∣

∣
Ĥ

∣

∣

∣
zk(t)

〉

]

dt.

(9)
The initial values for the Dk(0) pre-factors arise from the
discretised identity formula

I =
∑

j,k=1,N

|zj(t)〉Ω−1
jk 〈zk(t)| (10)

where Ω
−1 is the inverse of the overlap matrix Ω with

elements

Ωjk = 〈zj(t)| zk(t)〉 =
M
∏

m=1

〈

z
(m)
j (t)

∣

∣

∣
z
(m)
k (t)

〉

. (11)

By applying this identity to the initial wavefunction
|Ψ(0)〉 at time t = 0,

|Ψ(0)〉 = I |Ψ(0)〉
=

∑

j,k=1,N

|zj(0)〉Ω−1
jk 〈zk(0)| Ψ(0)〉

=
∑

j=1,N

Dj(0) |zj(0)〉
(12)

If then an amplitude Ck(0) = 〈zk(0)| Ψ(0)〉 is defined
then the initial values in the vector Dj can be found by
solving the system of linear equations

Ck(0) = ΩjkDj(0). (13)

B. Dynamics Equations for the CCS method

Dynamics in the CCS method for a particular basis
function |ψk(t)〉 are determined by the time propagation
equations for the action Sk, the coherent state |zk〉 and
the smooth pre-exponential factor Dk. The equations
governing this are calculated more fully in previous pub-
lications, for example [38], but a brief overview is given
here.
The time propagation equation for zk is calculated using
the single configurational Lagrangian

Lk =

〈

ψk(t)

∣

∣

∣

∣

i
∂

∂t
− Ĥ

∣

∣

∣

∣

ψk(t)

〉

. (14)

By applying Hamilton’s equations to this Lagrangian it
can be found that

iżk =
∂Hord(z

∗
k, zk)

∂z∗k
. (15)

The coupling between the coherent states is governed by
the time propagation equations for the pre-exponential
factor Dk, and as such the time derivative equations are
calculated from the complete wavefunction |Ψ(t)〉. While

the equation for Ḋk can be calculated by use of the vari-
ational principle, a much simpler derivation is possible
by use of the time dependent Schrödinger equation. Us-
ing this method, it can be seen that for the wavefunction
described by equation (7),

∑

i

〈zj | zi〉
dAi

dt
= −i

∑

k

[

〈

zj

∣

∣

∣
Ĥ

∣

∣

∣
zk

〉

−i
〈

zj

∣

∣

∣

∣

∂zk
∂t

〉]

Ak.

(16)

By using equation (8) and the relationship that

〈zj | żk〉 = 〈zj | zk〉
(

z
∗
j żk − z

∗
kżk + zkż

∗
k

2

)

, (17)

it is fairly straight forward to calculate that

∑

i

〈zj | zi〉
dDi

dt
=

− i
∑

k

〈zj | zk〉 δ2H ′
ord(z

∗
j , zk)Dke

i(Sk−Si)
(18)

where

δ2H ′
ord(z

∗
j , zk) =Hord(z

∗
j , zk)−Hord(z

∗
k, zk)

− i
(

z∗j − z∗k
)

żk.
(19)

The coupling matrix 〈zj | zk〉 δ2H ′
ord(z

∗
j , zk) is small and

traceless as δ2H ′
ord(z

∗
j , zk) is small for coherent states

close to each other, and the overlap 〈zj | zk〉 is small for
coherent states remote from each other. Equation (18)
can be solved without matrix inversion as a system of
linear equations for dDi/dt, and this equation together
with equations (9) and (15) make up the governing
equations of the method.

The CCS theory can also be formulated in terms of a
continuum over-complete basis where the identity oper-
ator in 1D is given as

I =
1

π

∫

d2z |z〉 〈z| . (20)

Under these conditions, in equation (18) for the am-
plitudes, the sum will be replaced by an integral and
(18) becomes an integro-differential equation (see [35] for
more details). The continuum form of CCS theory has
been used to derive various approximations such as the
semi-classical Herman-Kluk theory and Heller’s Frozen
Gaussian Approximation [44]. Also several modifications
of the CCS method exist, which include Fermionic CCS
[41], Multilayer CCS [45] and the more generalised mul-
ticonfigurational Ehrenfest approach [46, 47] and its ab

initio “on the fly” version [48–50].
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C. Model

In this article, for the sake of simplicity and as only a
proof of principle is required here, we consider a model
where a single electron interacts with a strong laser field
and consider only the motion along the principle axis of
the laser field as a one-dimensional system. The Hamil-
tonian of such a system can be given as

H =
p2

2
+ Va + Vε (21)

where Va is the binding potential and Vε is the interac-
tion potential with the laser field in the length gauge.
For simplicity, the binding potential used in this case is a
1D short range Gaussian potential VG(x) = −exp

(

−λx2
)

with a width of λ = 0.5, and the laser field interaction po-
tential used has the form Vε(x, t) = xE(t) = xE0cos(ω0t)
with intensity E0 = 0.1 and frequency ω0 = 0.05. Using
these potentials, an ordered Hamiltonian for this system
can be constructed in the coherent state formalism using
the z-notation such that

Hord(z
∗
j , zk) =− ~

2γ

4m

(

z∗2j + z2k − 2z∗j zk − 1
)

−
√

η

λ
exp

(

−ηρ2jk
)

+ ρjkE(t),
(22)

where ρjk = (z∗j + zk)/
√
2γ and η = γλ/(γ + λ). As

mentioned earlier, this reordering results in changes to
the effective potential, giving a shallower potential than
the form in coordinate representation such as that used
in [42]. The kinetic energy term of the Hamiltonian
is obtained through operator reordering and the poten-
tial terms through integration with equation (1). The
HHG spectrum of this system is calculated from the
Fourier transform of the time-dependent dipole moment
d(t) which can be given in terms of a time-dependent

operator d̂(t)

d(t) =
〈

Ψ(t)
∣

∣

∣
d̂(t)

∣

∣

∣
Ψ(t)

〉

(23)

This is easily expanded out in terms of the elements of
the dipole momentum matrix djk such that

d(t) =
∑

j,k

D∗
jDkexp (i(Sk − Sj))

〈

zj

∣

∣

∣
d̂(t)

∣

∣

∣
zk

〉

=
∑

j,k

D∗
jDkexp (i(Sk − Sj)) 〈zj | zk〉 djk(t).

(24)

The dipole moment can be expressed in length, velocity
or acceleration forms [51, 52]. In the length form the
dipole moment is very large in regions away from the
core and hence the dynamics in these regions is over-
emphasised. In the velocity form no spatial region is
favoured over another. In the acceleration form however
the region close to the core is probed, which is the re-
gion in which HHG occurs according to the three-step

model. Using the Heisenberg equations this acceleration
form can be computed, and for the Gaussian potential
this gives

djk(t) =
〈

−∇~V (x)
〉

= −
(

γ

γ + λ

)
3
2

ρjke
−

γρ2
jk

2(γ+λ) (25)

where ρjk is the same as for equation (22)

D. The Adaptive Basis Re-projection Technique

It has been usual practice in previous applications of
the CCS method to construct the basis set for a CCS
wavefunction from a compressed random swarm which
follows a Gaussian distribution [38]. In the case consid-
ered in this article this initial distribution is unsuitable
for modelling the wavefunction as a compressed basis is
too localised to sufficiently describe the wavefunction
fully at long times. To remedy this the wavefunction
was described as a basis set corresponding to a grid in
phase space with a regular spacing between grid points.
This allows the initial wavefunction to be described
over a much larger area in phase space. This however
raised two further problems. Firstly, the dynamics of
this particular system cause the trajectories to guide
the wavefunction far from the initial position. This
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p
(t
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FIG. 1. The path of the trajectories initially located close
to the centre of the wavefunction as they propagate through
phase space. The smaller frame shows the path the trajec-
tories take in the region close to the origin. As a result of
this after a short time, approximately 20 a.u., the overlap be-
tween the wavefunction trajectories and the initial grid points
becomes too small for the CCS dynamics to be accurately cal-
culated and the coherent states lose coupling.

means that to accurately model the time evolution of
the wavefunction a very large grid would be needed.
Secondly a regular grid requires more trajectories to
describe the wavefunction, and the larger the grid the
higher the computational requirement, meaning that
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past a certain grid size the computational requirements
are too large for the system to be modelled effectively.

A solution to these problems can be found by using an
adaptive re-projection technique. This technique serves
to keep the maximum size of the grid low, needing to
only describe a large enough area in phase space to ac-
count for the movement of the wavefunction over a small
time τ . A further reduction in overall computational cost
of over 50% can be achieved by truncating those tra-
jectories which do not give a large contribution to the
wavefunction. Similar techniques have been used in the
past to counter time restrictions in simulations using the
Herman-Kluk method [53, 54], the hybrid Heller Frozen
Gaussian method [55, 56], or in the phase space approach
[57] with success. This technique consists of three stages:

(i) The overlap between the wavefunction |Ψ(t)〉 made
up of N basis functions |ψk(t)〉 and the initial regu-

lar grid made up of N0 grid points zgridj , separated

by distances dq = ∆
√

2
γ
and dp = ∆

√
2γ, is calcu-

lated to find the quantity

C ′
j =

N
∑

k

〈

zgridj

∣

∣

∣
zk(t)

〉

Dk(t)e
iSk(t), (26)

then values of C ′
j which do not satisfy the condition

∣

∣C ′
j

∣

∣ ≥ ζ (27)

are discarded, leaving N ′ of the initial N0 values.
In equation (27), ζ is the basis threshold parameter.

(ii) The wavefunction is re-projected upon the initial
regular grid, not including those grid points which
correspond to values of C ′

j which have been dis-
carded. This is done by using a form of the identity
operator in equation (10) such that

|Ψ(t)〉 =
N ′

∑

i,j

N
∑

k

∣

∣

∣
zgrid

′

i

〉

Ω
−1
ij

〈

zgrid
′

j

∣

∣

∣
zk(t)

〉

Dk(t)e
iSk(t)

=

N ′

∑

i

D′
i

∣

∣

∣
zgrid

′

i

〉

.

(28)

As such the set of trajectories describing the wave-

function after re-projection is
∣

∣

∣
zgrid

′

i

〉

and the set

of amplitudes D′
i can be calculated from the set of

linear equations

C ′
j = Ω

grid′

ij D′
i (29)

with the action set back to S′
i = 0 ∀ i

(iii) The wavefunction is propagated for an amount of
time τ using the equations (15) and (18). The se-
lected grid points move and exchange amplitudes,
then re-projection is started again for the wavefunc-
tion |Ψ(t+ τ)〉

It can be immediately seen that both the accuracy and
computational cost of the method will increase as ζ → 0.

III. RESULTS

The adaptive grid CCS technique was tested on a grid
symmetrically ordered around a central point z0 which
was located in phase space at (q, p) = (0, 0). The coher-
ent state |z0〉 is a good approximation to the ground state
of the system. It was found empirically that an initial
grid of 80 × 20 points was sufficient to model the wave-
function, with an additional point located at z0 which
serves to provide additional stability. The size of the
grid on the q-axis must of course account for the max-
imum displacement experienced by the wavefunction so
as to avoid significant lost amplitude from the trajecto-
ries near the edge of the grid which would greatly affect
the norm. Since for larger values of the basis threshold
parameter the wavefunction is likely to be projected on
fewer trajectories, these values require denser grids to ad-
equately describe the wavefunction. The density of the
grid is determined by the spacing parameter ∆ and, by
choosing the value of ∆ correctly, the initial norm of the
wavefunction is set very to close to unity. To evaluate
the quality of results, the properties of a wavefunction
calculated using the CCS method was compared against
those calculated using the time dependent Schrödinger
equation solver, considering various values for the basis
threshold parameter.
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FIG. 2. Changing number of basis vectors for different values
of the basis threshold parameter investigated in a logarithmic
fashion. Selected values values from a range of ζ = 10−1

to ζ = 10−10 are given, namely ζ = 10−1 (large dashed),
ζ = 10−3 (small dashed), ζ = 10−5 (dotted) and ζ = 10−8

(dot-dashed), as well as the case where ζ = 0 (solid) and so
the number of basis vectors stays constant.

For ζ 6= 0, as the system is propagated in time the
wavefunction spreads out and the number of basis
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FIG. 3. Motion of the wavefunction over time on a grid of 80 × 20 coherent states with a separation of ∆ = 1.59 a.u.

and with ζ = 10−3. Each pane illustrates the entire grid, with whitespace denoting areas where the gridpoints are omit-
ted during reprojection. The panes show the motion of the important parts of the wavefunction after reprojection at
t = 20 a.u., 42 a.u., 74 a.u., and 117 a.u., and clearly illustrates how the external field has an effect on the wavefunc-
tion, drawing a portion of it into an elliptical motion around the core of the wavefunction. The elliptical motion of this portion
of the wavefunction is illustrated by the dashed line.

vectors above the cut-off increases until it reaches a
plateau value around which it stays for the duration of
propagation. This can be seen in figure 2. The value at
which the number of basis vectors plateaus determines
how computationally expensive the simulation is, and
so it is desirable to use the largest possible value of
the basis threshold parameter which allows for accurate
simulation of the system, referred to hereafter as the
maximum effective cut-off, ζMEC . The ζMEC value
was determined based on the agreement of the auto-
correlation function (ACF) with that calculated using
the TDSE solver.

As the CCS method represents the quantum dynamics
in phase space, the motion of the wavefunction can easily
be visualised. Figure 3 illustrates the dynamics of the
wavefunction in a periodic field, showing the amplitudes
of the different grid points while omitting those which
are removed by the reprojection process for four values

of t. For an initial wavepacket starting at the origin,
the wavefunction starts very localised before spreading
starting from the high and low momenta points. The
wavefunction then spreads more in the region where
the momenta of the grid points are close to zero and a
substantial portion of the wavefunction begins motion
in an elliptical orbit around the origin as it interacts
with the external field. This motion illustrates how the
wavefunction loses some amplitude at the edges of the
grid when the external field is at maxima or minima,
and as such shows that during propagation a part of
the wavefunction irreversibly leaves the dynamically
important part of the phase space. It can be seen that
the orbit travelled by this portion of the wavefunction
differs from that of the classical motion because without
reprojection the basis coherent states guided by Hamil-
ton’s equations (Eq. 15) move quickly away from the
most important region around the elliptical orbit, as can
be inferred from the motion of the trajectories shown in
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ues respectively of the ACFs when no reprojection is carried
out on the wavefunction. Here the black dashed line is the
CCS result and the red solid line is the result from the TDSE
solver.

figure 1.

The efficacy of the reprojection technique can be de-
termined by the auto-correlation function (ACF) which,
unlike some other measures, is sensitive to changes
over the entire wavefunction. When reprojection is not
used the coupling between the coherent states is quickly
lost. This results in the ACF decaying in both the
real and imaginary parts as is shown in figure 4. With
reprojection however, the coupling is maintained and
although some information is lost at the edges of the
grid the wavefunction still remains valid, as is shown
in figure 5(a) , which shows the absolute value of the
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FIG. 5. Pane (a) gives comparison between the absolute val-
ues of the auto-correlation functions produced by the TDSE
solver and the CCS method with ζ = 0, showing near total
agreement. Pane (b) gives the comparison between the abso-
lute values of the auto-correlation functions produced by the
TDSE solver and the CCS method for the first few values of
the basis threshold parameter. It can be seen that the ACF
for ζ = 10−1 shows visible differences compared to the TDSE
solver plot, but for values of ζ ≤ 10−3 the ACF begins to con-
verge well towards the TDSE result, close enough that values
for ζ = 10−5 agrees almost exactly with the TDSE solver plot.
Reprojection is carried out at every τ = 1a.u. and the inten-
sity of the external field is set at E0 = 0.1 with a frequency of
ω0 = 0.05 for both comparisons. In all cases the wavepacket
initially starts at (q,p) = (0,0).

ζ ∆ Nfinal % speed-up

0 1.75 1601 -

1× 10−10 1.75 1547 11.27
1× 10−8 1.75 1521 16.04
1× 10−6 1.75 1427 34.67
1× 10−5 1.74 1196 61.56
1× 10−4 1.71 715 89.23
1× 10−3 1.59 328 98.44
1× 10−2 1.28 39 99.88
1× 10−1 1.00 15 99.99

TABLE I. Table of the parameters for the different wavefunc-
tions. The grid parameter ∆ shows how the density of the
grid increases as the basis threshold parameter increases, and
the link between the computational expense and the number
of basis functions can be clearly seen.

ACF for both the TDSE solver and the CCS method
with ζ = 0. As the two auto-correlation functions are
in almost complete agreement this confirms the efficacy
of the basic re-projection procedure. For other values
of the basis threshold parameter the agreement between
the plots varies.

For the higher values of ζ there are noticeable dis-
crepancies (figure 5(b)), however for values of ζ ≤ 10−3,
the plots converge towards the TDSE solver calculation
result. Indeed, the ACF for ζ = 10−5 is virtually
indistinguishable from the TDSE result, and it can be
seen from this and from table I that using ζMEC = 10−5

is sufficient for accurate calculation of the ACF of the
system while also reducing the computational expense
of the simulation by over 50%. Even a very cheap
calculation with the threshold parameter ζ = 10−3,
which reduces computational cost by 98.4%, produces a
result which is in good agreement with the benchmark
for most of the propagation time.
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FIG. 6. Comparison between dipole acceleration graphs for
the ζ = ζMEC CCS calculated wavefunction and the TDSE
calculated plot
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As mentioned earlier, the HHG spectrum is found by
taking the Fourier transform of the dipole moment d(t),
which is calculated here in acceleration form so as to
better probe the core. The plot of the dipole accel-
eration is given in figure 6, comparing the TDSE and
CCS dipole accelerations, with the CCS plot calculated
with ζ = ζMEC . The dipole acceleration exhibits a se-
ries of high-frequency oscillations. These oscillations, to-
gether with spatial localisation are responsible for the
HHG plateau. Similar oscillations have also been identi-
fied and discussed in previous publications using TDSE
computations [58] and the HK propagator [59] for cases
where an initial wavepacket starts far from the core, and
have been associated with the interference between dif-
ferent types of electron trajectories. The oscillations have
also been studied in a different context, namely the adi-
abatic approximation [60, 61] and Bohmian trajectories
[62, 63].

The extent to which the plots agree is good, being al-
most identical until the very end of the third oscillation
of the cosine field. This agreement persists in the HHG
spectrum. Figure 7 shows the HHG spectrum obtained
from the TDSE solver compared against that from the
CCS method for various values of the basis threshold pa-
rameter. The first panel shows the HHG spectrum for
ζ = 10−1, and as can be seen the comparison with the
TDSE solver generated spectrum is not very good, show-
ing differences in the overall intensity in the region be-
tween around 25ω0 and the cut-off, disagreements with
the positions of many of the peaks in the spectrum and
fluctuations after the cut-off point which could confuse
the position of the cut-off The second panel is an im-
provement on this, using ζ = 10−3. This gives a much
better agreement in the overall intensities over the spec-
trum, and much better agreement in the peak positions,
however shows fluctuations after the cutoff which are not
present in the TDSE solver spectrum. The third panel
gives the spectrum for ζ = ζMEC , and it can be seen
that there are few differences between this spectrum and
that in the fourth panel where ζ = 0, indeed despite the
smaller basis set the HHG spectrum when ζ = ζMEC is
virtually unchanged from the ζ = 0 spectrum. In both
the third and fourth panels the spectra generated by the
CCS calculation show excellent agreement with that of
the TDSE solver, exhibiting the cut-off and plateau in
the correct regions and agreeing almost completely for
the features of the spectrum, although some low ampli-
tude fluctuations after the cut-off are still present due to
numerical effects.

IV. CONCLUSIONS

In summary, the work presented in this article demon-
strates the ability of the Coupled Coherent States (CCS)
method to accurately simulate strong field phenomena
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such as the HHG spectrum of an electron in a laser field
in one dimension. It has been shown that when using
a large grid of coherent states as a basis, trajectory
decoupling can be prevented through re-projection
of the wavefunction and computational cost can be
reduced by adaptively reducing the basis set size. This
has allowed the method to account for wavefunctions
which spread out to cover large areas in phase space
without being prohibitively computationally expensive.
The re-projection of the wavefunction relies on a large
regular grid which scales exponentially with the number
of degrees of freedom of a system. Since only a small
part of the grid is kept during the re-projection however,
the cost of the computation can be greatly reduced,
with very accurate results obtained with a > 60%
speedup, and a good reproduction of the majority of the
spectrum with a > 98% speedup. The CCS method is an
accurate simulation technique, which allows numerical
experiments in realistic and complicated quantum
systems. By representing quantum dynamics in phase
space it allows the visualisation of the trajectories of
quantum wavefunctions. In the particular case of a
single electron in a periodic electric field it is shown
that the wavefunction is localised around an elliptical

orbit which however is non-classical and needs to be
understood.

Furthermore, for multidimensional systems we expect
the reduction of the grid to play even greater role than
here, hence further reducing computational cost. In addi-
tion the CCS method using the re-projection scheme can
be used in the future to treat only the most important
degrees of freedom in a system with the rest treated by a
single Gaussian, in the spirit of the multiconfigurational
Ehrenfest method [45–47], which will be the subject of
future work aiming at more challenging multi-electron
systems.
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