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A convection-driven multiscale dynamo model is developed in the limit of low Rossby
number for the plane layer geometry in which the gravity and rotation vectors are aligned.
The small-scale fluctuating dynamics are described by a magnetically-modified quasi-
geostrophic equation set, and the large-scale mean dynamics are governed by a diagnostic
thermal wind balance. The model utilizes three timescales that respectively characterize
the convective timescale, the large-scale magnetic evolution timescale, and the large-scale
thermal evolution timescale. Distinct equations are derived for the cases of order one and
low magnetic Prandtl number. It is shown that the low magnetic Prandtl number model
is characterized by a magnetic to kinetic energy ratio that is asymptotically large, with
ohmic dissipation dominating viscous dissipation on the large-scales. For the order one
magnetic Prandtl number model the magnetic and kinetic energies are equipartitioned
and both ohmic and viscous dissipation are weak on the large-scales; large-scale ohmic
dissipation occurs in thin magnetic boundary layers adjacent to the horizontal bound-
aries. For both magnetic Prandtl number cases the Elsasser number is small since the
Lorentz force does not enter the leading order force balance. The new models can be
considered fully nonlinear, generalized versions of the dynamo model originally devel-
oped by Childress and Soward [Phys. Rev. Lett., 29, p.837, 1972], and provide a new
theoretical framework for understanding the dynamics of convection-driven dynamos in
regimes that are only just becoming accessible to direct numerical simulations.

1. Introduction

It is now generally accepted that many of the observed planetary and stellar magnetic
fields are the result of convectively driven dynamos (Miesch 2005; Stanley & Glatzmaier
2010). Direct numerical simulations (DNS) of the complete set of governing equations are
now routine practice, but remain limited to parameter values that are quite distant from
natural systems owing to the massive requirements for numerically resolving disparate
spatiotemporal scales (e.g. Jones 2011). The stiff character of the governing equations,
while an impediment to DNS, provides a possible path forward for simplifying, or re-
ducing, the governing equations with the use of multiscale asymptotics (e.g. Julien &
Knobloch 2007; Klein 2010). Balanced flows, in which two or more forces in the momen-
tum equations are in balance, are particularly suitable for asymptotic analysis given the
subdominance of inertial accelerations. Indeed, reduced models based on the geostrophic
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balance, in which the Coriolis and pressure gradient forces balance, have formed the
backbone for theoretical and numerical investigations on the large-scale dynamics of the
Earth’s atmosphere and oceans for over 60 years (Charney 1948; Pedlosky 1987).
It is an unfortunate fact, however, that direct measurements of the forces present

within the electrically conducting regions of natural systems are not possible. That most
large-scale planetary and stellar magnetic fields are aligned with their respective rotation
axes (e.g. Schubert & Soderlund 2011) suggests that the Coriolis force plays a key role in
the magnetic field generation process, at least with respect to the large-scale dynamics.
For the case of the Earth’s liquid outer core, viscous stresses are likely to be small for
large-scale motions there (Pozzo et al. 2013), and observations tracking the movement
of the geomagnetic field show that typical convective timescales are significantly longer
than the rotation period (Finlay & Amit 2011). These studies suggest that the large-scale
dynamics within the core may be geostrophically balanced (Jault et al. 1988; Jackson
et al. 1993; Gillet et al. 2010; Schaeffer & Pais 2011; Gillet et al. 2012). Alternatively, it
has been hypothesized that the Lorentz force can balance with the Coriolis and pressure
gradient forces to yield magnetostrophically balanced motions at certain lengthscales
within the core (Roberts 1988; Moffatt 2008). It can be argued that only geostrophically
balanced dynamos have been observed with DNS (e.g. Soderlund et al. 2012; King &
Buffett 2013) (However, see the plane layer investigation of Rotvig & Jones (2002)).

In a seminal investigation, Childress & Soward (1972) demonstrated that laminar con-
vection in a rotating plane layer geometry is capable of supporting dynamo action. They
outlined three unique distinguished limits, or balances, in the governing equations that
can occur based on the relative strength of the magnetic field, which they referred to as
the weak field, intermediate field, and strong field limits. Soward (1974) (denoted S74
hereafter) and Fautrelle & Childress (1982) (denoted FC82 hereafter) subsequently in-
vestigated the weak and intermediate field limits in greater detail; for both investigations
the flows were weakly nonlinear. S74 showed that stable periodic dynamos exist in the
weak field limit, whereas Fautrelle & Childress (1982) found that dynamos of intermedi-
ate field strength may be dynamically unstable and thus lead to strong field states as the
flow saturates. For simplicity, we refer to both the S74 and FC82 cases as the Childress-
Soward dynamo model (denoted by CSDM), since they were first discussed by Childress
& Soward (1972) and the only difference between the two models is the strength of the
magnetic field. The basis for the CSDM is that the Ekman number EH = ν/2ΩH2 is
taken as a small parameter, where ν is the kinematic viscosity, Ω is the rotation rate
and H is the depth of the fluid layer. In this case convection is spatially anisotropic with
large aspect ratio H/ℓ≫ 1, where ℓ characterizes the small horizontal length scale of the
convection (Chandrasekhar 1961). By expanding the flow variables in powers of E1/6, a
dynamical equation for the large-scale horizontal magnetic field is derived that is driven
by the mean electromotive force (emf) generated by the small-scale fluctuating velocity
and magnetic fields. Because the CSDM utilizes a single time scale, it applies to order
one thermal and magnetic Prandtl numbers, Pr = ν/κ and Pm = ν/η, respectively,
where κ is the thermal diffusivity and η is the magnetic diffusivity of the fluid.

The CSDM continues to provide an invaluable tool for understanding the differences
between large-scale and small-scale dynamo action, as well as aiding the interpretation
of results obtained from DNS studies. S74 showed that a dynamo driven by small-scale
rapidly rotating convection is necessarily large-scale. Many of the key features predicted
by S74, such as the vertical structure and oscillatory temporal evolution of the large-scale
magnetic field, have been confirmed with low Ekman number DNS (e.g. Stellmach &
Hansen 2004). Recent work has employed the CSDM for investigating kinematic dynamo
action driven by rotating convection (Favier & Proctor 2013). Mizerski & Tobias (2013)
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have extended the CSDM to include the effects of fluid compressibility via the anelastic
approximation, showing that density stratification tends to delay the onset of dynamo
action and reduces the strength of the resulting magnetic field.

In the present work we develop a new multiscale dynamo model that possesses many
similarities with the CSDM, but also significant differences. We refer to the new model as
the quasi-geostrophic dynamo model, or QGDM. Like the CSDM, the small-scale, convec-
tive dynamics are geostrophically balanced to leading order, but remain time-dependent
and fully nonlinear in the QGDM; our small-scale dynamical equations are a magnetically
modified version of the quasi-geostrophic convection equations developed by Julien et al.
(1998) (see also Julien et al. (2006) for a generalized development). The strength of the
magnetic field in the QGDM is asymptotically larger than that considered by FC82, but is
not a strong field in the sense that the Lorentz force does not enter the leading order force
balance. In addition to the small horizontal convective lengthscale ℓ, the QGDM includes
large-scale horizontal modulations LX that allow for a diagnostic thermal wind balance
in the large-scale momentum equations. Coupled with the large-scale heat equation, the
large-scale model (in the absence of a magnetic field) is the equivalent of the planetary
geostrophic equations commonly employed in oceanography (Robinson & Stommel 1959;
Welander 1959; Grooms et al. 2011) and atmospheric science (Phillips 1963; Dolaptchiev
& Klein 2009). (The so-called β-effect has been neglected in the present work though it
can easily be incorporated into the current model, e.g. see Grooms et al. (2011)). Be-
cause of the additional scale LX , the QGDM also possesses a non-zero large-scale vertical
magnetic field that is not present in the CSDM. Moreover, the new model utilizes three
disparate timescales characterizing the small-scale convective dynamics, the large-scale
magnetic evolution timescale, and the large-scale thermal evolution timescale. Both low
and order one magnetic Prandtl number cases are considered. The QGDM can be simu-
lated numerically to gain insight into large-scale magnetic field generation in planets and
stars, where we can utilize the success of previous non-magnetic work (e.g. Sprague et al.
2006; Julien et al. 2012a,b; Rubio et al. 2014; Stellmach et al. 2014), and the increases
in computational power that have occurred since the work of CS72.

In section 2 we present the asymptotic development of the model. In section 3 we
discuss some of the important features of the QGDM, its relationship with the CSDM,
and possible applications to natural dynamos. Concluding remarks are given in section
4.

2. Model Development

2.1. Governing Equations

We consider a rotating plane layer geometry with rotation vector Ω = Ω ẑ and constant
gravity vector g = −gẑ. The horizontal boundaries are located a vertical distance H
apart with the layer heated from the bottom boundary and cooled at the top boundary.
For simplicity, the fluid is assumed to be Newtonian and Boussinesq with density ρ and
thermal expansion coefficient α. The governing equations are then non-dimensionalized
utilizing the scales U , ℓ, ℓ/U , ∆T , P and B for the velocity, length, time, temperature,
pressure, and magnetic field, respectively. In the rotating reference frame with coordinates
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(x, y, z) the dimensionless governing equations are then

∂tu+ u · ∇u+
1

Ro
ẑ× u = −Eu∇p+M B · ∇B+ Γ θ ẑ+

1

Re
∇2u, (2.1)

∂tθ +∇· (uθ) =
1

Pe
∇2θ, (2.2)

∂tB = ∇× (u×B) +
1

Rm
∇2B, (2.3)

∇·u = 0, ∇·B = 0, (2.4)

where the velocity, pressure, temperature, and magnetic field are denoted by u = (u, v, w),
p, θ, and B =

(
B(x), B(y), B(z)

)
, respectively. Both the hydrostatic centrifugal force and

magnetic pressure have been absorbed in the pressure gradient term ∇p. The dimension-
less parameters are defined by

Ro =
U

2Ωℓ
, Γ =

gα∆Tℓ

U2
, Re =

Uℓ

ν
, Pe =

Uℓ

κ
, Eu =

P

ρU2
, (2.5)

M =
B2

ρµU2
, Rm =

Uℓ

η
. (2.6)

Here, Ro is the Rossby number, Γ is the buoyancy number, Re is the Reynolds number,
Pe is the Péclet number, Eu is the Euler number, M is the ratio of magnetic energy to
kinetic energy, and Rm is the magnetic Reynolds number. The permeability of free space
is denoted by µ. We recall that the thermal and magnetic Prandtl numbers characterizing
the fluid properties are related to the above parameters via the relationships Pe = RePr
and Rm = RePm. Importantly, in the present work we denote dimensionless parameters
that are based on the large-scale depth of the fluid layer with a subscript H, whereas
parameters without this distinction utilize the small convective scale ℓ.

In what follows we assume that the horizontal bounding surfaces are impenetrable,
stress-free and perfect thermal and electrical conductors such that

∂zu = ∂zv = w = ∂zB
(x) = ∂zB

(y) = B(z) = 0, at z = 0, H/ℓ, (2.7)

θ = 1 at z = 0, and θ = 0 at z = H/ℓ. (2.8)

The development given here parallels that of Julien & Knobloch (2007) and Grooms
et al. (2011) for other multiscale models. We find that three disparate timescales are
necessary to completely describe the temporal evolution of the dynamo; these are (1)
the timescale of the small-scale convective fluctuations (denoted by t), (2) the large-scale
magnetic evolution timescale (τ), and (3) the large-scale thermal evolution timescale
(T ). The small-scale, rapidly varying spatial and temporal coordinates are denoted as
(x, t), and the slowly varying large-scale coordinates are given by (X, τ, T ). The fields
are decomposed into mean and fluctuating components according to

u(x,X, t, τ, T ) = u(X, τ, T ) + u′(x,X, t, τ, T ), (2.9)

p(x,X, t, τ, T ) = p(X, τ, T ) + p′(x,X, t, τ, T ), (2.10)

θ(x,X, t, τ, T ) = θ(X, τ, T ) + θ′(x,X, t, τ, T ), (2.11)

B(x,X, t, τ, T ) = B(X, τ, T ) + b′(x,X, t, τ, T ), (2.12)

and the fluctuating magnetic field vector is b′ = (b′(x), b′(y), b′(z)). In Figure 1 a schematic
illustrating the general features of the model is shown. The mean quantities are defined
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Small-scale Fluctuating DynamicsSmall-scale Fluctuating Dynamics

Primary Balance:  Geostrophy

Primary Balance:  Thermal Wind Primary Balance:  Thermal Wind 

Large-scale Mean Dynamics

u′, p′, θ′,b′

u, p, θ,B

Ω

H
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Figure 1: Schematic summarizing the general features of the multiscale dynamo model.
The large-scale coordinate system is X = (X,Y, Z) and the small-scale coordinate system
is x = (x, y, z); the shaded boxes depict small-scale subdomains embedded within the
single large-scale domain. Large-scale mean dependent variables are given by (u, p, θ,B)
and the small-scale fluctuating dependent variables are (u′, p′, θ′,b′). Distinct equation
sets are developed for the large-scale and small-scale domains, with the mean dynam-
ics controlling the background state for the fluctuating dynamics and the fluctuating
dynamics feeding back onto the mean state via small-scale fluxes.

as averages taken over the fast scales according to

f(X, τ, T ) = lim
t′,V→∞

1

t′V

∫

t′,V

f(x,X, t, τ, T ) dx dt, f ′ ≡ 0, (2.13)

with the small-scale fluid volume denoted by V. With multiple scales the differentials
become

∂t → ∂t +
1

Aτ
∂τ +

1

AT
∂T , (2.14)

∇ → ∇+∇, (2.15)

where now∇ only acts on the small-scale coordinates x and the large-scale, mean gradient
operator is defined by

∇ =

(
1

AX
∂X ,

1

AX
∂Y ,

1

AZ
∂Z

)
. (2.16)

The various aspect ratios are defined according to

AX = AY =
LX

ℓ
, AZ =

H

ℓ
, Aτ =

t

τ
, AT =

t

T
. (2.17)

For simplicity we assume isotropic horizontal large-scale modulations (i.e. AX = AY ) in
the present work, though the approach remains completely general.
The governing equations become

(
∂t +

1

Aτ
∂τ +

1

AT
∂T

)
u+∇·

(
uutr

)
+∇·

(
uutr

)
+

1

Ro
ẑ× u =

−Eu
(
∇+∇

)
p+M

(
B · ∇+B · ∇

)
B+ Γ θẑ+

1

Re

(
∇2 +∇

2
)
u,

(2.18)

(
∂t +

1

Aτ
∂τ +

1

AT
∂T

)
θ +∇· (θu) +∇· (θu) =

1

Pe

(
∇2 +∇

2
)
θ, (2.19)
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∂t +

1

Aτ
∂τ +

1

AT
∂T

)
B = ∇× (u×B) +∇× (u×B) +

1

Rm

(
∇2 +∇

2
)
B, (2.20)

(
∇+∇

)
· u = 0,

(
∇+∇

)
·B = 0. (2.21)

The superscript “tr” appearing on some of the velocity vectors denotes a transpose.
Averaging the equations over fast temporal and spatial scales (x, t) results in the mean

equations
(

1

Aτ
∂τ +

1

AT
∂T

)
u+∇·

(
u(u)tr

)
+∇·(u′(u′)tr) +

1

Ro
ẑ× u =

−Eu∇p+MFL + Γ θ ẑ+
1

Re
∇

2
u,

(2.22)

(
1

Aτ
∂τ +

1

AT
∂T

)
θ +∇·

(
θ u

)
+∇·(θ′u′) =

1

Pe
∇

2
θ, (2.23)

(
1

Aτ
∂τ +

1

AT
∂T

)
B = ∇× (u×B) +∇× (u′ × b′) +

1

Rm
∇

2
B, (2.24)

∇ · u = 0, ∇ ·B = 0, (2.25)

where the mean Lorentz force is FL = B · ∇B+ b′ · ∇b′.
The fluctuating equations are found by subtracting the mean equations from the full

equations to give
(
∂t +

1

Aτ
∂τ +

1

AT
∂T

)
u′ + u · ∇u′ + u′ · ∇u−∇ · (u′(u′)tr) +

1

Ro
ẑ× u′ =

−Eu
(
∇+∇

)
p′ +M F′

L + Γ θ′ ẑ+
1

Re

(
∇2 +∇

2
)
u′,

(2.26)

(
∂t +

1

Aτ
∂τ +

1

AT
∂T

)
θ′ + u′ · ∇ θ + u · ∇θ′ +∇ · (u′θ′)−∇ · (u′θ′) =

1

Pe

(
∇2 +∇

2
)
θ′,

(2.27)

(
∂t +

1

Aτ
∂τ +

1

AT
∂T

)
b′ =

∇× (u× b′) +∇× (u′ ×B) +∇× (u′ × b′)−∇× (u′ × b′)+

∇× (u× b′) +∇× (u′ ×B) +∇× (u′ × b′) +
1

Rm

(
∇2 +∇

2
)
b′,

(2.28)

(
∇+∇

)
· u′ = 0,

(
∇+∇

)
· b′ = 0, (2.29)

where the fluctuating Lorentz force is F′
L = B · ∇b′ + b′ · ∇B+ b′ · ∇b′ − b′ · ∇b′.

2.2. Asymptotics

We note that up to this point, no approximations have been made; the equations have
simply been split up into mean and fluctuating components. In the present work we are
interested in the development of a multiscale dynamo model that preserves geostrophic
balance on the small (fluctuating) scales. Because the fluctuating and mean dynamics are
coupled, a posteriori we find that the large-scales are required to also be geostrophically
balanced in the horizontal directions, and hydrostatic in the vertical direction, resulting in
a thermal wind balance. The relevant asymptotic limit for the present model is therefore
the small-Rossby number limit, Ro ≡ ǫ→ 0.
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When constructing an asymptotic model with more than one small (or large) parame-
ter, it is necessary to establish the so-called distinguished limits, or the asymptotic scaling
relationships between the various parameters. In the present context this implies that we
must relate, in an order of magnitude sense, both the non-dimensional parameters intro-
duced in equations (2.5)-(2.6), as well as the aspect ratios defined by equations (2.17), to
the Rossby number ǫ. This procedure is well known, and hinges on the identification of
dominant balances in the governing equations that will allow for a mathematically and
physically meaningful reduced model; by definition the procedure is circular in nature
(e.g. see Bender & Orszag 2010). In this regard, to ensure geostrophically balanced con-
vection on the small scales, we follow section 2 of Sprague et al. (2006) and employ the
following distinguished limits

AZ = ǫ−1, AT = ǫ−2, Eu = ǫ−2, Γ = ǫ−1Γ̃, Re = O(1), P e = O(1), (2.30)

where the reduced buoyancy number Γ̃ = O(1). We note that with these scalings, the
small-scale velocity field u′ is O(1). We further assume the large-scale pressure p, mag-
netic field B and temperature θ to also be O(1) in magnitude.
The dimensional scales employed in the dimensionless parameters given by equations

(2.5)-(2.6) will be those of the largest amplitude. For convenience the parameters Eu, Γ,
and M will therefore be based on ‘mixed’ scales in our asymptotic development in the
sense that the pressure, temperature, and magnetic field amplitudes are based on the
large-scale quantities (p,B, θ), whereas the velocity scale is based on u′. In this sense,
the dimensional magnitudes of these variables is absorbed in the various non-dimensional
parameters. In section 3.4 we briefly discuss the renormalization of these non-dimensional
parameters such that they are based on equivalent (large or small) dimensional scales.
It now remains to determine the distinguished limits of AX , Aτ , M , and Rm. To pro-

vide some explanation as to how these limits are achieved we examine various terms in
the governing equations that we wish to retain in the final reduced model. The distin-
guished limit of AX can be determined by restricting the large-scale horizontal motions
to be geostrophically balanced; utilizing equation (2.22) we have

1

ǫ
ẑ× u ≈ −

1

ǫ2AX
∇Xp, (2.31)

where ∇X = (∂X , ∂Y , 0). We then get

u ∼ (ǫAX)
−1
. (2.32)

Turning our attention to the mean temperature equation (2.23), we wish to keep hori-
zontal advection of the mean temperature by the mean velocity field at the same order
as the temporal evolution of the mean temperature so that

ǫ2∂T θ ∼
1

AX
u · ∇Xθ, (2.33)

which leads to

u ∼ ǫ2AX . (2.34)

Combining (2.32) with (2.34) then shows that we must have

AX = ǫ−3/2, (2.35)

and so u = O(ǫ1/2). We note that this also implies large-scale horizontal gradients
are smaller than the corresponding large-scale vertical gradients by a factor AZ/AX =
O(ǫ1/2).
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The distinguished limits of Aτ ,M , and Rm are determined by examining the influence
of the magnetic field. To generate dynamo action on the large scales via coupling with
the fluctuating dynamics, we necessarily require the presence of the second term on the
righthand side of (2.24), where (u′ × b′) is referred to as the mean electromotive force,
or mean emf (e.g. Parker 1955; Steenbeck et al. 1966; Steenbeck & Krause 1966; Moffatt
1978). Utilizing the above scalings for AX and u, and retaining only the largest terms,
the order of magnitude of each term present in the mean induction equation is then

B

Aτ
: ǫ3/2B : ǫb′ :

ǫ2

Rm
B, (2.36)

where we recall that the fluctuating velocity field is order one, consistent with Sprague
et al. (2006). The colons used above are meant to signify that we are making a comparison
of the magnitude of each term in the original governing equation and we have retained
B = O(1) for clarity in identifying the various terms. To retain time dependence of the
mean magnetic field, we require that the first and third terms be of the same magnitude
such that

B ∼ ǫAτb
′. (2.37)

By noting that all the large-scale gradients are small relative to the small-scale gradients,
the order of magnitude of the four largest terms in the fluctuating induction equation
(2.28) (the first on the lefthand side, and the fifth, sixth and eighth terms on the righthand
side) are

b′ : B : b′ :
b′

Rm
. (2.38)

We require that ohmic dissipation is present in the final model, at least with respect
to the small scales. The largest term present above would then be that associated with
stretching the mean magnetic field such that

B ∼
b′

Rm
, (2.39)

i.e. b′ ∼ Rm. Finally, because we’re investigating dynamo action, we require that the
Lorentz force enter the small scale momentum dynamics. From Sprague et al. (2006),
and examination of equation (2.26), we know that this requires

MBb′ = O(1). (2.40)

Combining this scaling with (2.39) yields

M = O(Rm−1). (2.41)

We can now determine the size of Rm by returning to the mean induction equation. For
large-scale dynamo action, magnetic diffusion cannot dominate the mean emf so that
comparison of the third and fourth terms, respectively, given in (2.36) yields

ǫb′ &
ǫ2

Rm
B. (2.42)

Using the above scaling with (2.39) shows that

Rm > ǫ1/2, (2.43)

with the lower bound being the case Rm = O(ǫ1/2). The particular distinguished limit
taken for Rm will in turn determine the size of the magnetic Prandtl number since
Rm = RePm. Taking Rm = O(ǫ1/2) corresponds to the low Pm limit since Re = O(1).
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An alternative scaling would be to take Rm = O(1) and thus Pm = O(1). The main
focus of the present manuscript is for the Rm = O(ǫ1/2) limit given that it ties directly to
the CSDM and is implicitly low Pm. We also present the form of the governing equations
for the Rm = O(1) case, but note additional complications that arise in this limit which
will require future analysis that is beyond the scope of the present work.

2.2.1. The Rm = O(ǫ1/2) Limit

Here we take Rm = ǫ1/2R̃m, where we define the reduced magnetic Reynolds num-
ber R̃m = O(1). Returning to relationships (2.37) and (2.41) we can now define the
distinguished limits of Aτ and M as

Aτ = ǫ−3/2, M = ǫ−1/2, (2.44)

showing that three disparate timescales are now present in the QGDM.
With our distinguished limits defined, we now follow CS72 and expand all variables in

powers of ǫ1/2, e.g.

u = u0 + u′

0 + ǫ1/2
(
u1/2 + u′

1/2

)
+ ǫ (u1 + u′

1) + · · · . (2.45)

Plugging the perturbation expansions into the governing equations and collecting terms
of equal magnitude, the leading order solenoidal conditions on the mean velocity and
magnetic fields gives

∂Zw0 = 0, ∂ZB
(z)

0 = 0. (2.46)

Owing to our use of impenetrable, perfectly conducting boundary conditions we require

w0 = B
(z)

0 ≡ 0. At the next order the solenoidal conditions yield

∇X ·u0 + ∂Zw1/2 = 0, ∇X ·B0 + ∂ZB
(z)

1/2 = 0. (2.47)

At order O(ǫ−1) the horizontal mean momentum equation gives

ẑ× u0 = 0, (2.48)

showing that u0 ≡ 0. Utilizing continuity it follows that w1/2 ≡ 0. The next three orders
of the mean horizontal momentum equation are then geostrophically balanced,

ẑ× ui = −∇Xpi−1/2, i =
1

2
, 1,

3

2
. (2.49)

Carrying the expansion out to O(ǫ) shows that u2 is magnetostrophically balanced,

ẑ× u2 = −∇Xp3/2 +B0 · ∇XB0 +B
(z)

1/2∂ZB0. (2.50)

The vertical mean momentum equation yields hydrostatic balance for the first four orders,

∂Zpi = Γ̃θi, i = 0,
1

2
, 1,

3

2
. (2.51)

Taking the curl of equation (2.49) shows that

∇X · ui = 0, i = 0,
1

2
, 1,

3

2
, (2.52)

and thus wi ≡ 0 for i = 0, . . . 2. Combining equation (2.49) for i = 1/2 and (2.51) for
i = 0 we then obtain the well-known thermal wind relations

∂Zv1/2 = Γ̃∂Xθ0, ∂Zu1/2 = −Γ̃∂Y θ0. (2.53)
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Because the large-scale velocity field is horizontally divergence free we can define the
large-scale geostrophic stream function as Ψ1/2 ≡ p0 such that

u1/2 = −∇×Ψ1/2ẑ. (2.54)

We mention that the mathematical structure of the thermal wind relations (2.53) yields
any barotropic (i.e. depth invariant) geostrophic large-scale flow undetermined given that
u1/2 only appears with first-order Z-derivatives. In some instances this barotropic flow
plays a significant dynamical role and must be consistently determined via an evolution
equation (c.f. Dolaptchiev & Klein 2009). However, in the present work the evolution
equation for such a mode enters at a much higher, subdominant order, and we do not
consider it any further.
Proceeding to the mean horizontal induction equation, at O(ǫ) we have

0 = ẑ× ∂Z(u′
0 × b′

0), (2.55)

which, in general, requires that b′
0 ≡ 0. Alternatively, from the scaling relationship given

by (2.39), we require that b′ = O(ǫ1/2) if B = O(1). At O(ǫ3/2) we get

∂τB
⊥

0 = ẑ× ∂Z

(
u′
0 × b′

1/2

)
+

1

R̃m
∂2ZB

⊥

0 , (2.56)

where B
⊥

0 ≡ (B
(x)

0 , B
(y)

0 , 0). The leading order vertical component of the mean induction
equation becomes

∂τB
(z)

1/2 = ŷ · ∂X

(
u′
0 × b′

1/2

)
− x̂ · ∂Y

(
u′
0 × b′

1/2

)
+

1

R̃m
∂2ZB

(z)

1/2, (2.57)

where we see that a non-trivial mean vertical magnetic field requires the presence of a

large-scale horizontal modulation in the sense that B
(z)

1/2 ≡ 0 if ∂X = ∂Y ≡ 0 (this fact
can also be seen from equation (2.47)). The fluctuating induction equation then gives

0 = B
⊥

0 · ∇⊥u
′

0 +
1

R̃m
∇2b′

1/2, (2.58)

where ∇⊥ = (∂x, ∂y, 0).
The leading order mean temperature equation gives

∂Z(w′
0θ

′
0) = 0, (2.59)

showing that θ′0 ≡ 0. At the next order we have

∂τθ0 + ∂Z

(
w′

0θ
′

1/2

)
= 0, (2.60)

again showing that θ′1/2 ≡ 0 and thus ∂τθ0 ≡ 0. Finally, we have

∂τθ1/2 + ∂T θ0 + u1/2 · ∇Xθ0 + ∂Z(w′
0θ

′
1) =

1

Pe
∂2Zθ0. (2.61)

To avoid secular growth of the mean temperature on the timescale τ we set ∂τθ1/2 ≡ 0;
the mean heat equation then becomes

∂T θ0 + u1/2 · ∇Xθ0 + ∂Z(w′
0θ

′
1) =

1

Pe
∂2Zθ0. (2.62)

Alternatively, one can average equation (2.61) over the timescale τ to obtain an equation
identical to (2.62), with the exception that the averages must then be interpreted as
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occuring over (x, t, τ). At O(ǫ) the fluctuating temperature equation is

∂tθ
′

1 + u′

0 · ∇⊥θ
′

1 + w′

0∂Zθ0 =
1

Pe
∇2θ′1. (2.63)

At O(ǫ−2) and O(ǫ−3/2) the fluctuating momentum equation yields, respectively

∇p′i = 0, i = 0,
1

2
, (2.64)

showing that p′0 = p′1/2 ≡ 0. Geostrophy occurs at O(ǫ−1) and O(ǫ−1/2)

ẑ× u′

i = −∇p′i+1, i = 0,
1

2
. (2.65)

Additionally, mass conservation at O(1) and O(ǫ1/2) gives

∇·u′

i = 0, i = 0,
1

2
, (2.66)

which, along with equations (2.65), yields the Proudman-Taylor theorem acting over the
small vertical scale z

∂z
(
u′

i, p
′

i+1

)
= 0, i = 0,

1

2
. (2.67)

It is natural to wonder why the Proudman-Taylor theorem is satisfied over the small
scale z and not the axial domain scale Z. It is well known from the linear theory of
rapidly rotating convection that the leading order, geostrophically balanced convection
possesses order one variations over the height of the fluid layer (our large-scale coordinate
Z) (Chandrasekhar 1961). The only way to be consistent with the Proudman-Taylor
theorem, whilst allowing convection to occur on the axial domain scale, is for it to be
satisfied over the small vertical scale z. We recall that this is the same scale as the
horizontal convective scales (x, y). This fact appears to be first noted by Stewartson &
Cheng (1979); apart from the presence of viscous and body forces in the present work,
their vorticity (2.7b) and vertical momentum (2.7a) equations are identical to our small-
scale counterparts given by (2.69) and (2.70).
The prognostic momentum equation then appears at O(1)

∂tu
′

0 + u′

0 · ∇⊥u
′

0 + ẑ× u′

1 = −∇p′2 − ∂Zp
′

1ẑ+ Γ̃θ′1ẑ+B0 · ∇⊥b
′

1/2 +
1

Re
∇2

⊥u
′

0, (2.68)

where we note the key distinction with the CSDM is the simultaneous appearance of
both the advection and Lorentz force terms. In light of equation (2.65), we can define the
small-scale geostrophic stream function as ψ′

0 ≡ p′1 such that the fluctuating horizontal
velocity field is given by (u′0, v

′
0) = (−∂yψ

′
0, ∂xψ

′
0). As noted by Sprague et al. (2006),

equation (2.68) still depends upon the small-scale vertical scale z; to avoid secular growth
on this scale it is necessary to impose solvability conditions. These solvability conditions
amount to operating on equation (2.68) with ẑ · ∇× and ẑ·, respectively, and averaging
over the small vertical scale z to obtain (see also Calkins et al. 2013)

∂t∇
2
⊥ψ

′

0 + J(ψ′

0,∇
2
⊥ψ

′

0)− ∂Zw
′

0 = ẑ · ∇ ×
(
B0 · ∇⊥〈b

′

1/2〉
)
+

1

Re
∇4

⊥ψ
′

0, (2.69)

∂tw
′

0 + J(ψ′

0, w
′

0) + ∂Zψ
′

0 = Γ̃〈θ′1〉+ ẑ ·
(
B0 · ∇⊥〈b

′

1/2〉
)
+

1

Re
∇2

⊥w
′

0, (2.70)

where J(F,G) = ∂xF∂yG − ∂xG∂yF , the angled brackets denote a spatial average over
z, and the vertical vorticity is ζ0 = ∇2

⊥
ψ′
0.
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Upon rescaling the velocity with the small-scale viscous diffusion time such that U =
ν/L, the closed set of reduced equations is given by

u1/2 = −∇×Ψ1/2ẑ, (2.71)

∂ZΨ1/2 =
R̃a

Pr
θ0, (2.72)

∂T θ0 + u1/2 · ∇Xθ0 + ∂Z(w′
0θ

′
1) =

1

Pr
∂2Zθ0, (2.73)

∂τB
⊥

0 = ẑ× ∂Z

(
u′
0 × 〈b′

1/2〉
)
+

1

P̃m
∂2ZB

⊥

0 , (2.74)

∂τB
(z)

1/2 = ŷ · ∂X

(
u′
0 × 〈b′

1/2〉
)
− x̂ · ∂Y

(
u′
0 × 〈b′

1/2〉
)
+

1

P̃m
∂2ZB

(z)

1/2, (2.75)

∂XB
(x)

0 + ∂YB
(y)

0 + ∂ZB
(z)

1/2 = 0, (2.76)

∂t∇
2
⊥ψ

′

0 + J(ψ′

0,∇
2
⊥ψ

′

0)− ∂Zw
′

0 = ẑ · ∇ ×
(
B0 · ∇⊥〈b

′

1/2〉
)
+∇4

⊥ψ
′

0, (2.77)

∂tw
′

0 + J(ψ′

0, w
′

0) + ∂Zψ
′

0 =
R̃a

Pr
〈θ′1〉+B0 · ∇⊥〈b

′(z)
1/2〉+∇2

⊥w
′

0, (2.78)

∂t〈θ
′

1〉+ J(ψ′

0, 〈θ
′

1〉) + w′

0∂Zθ0 =
1

Pr
∇2

⊥〈θ
′

1〉, (2.79)

0 = B
⊥

0 · ∇⊥u
′

0 +
1

P̃m
∇2

⊥〈b
′

1/2〉, (2.80)

∂x〈b
′(x)
1/2 〉+ ∂y〈b

′(y)
1/2 〉 = 0. (2.81)

The reduced Rayleigh number, consistent with the linear theory of rapidly rotating

convection (Chandrasekhar 1961), is defined by R̃a = ǫ4RaH = E
4/3
H RaH , where the

Rayleigh number is given by

RaH =
gα∆TH3

νκ
. (2.82)

The reduced magnetic Prandtl number appearing in the above system is defined by
P̃m = ǫ1/2Pm = O(1).
The final reduced system is 10th order in the large-scale vertical coordinate Z. Written

in terms of the reduced variables, the ten boundary conditions become

θ0 = 1 at Z = 0, θ0 = 0 at Z = 1, (2.83)

∂ZB
(x)

0 = ∂ZB
(y)

0 = B
(z)

1/2 = w′

0 = 0 at Z = 0, 1. (2.84)

Taking the horizontal divergence of equation (2.80) shows that equation (2.81) is identi-
cally satisified since the geostrophic velocity field is horizontally divergence free. Although
direct imposition of (vertical) boundary conditions is not possible with equation (2.80)
given the lack of Z-derivatives with respect to 〈b′

1/2〉, evaluating this equation at the
boundaries Z = 0 and Z = 1 shows that the fluctuating magnetic field implicitly satis-
fies the magnetic boundary conditions as long as boundary conditions can be explicitly
imposed on the mean magnetic field; this result holds regardless of the specific magnetic
boundary conditions employed.
Although the details of obtaining numerical solutions to the reduced system are beyond

the scope of the present work, we mention that several approaches have been developed
to handle both multiple scales in space and time. In particular, so-called heterogeneous
multiscale methods (HMM) have been successfully applied to numerous applications (E
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et al. 2007). For example, a modifed form of HMM has recently been developed for
simulating a multiscale model of upper ocean Langmuir circulation (Chini et al. 2009;
Malecha et al. 2014). In addition, Haut & Wingate (2014) have developed a time-stepping
algorithm for problems with temporal scale separation which may be of use for the present
model.

2.2.2. The Rm = O(1) Limit

The asymptotic development of the Rm = O(1) parallels that for the Rm = O(ǫ1/2)
case given above. For this reason we omit many of the details and focus only on the
differences between the two limiting cases. We emphasize again that the Rm = O(1)
limit corresponds to Pm = O(1) since Re = O(1). Consideration of relationships (2.37)
and (2.41) with Rm = O(1) shows that we must have

Aτ = ǫ−1, M = O(1). (2.85)

In addition, relationship (2.39) shows that the mean and fluctuating magnetic fields are
now of the same order, i.e. B ∼ b′. The main difference that occurs in the final reduced
model for the Rm = O(1) case is the form of the induction equations, which at leading
order become

∂τB
⊥

0 = ẑ× ∂Z(u′
0 × 〈b′

0〉), (2.86)

∂τB
(z)

1/2 = ŷ · ∂X(u′
0 × 〈b′

0〉)− x̂ · ∂Y (u′
0 × 〈b′

0〉), (2.87)

∂t〈b
′

0〉+ u′

0 · ∇⊥〈b
′

0〉 = B
⊥

0 · ∇⊥u
′

0 +
1

Pm
∇2

⊥〈b
′

0〉. (2.88)

The fluctuating equations then take a mathematically equivalent form of equations (2.77)-
(2.79) and (2.81) by making the substitution 〈b′

1/2〉 → 〈b′
0〉.

The boundary conditions for the Rm = O(1) case are identical to those given by (2.83)-
(2.84). Equations (2.86)-(2.87) shows that due to the absence of Z-derivatives, no mean
magnetic field boundary conditions can be satisified without the inclusion of magnetic
boundary layers. Future work is necessary to examine the effects of these boundary layers.

3. Discussion

3.1. The Rm = O(ǫ1/2) limit

Here we reiterate some of the key features of the low magnetic Prandtl number QGDM
and interpret the various terms in the equation set (2.71)-(2.81). Equations (2.71)-(2.72)
are statements of geostrophic balance and hydrostatic balance on the large horizontal
and vertical scales, respectively. Importantly, these equations are diagnostic since they
contain no information about the temporal evolution; this is a well-known characteristic
and the prognostic dynamics are obtained from the mean heat equation (2.73). From
equation (2.71) we see that viscous diffusion is negligible on the large scales. The mean
heat equation given by (2.73) shows that the mean velocity field is strong enough to allow
advection of the mean temperature over the large horizontal scales (X,Y ) as shown by
the second term on the lefthand side, whereas the third term represents the influence of
convective feedback from the fluctuating scales back onto the large-scales. Additionally,
the presence of large-scale thermal diffusion over the vertical dimension is represented
by the term on the righthand side of equation (2.73).

Both of the mean induction equations given by (2.74) and (2.75) contain time depen-
dence, the mean emf that represents the feedback from fluctuating velocity and magnetic
field dynamics, and ohmic diffusion on the large vertical scale Z. Thus, ohmic dissipation
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dominates viscous dissipation on the large scales since, at this order of approximation,
viscous diffusion is not present in equations (2.71)-(2.72). This feature is consistent with
the Pm≪ 1 limit considered here. Moreover, the QGDM is characterized by a horizontal
magnetic field that is O(Rm−1) stronger than the vertical magnetic field.
Equations (2.77)-(2.79) are a magnetic version of the quasi-geostrophic convection

equations originally developed by Julien et al. (1998). An important feature of equations
(2.77)-(2.78) is that both advection and diffusion only occur over the small horizontal
scales (x, y) due to the anisotropic spatial structure of low Rossby number convection.
The fluctuating vorticity equation (2.77) contains time dependence, advection on the
small-scales, vortex stretching is represented by the third term on the lefthand side,
with the remaining terms on the righthand side being the Lorentz force and viscous
diffusion, respectively. The fluctuating momentum equation is given by (2.78) and, like
the fluctuating vorticity equation, contains time dependence and horizontal advection.
The vertical pressure gradient is given by the third term on the lefthand side of equa-
tion (2.78), with the fluctuating geostrophic stream function ψ′

0 acting as pressure since
the flow is geostrophically balanced; the remaining terms on the righthand side are the
buoyancy force, the Lorentz force, and viscous diffusion. The fluctuating heat equation
(2.79) is also characterized by time dependence and horizontal advection and diffusion,
with the third term on the lefthand side representing advection of the mean heat by the
fluctuating vertical velocity over the large-scale Z.

The fluctuating induction equation (2.80) is identical to the equation given in S74,
where he noted that the fluctuating magnetic field is induced by stretching the mean
magnetic field with the small-scale strain ∇⊥u

′
0 (consistent with our low Rm approxima-

tion). The absence of the time derivative shows that the fluctuating magnetic field adjusts
instantaneously relative to the fluctuating convection, showing that magnetic diffusion is
much more rapid than momentum diffusion on the small-scales; this effect is consistent
with a small magnetic Prandtl number limit. Alfvén waves are therefore damped out on
the small horizontal scales. As with the fluctuating vorticity, momentum, and heat equa-
tions, only horizontal diffusion is present in the fluctuating induction owing to spatial
anisotropy. Taken with equations (2.77)-(2.79), we see that both viscous dissipation and
ohmic dissipation are important features for the small-scale dynamics. The small-scale
induction equation also shows that both the present model and the CSDM require the
presence of a non-trivial mean magnetic field for the development of a dynamo; this
shows that the resulting dynamo is therefore large-scale and typical of low Rm dynamos
(Moffatt 1978).

3.2. The Rm = O(1) limit

The Rm = O(1) case is associated with an order one magnetic Prandtl number. For
this reason, the Pm = O(1) QGDM may be particularly important for relating to DNS
studies where reducing Pm to physically realistic values is impossible given the mod-
est Reynolds numbers attainable with current computational resources. Given that the
energy and momentum equations are identical to the low Pm QGDM discussed in the
previous section, we focus here on the differences associated with the form of the induc-
tion equations (2.86)-(2.88).
The distinguished limit Aτ = ǫ−1 shows that, in comparison to the Rm = O(ǫ1/2) case,

the mean magnetic field now evolves on a faster timescale. TheM = O(1) limit indicates
that the magnetic and kinetic energies are now equipartitioned when Pm = O(1) – a
result that appears to be consistent with DNS investigations (Stellmach & Hansen 2004).
The absence of Z-derivatives in equations (2.86)-(2.87) shows that ohmic dissipation

is weak on the large-scales and limited to magnetic boundary layers adjacent to the
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Parameter Present Work Soward Fautrelle & Childress

Eu ǫ−2 ǫ−2 ǫ−2

Re O(1) ǫ1/2 ǫ1/2

M ǫ−1/2, O(1) ǫ3/2 ǫ1/2

Γ Γ̃ǫ−1 Γ̃ǫ−1 Γ̃ǫ−1

Pe O(1) ǫ1/2 ǫ1/2

Rm ǫ1/2, O(1) ǫ1/2 ǫ1/2

Pr O(1) O(1) O(1)

Pm ǫ1/2, O(1) O(1) O(1)

AX ǫ−3/2
− −

AZ ǫ−1 ǫ−1 ǫ−1

Aτ ǫ−3/2 ǫ−3/2 ǫ−3/2

AT ǫ−2
− −

Table 1: Comparison between the different distinguished limits taken in the present work
and those of Soward (1974) and Fautrelle & Childress (1982), relative to equations (2.22)-
(2.29). We note that both Soward and Fautrelle & Childress considered weakly nonlinear
motions and only a single (slow) timescale and a single large-scale coordinate in the
governing equations such that ∂t = ∂T = ∂X = ∂Y ≡ 0. In all models the small parameter
is the Rossby number, Ro = ǫ, and the reduced buoyancy number Γ̃ = O(1).

horizontal boundaries. The small-scale induction equation (2.88) contains time depen-
dence, advection by the fluctuating velocity field, along with stretching and diffusion.
The presence of ∂t〈b

′
0〉 results in a fluctuating magnetic field that no longer adjusts in-

stantaneously to the fluctuating velocity field as it does when Pm ≪ 1. For this case,
Alfvén waves are present on the small fluctuating scales.

3.3. Relationship with the Childress-Soward dynamo model (CSDM)

In Table 1 we list the different distinguished limits taken employed in the present work and
those used by S74 and FC82. Although we have considered two limits of Rm that result
in different limits ofM , Pm, and Aτ , the present discussion will be focused on the Rm =
O(ǫ1/2) (low Pm) QGDM. Both the weak and intermediate field forms of the CSDM can
be derived directly from equations (2.22)-(2.29) by employing the distinguished limits
listed under the columns labeled “Soward” and “Fautrelle & Childress”, respectively,
and taking ∂t = ∂T = ∂X = ∂Y ≡ 0. The consequence of taking Re = Pe = O(ǫ1/2) is
that the resulting models are weakly nonlinear since (horizontal) viscous diffusion enters
at higher order than the advective nonlinearities in the fluctuating momentum equation.
While in the present work we have considered both low and order one Pm, the CSDM
employs Pm = O(1). Additionally, the magnetic field scaling MS = ǫ3/2 employed by
S74 and MFC = ǫ1/2 employed by FC82 contrasts sharply with our M = ǫ−1/2 limit;
the result is that magnetic energy is significantly larger than the kinetic energy in the
present work.
CS72 described three different classes of dynamos, distinguished by the relative strength

of the magnetic field. In their work, the classification was based on the magnitude of the
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large-scale Hartmann number defined as

HaH =
BH

(µρνη)
1/2

. (3.1)

In the CS72 terminology, the weak field, intermediate field, and strong field dynamos are
characterized by Hartmann numbers of magnitude HawH = O(1), HaiH = O(ǫ−1/2) and
HasH ≫ ǫ−1/2, respectively. FC82 more precisely identified the strong field regime by the
scaling HasH = ǫ−3/2 since this results in a Lorentz force that is comparable in strength
to the Coriolis force. By employing our distinguished limits, the large-scale Hartmann
number in the present work is given by

Ha∗H =
(MRm)

1/2

ǫ
=

1

ǫ
. (3.2)

Thus, by the classifications of CS72 and FC82 the present model considers magnetic
fields with strengths that lie between the intermediate and strong field limits. As the
fluctuating momentum equation (2.68) shows, both the Lorentz force and horizontal
viscous diffusion enter the prognostic equation at the same order in our model; the result
is that the small-scale Hartmann number is unity, Ha∗ = 1.

A strong field dynamo is synonomous with the magnetostrophic balance, whereby the
Coriolis, pressure gradient and Lorentz forces are of comparable magnitude. Our present
model is geostrophically balanced on both the large and small scales, though as equation
(2.50) shows a magnetostrophic balance does appear at higher, but subdominant, order
in the mean momentum equation. A commonly employed dimensionless measure of the
strong field dynamo is the Elsasser number, defined as the ratio of the Lorentz force to
the Coriolos force and often expressed as

Λ =
B2

2Ωρµη
. (3.3)

In terms of the nondimensional parameters and distinguished limits employed in the
present study (e.g. Table 1) we have

Λ∗ =MPmRoRe = ǫ. (3.4)

Thus, as expected, the Elsasser number is small in our geostrophically balanced model.
The above scaling is also consistent with previous quasi-geostrophic magnetoconvection
studies (c.f. Jones et al. 2003; Gillet et al. 2007). In S74 and FC82 the Elsasser number
is significantly smaller with ΛS = ǫ3 and ΛFC = ǫ2, respectively. Although DNS studies
are often characterized by order one Elsasser number, we note that these models are all
limited to Pm ∼ O(1) and moderate values of the Ekman number. We speculate that if
these models could increase their magnetic Reynolds number solely by increasing their
Reynolds number and decreasing the Ekman number, rather than increasing Pm, they
would begin to reach significantly smaller Elsasser numbers; this trend may be apparent
in the plane layer DNS investigation of Stellmach & Hansen (2004) and the spherical
DNS study of Christensen & Aubert (2006). Also, we note that the value of the Elsasser
number is also dependent upon how one scales the magnetic field. The form given by
(3.3) is dependent upon the magnetic diffusivity, and independent of the velocity and
length scales that are important for assessing dynamical balances; this is because it is
typically assumed that the magnitude of the current density scales as J ∼ UB/µη (e.g.
Davidson 2001). To be consistent, the Elsasser number should be defined directly from
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the governing equations as

Λ̃ =

1
ρµB · ∇B

2Ωẑ× u
=

B2

2ΩρµlU
. (3.5)

In the present work we have

Λ̃∗ =MRo = ǫ1/2. (3.6)

Similarly, for the Rm = O(1) QGDM, this gives Λ̃∗ = ǫ. This shows that although the
Elsasser number is still small, it is independent of the magnetic diffusivity. Given that
the model developed in the present work is characterized by small Elsasser number, yet
the magnetic energy is asymptotically larger than the kinetic energy for the low Pm
QGDM, we can generally say that the partitioning of magnetic and kinetic energy is not
necessarily indicative of dominant balances present within the governing equations.

Finally, we note that it is possible to extend the CSDM to include fully nonlinear
motions, a strong magnetic field, and small Pm by neglecting the large-scale horizontal
modulations (i.e. ∂X = ∂Y = 0) appearing in equations (2.72)-(2.81); the result is given
by

∂ZΨ1/2 =
R̃a

Pr
θ0, (3.7)

∂T θ0 + ∂Z(w′
0θ

′
1) =

1

Pr
∂2Zθ0, (3.8)
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⊥

0 , (3.9)
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0 = B
⊥

0 · ∇⊥u
′
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1

P̃m
∇2

⊥〈b
′

1/2〉, (3.13)

and we note that the solenoidal conditions given by equations (2.76) and (2.81) are
identically satisfied.

3.4. Applications to natural dynamos

It is informative to compare the distinguished limits that were taken in the present
work with what is known about the geodynamo and other natural dynamos; this exer-
cise is useful for establishing the strengths and weaknesses of the present model. Three
timescales are necessary to allow time variations of the fluctuating convection, the mean
magnetic field, and the mean temperature. To observe an order one change in the mean
magnetic field, for instance, requires convective timescales of t = O(ǫ−3/2). Similarly,
convective timescales of t = O(ǫ−2) are required to observe order one changes in the
mean temperature timescale. This implies the relative ordering of these timescales is
given by

t≪ tB ≪ tθ, (3.14)

where tB and tθ are the mean magnetic and temperature evolution timescales measured
in the units of the convective timescale t. This ordering states that the large-scale mag-
netic evolution timescale lies midway between the small-scale convective timescale and



18 M. A. Calkins, K. Julien, S. M. Tobias and J. M. Aurnou

the large-scale thermal evolution timescale. For the geodynamo, observations of the ge-
omagnetic field show that t ∼ O(102) years, tB ∼ O(104) years and tθ ∼ O(109) years,
suggesting that the above ordering is realistic.
Utilizing the velocity based on the small-scale viscous diffusion timescale, the (small-

scale) Rossby number can be related to the large-scale Ekman number as

ǫ = Ro = E
1/3
H . (3.15)

Studies suggest that the viscosity of the Earth’s core is similar to that of water at standard
temperature and pressure (e.g. Pozzo et al. 2013) such that EH ∼ O(10−15) where the
depth of the core H ≈ 2265 km. Estimates for the small-scale Rossby number, and the
large-scale magnetic and hydrodynamic Reynolds numbers are given by, respectively,

ǫ = 10−5, (3.16)

RmH = RmE
−1/3
H = ǫ−1/2 ∼ O(102), (3.17)

ReH = ReE
−1/3
H = 105Re. (3.18)

Observations find typical flow speeds in the core to be U ≈ 4 × 10−4 m/s (Finlay &
Amit 2011); whether this characteristic speed corresponds to the small or large-scale
flows is unknown. If the convective velocities are significantly larger than the mean flows
in the core, as in the asymptotic model presented here, then it is possible these speeds
may be associated with the small-scale convection. Estimating a typical convective scale

in the core as ℓcore ∼ HE
1/3
H ≈ 30 m, an estimate for the small-scale Rossby number

in the core is Rocore ≈ 0.1. Although this estimate is larger than our above estimate
from the asymptotic scalings, it is less than unity such that quasi-geostrophic theory
may be an accurate description of the dynamics (e.g. Pedlosky 1987; Stellmach et al.
2014). The large-scale magnetic Reynolds number estimate given above possesses the
correct order of magnitude estimate for the core. For the large-scale Reynolds number
ReH we require knowledge of the small-scale Reynolds number Re; estimating this value
leads to Recore ≈ 1200. The large-scale Reynolds number estimate for the core is then
ReH ∼ O(109); a number that is in agreement with observations and suggests that the
QGDM may be in the appropriate dynamical regime necessary for understanding the
geodynamo.
The current model assumes an order one small-scale Reynolds number; coupled with

the relationship Rm = RePm, this implies that Pm = O(ǫ1/2). The magnetic Prandtl
number in the Earth’s core is thought to be Pm ∼ O(10−6), so it would seem that
the distinguished limit taken for Pm is not quite in line with what typical values are
in the Earth’s core. However, the theory developed here suggests that Pm = O(ǫ1/2)
is sufficiently small to be in the asymptotic limit of small magnetic Prandtl number;
we can then reach smaller magnetic Prandtl numbers by reducing P̃m. Furthermore,
the distinguished limit of M = O(ǫ−1/2) shows that magnetic energy dominates when
Pm≪ 1; this result is thought to be generally consistent with what is known about the
geodynamo.
As previously mentioned, we have chosen to non-dimensionalize the equations based

on those dimensional quantities that possess the maximum amplitude; this implies that
some non-dimensional parameters will contain a ‘mix’ of large- and small-scale dimen-
sional quantities. Because of the importance of the small-scale motions, the dimensional
length and velocity scales are then the small scales l and U , respectively. Pressure, tem-
perature, and magnetic field were then based on the large-scale mean quantities. Any
dimensionless parameter can be rescaled to be only a function of the small-scale or large-
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scale dimensional quantities by noting the asymptotic relations that were employed in
the present work. For instance, the magnetic to kinetic energy ratio M is based on the
large-scale magnetic field and the small-scale velocity field. When expressed solely in
terms of the large-scale variables we have M = ǫ−1M ≈ 107 where we’ve used the ǫ
estimate given by (3.16).
Assuming a large-scale magnetic field strength of O(10−3) Tesla for the core (e.g.

Gillet et al. 2010), the traditionally defined Elsasser number (3.3) is Λ = O(1). The
model presented here is not capable of matching this value and represents one of the
most significant discrepancies between the present work and what is presently known
about the geodynamo. With the exception of Jupiter, however, estimates suggest that
the Elsasser number for other planetary dynamos is significantly less than unity (Schubert
& Soderlund 2011). As mentioned previously, the traditionally defined Elsasser number
may not be an accurate indicator of the dominant force balance in the core as numer-
ical simulations show that dynamos characterized by Λ = O(1) remain geostrophically
balanced (Soderlund et al. 2012).
We emphasize that some care must be taken with regard to estimating the dominant

balance in DNS. Taking the curl of the momentum equation appears to be a common
approach for determining the dominant force balance in simulations (St Pierre 1993;
Christensen & Aubert 2006; King & Buffett 2013). Such a procedure can often lead to
an erroneous conclusion, since the action of curling the momentum equation will auto-
matically filter a dominant geostrophic balance. This is indeed the case for the present
model where leading order geostrophic balances identified in equations (2.49) and (2.65)
are removed by the curling operation. For instance, equation (2.52) shows that taking the
curl of the mean momentum equation (2.49) yields the trivial result up to O(ǫ1/2). The
first non-trivial result arises at O(ǫ) by curling the mean momentum equation (2.50) and
will yield a vorticity equation involving a (vorticity) balance between the curl of the Cori-
olis and Lorentz force terms; this should not be interpreted as a force balance between
the Coriolis and Lorentz forces (e.g. St Pierre 1993). The salient point is that dominant
balances can only be determined directly from the momentum equation, and not from
the vorticity equation. Rather, analysis of the terms present in the vorticity equation for
a geostrophically balanced flow will tell you which forces act as small perturbations to
the main geostrophic balance.
The alternative definition of the Elsasser number given by equation (3.5), is O(10−2)

for the geodynamo, suggesting that the Lorentz force may not enter the leading order
force balance for the large-scale dynamics of the core (Nataf & Schaeffer 2015). Moreover,
previous work calculating the angular momentum of the Earth’s outer core must invoke
geostrophy to obtain the large-scale velocity field within the core, and shows excellent
agreement with values obtained independently from observations of the Earth’s rotation
rate (Jault et al. 1988; Jackson et al. 1993; Gillet et al. 2010; Schaeffer & Pais 2011; Gillet
et al. 2012). These results suggest that a large-scale thermal wind model, similar to the
one developed here, may be relevant for understanding the physics of the geodynamo. Of
course, the large-scale thermal wind model is characterized by AX ≫ AZ and is therefore
unlike that of a deep spherical shell where the aspect ratio is order one. We were unable
to obtain a closed large-scale model with AX = AZ that is coupled to the small-scale
dynamics; future work is necessary to determine if this difficulty can be circumvented in
a spherical geometry.
The small-scale dynamics of the geodynamo are completely unconstrained due to lack

of observations. The present work has utilized an expansion based on the smallness of
the small-scale Rossby number. As discussed by Nataf & Schaeffer (2015), the precise
value of the small-scale Rossby number depends upon the detailed properties of the
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turbulence that is controlled by the relative importance of inertia, buoyancy and the
small-scale magnetic field. Nataf & Schaeffer (2015) argue that although the Elsasser
number, as given by equation (3.5), is O(0.01) for the largest scales of the Earth’s core,
it may increase to O(1 − 10) on the scale of about 10km such that the Lorentz force
becomes more significant as the length scale is reduced. Indeed, as the QGDM shows,
if the Lorentz force is subdominant on the largest scales then it must be present in the
small-scale dynamics for the dynamo to reach a saturated, non-kinematic state. Future
numerical simulations of the QGDM should therefore help to understand the small-
scale dynamics of the geodynamo and other planetary magnetic fields (e.g. Stanley &
Glatzmaier 2010).

4. Conclusion

In the present work we have utilized a standard multiple scales asymptotic approach
to develop a new multiscale dynamo model that is valid in the limit of small Rossby
number. The small-scale model is characterized by a magnetically-modified version of
the quasi-geostrophic convection equations originally developed by Julien et al. (1998)
and later studied in detail by Sprague et al. (2006). The large-scale model is characterized
by a thermal wind balance in the mean momentum equations; coupled with the mean
heat equation, the large-scale model is equivalent to the well-known planetary geostrophy
equations commonly employed for investigating the dynamics of the Earth’s atmosphere
and ocean. We have discussed both low and order one magnetic Prandtl number models,
showing that these two cases possess fundamentally different properties. For the low
Pm case the magnetic energy dominates the kinetic energy, and ohmic dissipation is
asymptotically dominant over viscous dissipation on the large-scales. When Pm = O(1)
it was demonstrated that the magnetic and kinetic energies become equipartitioned with
weak large-scale ohmic dissipation. In both cases the dynamics are characterized by
small Elsasser number since the motions are geostrophically balanced. The new model
can be considered a fully nonlinear, generalized version of the dynamo model originally
developed by Childress & Soward (1972).

Numerical simulations of asymptotically reduced equation sets have proven useful for
accessing dynamical regimes in rotating plane layer convection that are computationally
demanding or impossible to reach with the use of DNS (e.g. Sprague et al. 2006; Julien
et al. 2012a,b; Rubio et al. 2014; Stellmach et al. 2014). These investigations have shown
the dependence of the flow regime on both the Rayleigh and Prandtl numbers, new
phenomena such as an asymptotic heat transfer scaling regime (Julien et al. 2012a),
and large-scale vortex formation via an inverse cascade (Julien et al. 2012b). Future
simulations of the new model will help to shed light on the interaction of these phenomena
with a magnetic field. For instance, a recent DNS investigation by Guervilly et al. (2015)
has shown that large-scale vortices can play a significant role in generating large-scale
magnetic fields, particularly as the magnetic Prandtl number is reduced below one.

Various extensions of the present work can also be carried out. While we have assumed,
for simplicity, that the fluid is Boussinesq and that the gravity vector and rotation vector
are aligned, it is a straightforward procedure to relax both of these constraints to include
compressibility and varying angle between the gravity and rotation vectors (Julien et al.
2006; Mizerski & Tobias 2013). Although the anelastic approximation appears to agree
well with the compressible equations for the case of order one Prandtl numbers (Calkins
et al. 2014), it has recently been shown that it yields spurious results for low Prandtl
number quasi-geostrophic convection (Calkins et al. 2015). However, Calkins et al. (2015)
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outlined an approach for extending the Boussinesq quasi-geostrophic convection equa-
tions of Sprague et al. (2006) to the case of a fully compressible gas.
The present model has focused on the plane layer geometry for the sake of mathemat-

ical and physical simplicity. To further the applicability of the present work with that
of natural systems, it will be useful to extend the present methodology to the rotat-
ing cylindrical annulus (Busse 1986) and to spherical geometries. The three-dimensional
cylindrical annulus model recently developed by Calkins et al. (2013) is particularly inter-
esting since it possesses order one axial velocties, such that the Ekman pumping dynamo
effect investigated by Busse (1975) is no longer a prerequisite for dynamo action in this
geometry.
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silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B 87, 014110.
Roberts, P. H. 1988 Future of geodynamo theory. Geophys. Astrophys. Fluid Dyn. 44, 3–31.
Robinson, A. & Stommel, H. 1959 The oceanic thermocline and the associated thermohaline

circulation. Tellus 11, 295–308.



Multiscale dynamo model 23

Rotvig, J. & Jones, C. A. 2002 Rotating convection-driven dynamos at low Ekman number.
Phys. Rev. E 66 (056308).

Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in
three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112 (144501).

Schaeffer, N. & Pais, M. A. 2011 On symmetry and anisotropy of Earth-core flows. Geophys.
Res. Lett. 38 (L10309).

Schubert, G. & Soderlund, K. 2011 Planetary magnetic fields: observations and models.
Phys. Earth Planet. Int. 187, 92–108.

Soderlund, K. M., King, E. M. & Aurnou, J. M. 2012 The influence of magnetic fields in
planetary dynamo models. Earth Planet. Sci. Lett. 333-334, 9–20.

Soward, A. M. 1974 A convection-drive dynamo: I. the weak field case. Phil. Trans. R. Soc.
Lond. A 275, 611–646.

Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an
asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551,
141–174.

St Pierre, M. G. 1993 The strong field branch of the childress-soward dynamo. In Theory of
Solar and Planetary Dynamos (ed. M. R. E. Proctor, P. C. Matthews & A. M. Rucklidge),
pp. 295–302. Cambridge University Press.

Stanley, S. & Glatzmaier, G. A. 2010 Dynamo models for planets other than Earth. Space
Sci. Rev. 152, 617–649.

Steenbeck, M. & Krause, F. 1966 The generation of stellar and planetary magnetic fields by
turbulent dynamo action. Z. Naturforsch. 21a, 1285–1296.
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