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Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique com-
monly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high
resolution anatomical images with different contrasts and a range of additional information important
for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise
to provide complementary information from both modalities in a single examination. Due to long
scan times, subject nonrigid bulk motion, i.e., changes of the patient’s position on the scanner table
leading to nonrigid changes of the patient’s anatomy, during data acquisition can negatively impair
image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect
and correct for nonrigid bulk motion in simultaneously acquired PET-MR data.
Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase En-
coding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm.
Healthy volunteers are asked to move the abdomen two to three times during data acquisition result-
ing in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively
reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is de-
tected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect
of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions
with different diameters.
Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in
healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describ-
ing the transformation between the different motion states could be obtained with an accuracy of 1.71
± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion
which could be reduced to less than 10% with the proposed motion compensation approach.
Conclusions: A MR acquisition scheme which yields both high resolution 3D anatomical data
and highly accurate nonrigid motion information without an increase in scan time is presented.
The proposed method leads to a strong improvement in both MR and PET image quality and
ensures an accurate assessment of tracer uptake. © 2014 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1118/1.4890095]

Key words: simultaneous PET-MR, motion compensation, nonrigid motion, 3D abdominal high res-
olution MRI, T1- and T2-weighted imaging

1. INTRODUCTION

Positron emission tomography (PET) is a commonly used tool
to detect and quantify FDG uptake in tumors.1, 2 Recently, hy-
brid PET-magnetic resonance (MR) scanners have been in-
troduced to combine the excellent sensitivity of PET with
high-resolution multicontrast MR images. Sequential PET-
MR systems consist of PET and MR components which are
spatially separated to avoid any mutual interference allow-
ing for a coregistered PET-MR acquisition.3 For simultane-

ous PET-MR systems, the PET and MR gantry are integrated
such that PET and MR cover the same field of view. After syn-
chronizing the clocks which control data acquisition of PET
and MR, these systems yield simultaneously obtained image
information.4, 5 The advantage of simultaneous PET-MR sys-
tems is the potential to speed up the acquisition of PET-MR
data and providing additional information about motion from
MRI.

In contrast to computed tomography (CT), MR imag-
ing (MRI) does not just yield anatomical but also
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semifunctional information such as diffusion-weighted im-
ages. Such multimodality data optimally complements each
other for a highly accurate detection and assessment of
metastases.6–8

PET data are usually acquired in multistations, where sev-
eral 3D data sets are obtained at different bed positions. This
acquisition mode is also applied in simultaneous PET-MR
allowing for the acquisition of different 3D MR datasets at
each bed position. These datasets can be images with differ-
ent contrast as well as image information used for genera-
tion of attenuation correction (AC) maps. Advances in data
acquisition and image reconstruction allow for a spatial res-
olution of 1 mm in MRI and 3–5 mm in PET within a clini-
cally feasible scan time.9, 10 However, patient motion during
3D data acquisition in both imaging modalities can be a ma-
jor challenge for PET-MR.11, 12 Apart from respiratory mo-
tion, which can be compensated for with respiratory gating
techniques, bulk patient motion, i.e., a change of the patient’s
position on the scanner table leading to nonrigid changes of
the patient’s anatomy, during data acquisition is challenging
to detect. The quality and therefore diagnostic information of
high-resolution images can be severely impaired by whole-
body shifts of only a few millimeters during data acquisition.
In particular, the shift of the imaged object can result in severe
artifacts in MR images and can cause blurring of lesions and
a reduction in measured standardized uptake values (SUV) in
PET. Furthermore, it also leads to a mismatch between AC
map and acquired PET emission data which can affect SUV
evaluations as well.13

In contrast to PET-CT, where data are obtained sequen-
tially, PET-MR allows for simultaneous acquisition of PET

and MR data with different contrasts.14–19 Therefore, MRI can
be used for detection and compensation of motion. Several
techniques have been proposed which use this idea for motion
correction of the heart or abdomen. Nevertheless, the major-
ity of these methods relies on the motion to be periodic and
is therefore not applicable to bulk motion correction. Other
approaches require dedicated MRI sequences which are op-
timized for motion estimation but do not yield high resolu-
tion anatomical data required for medical diagnosis and thus
strongly restrict information available from MR.

To overcome these limitations we present the use of a 3D
high-resolution Radial Phase Encoding (RPE) MR acquisi-
tion scheme, which allows for the reconstruction of images
with different temporal resolutions from the same acquired
data.20, 21 The aim of this study is to use this acquisition tech-
nique as an image-based motion scout to automatically de-
tect and estimate nonrigid bulk motion from the acquired MR
data. The obtained motion information is then used to cor-
rect for motion in both PET and MR images. In contrast
to previous applications of the RPE sampling scheme, the
presented technique is not limited to periodic motion such
as respiratory motion or to affine motion compensation fre-
quently used to correct for the movement of the heart during
breathing.

The proposed approach was successfully assessed in six
datasets obtained in three healthy subjects for T1-weighted
(T1w) gradient (GRE) and T2-weighted (T2w) turbo spin
(TSE) echo images. In addition, due to a not available PET-
MR system, simulations were carried out to assess the effect
of bulk motion and motion correction on PET image quality
and lesion assessment.

FIG. 1. Overview of the proposed bulk motion correction approach. Bulk motion shifts during data acquisition are detected and corrected in the obtained MR
data which strongly improves image quality. Additionally, the information on bulk motion shifts can also be used to improve the image quality of a simulated
simultaneous PET acquisition. For more details, please refer to Sec. 2. Steps which are required for a bulk motion compensated simultaneous PET-MR acquisition
are indicated as filled gray boxes. All other steps are only necessary for PET simulation and data evaluation. AC map: attenuation correction map; Em map:
emission map; MCIR: motion corrected image reconstruction; and OSEM: ordered subsets expectation maximization.
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FIG. 2. Nonrigid bulk motion detection and estimation. Bulk motion of the body during MR data acquisition can cause severe artifacts in the obtained MR
image. The illustrations used here visualize a nonrigid bulk motion shift of the abdomen after 50% of the total scan time which leads to deformation of the
spine and inner organs. (Motion detection) The acquired RPE data can be split up into multiple time frames (Di) each covering a short time interval of the total
scan time. Each Di is reconstructed using only part of the acquired data but covers the same field of view. This can lead to undersampling artifacts which are
visible as streaking in the obtained images. Despite these artifacts a reliable affine image registration can be carried out. The obtained affine motion fields aMFi-j

describe the affine transformation between time frame i and j. To detect bulk motion shifts, the average over the length of all motion vectors (i.e., the average
displacement) in each motion field aMFi-j is calculated as Ri(j). In the presented example, D1 and D2 are in the same motion state; therefore, the length of all
motion vectors in aMR1–2 is 0 and R1(2) is 0. D1 and D3 describe two different motion states; therefore, the length of the motion vectors in aMR1–3 is larger than
0 and R1(3) is greater than 0. Plotting all functions Ri(j) shows that these functions cross when nonrigid bulk motion shifts occur which allows for the detection
of the time point TBM (R2 and R3 are not shown because they are identical to R1 and R4, respectively). (Motion estimation) Based on the motion detection, the
acquired data are split into multiple bulk motion states (in this case two motion states) and images Bk describing each bulk motion state are reconstructed. A 3D
nonrigid image registration algorithm is used to determine the motion between the individual bulk motion states. The obtained nonrigid motion fields MFk-l can
then be applied to a motion compensated MR or PET reconstruction.

2. METHODS AND MATERIALS

An overview of the methodology is given in Fig. 1.
Figure 2 depicts the proposed motion detection and estima-
tion approach in more detail. A brief outline of the nonrigid
bulk motion compensation method is given below and a thor-
ough discussion follows in Secs. 2.A–2.E. MR data are ob-
tained with a RPE scheme which allows for the reconstruction
of 3D data sets with different temporal resolutions from the
same acquired data.20 To compensate for bulk motion, images

with three different temporal resolutions are reconstructed. In
a first step the recorded data are split into time frames Di with
a high temporal resolution by combining data from a short
interval of the total scan time. These so-called dynamics de-
scribe the entire FOV at different time points during data ac-
quisition. The temporal resolution of Di can be adapted ret-
rospectively and is in the range of several seconds compared
to a total acquisition time of several minutes. Images are re-
constructed from this dynamic data to detect the time point(s)
TBM when bulk motion occurred. Since the image quality of
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FIG. 3. Radial phase encoding (RPE) sampling scheme for 3D MRI. (a) For a 3D Cartesian MR sampling scheme, frequency encoding is carried out along
parallel lines. The individual frequency encoding lines are arranged on a Cartesian grid in the 2D phase encoding (PE) plane PE1–PE2. (b) RPE is a 3D MR
acquisition scheme which obtains data using Cartesian frequency encoding (FE). In contrast to standard 3D Cartesian sampling, the PE points are located on
radial lines in the 2D phase encoding plane PE1–PE2. The angle of each RPE line is chosen based on a bit-reversed order. During data acquisition, frequency
encoded data are obtained for all phase encoding points along one RPE line before moving on to the next RPE line. The first four RPE lines are orientated at 0◦,
90◦, 45◦, and 135◦. This sampling approach ensures a homogeneous distribution of the acquired data over time.

the dynamic images is low, they are only used for motion de-
tection and not for motion estimation. Second, images are re-
constructed before and after the time point(s) TBM describing
each bulk motion state BM. More data are used for this image
reconstruction and therefore the image quality is high enough
to estimate nonrigid motion between each state BM using a
local affine registration approach.22

Finally, the estimated motion fields are used to correct for
bulk motion shifts in both MR and PET data.

2.A. MR data acquisition and reconstruction

Data acquisition are carried out using a bit-reversed RPE
scheme (Fig. 3). This sampling scheme is similar to the
scheme presented by Boubertakh et al.20 for cardiac MRI.
The RPE sequence is a modification of a standard 3D Carte-
sian MR acquisition approach. For a 3D Cartesian MR
sampling scheme, frequency encoding is carried out along
parallel lines. The individual frequency encoding lines are ar-
ranged on a Cartesian grid in the 2D phase encoding (PE)
plane. RPE uses Cartesian frequency encoding but the PE
points are located along radial lines. This sampling scheme
has been shown to maintain good image quality even for high
undersampling factors (i.e., few radial PE lines) if images are
reconstructed with an iterative non-Cartesian SENSE recon-
struction approach.20

The radial PE lines are recorded in a bit-reversed order.
This ensures that the angle between two successively recorded
PE lines is large, i.e., PE lines are sampled at 0◦, 90◦, 45◦,
135◦, 22.5◦, 112.5◦, etc. The bit-reversed order leads to a ho-
mogeneous covering of the 2D PE plane over time and allows
for the reconstruction of images from temporal subsets (dy-
namics) of the acquired data.

After the MR scan is finished, a high-resolution 3D image
can be reconstructed using all acquired radial PE lines. In ad-
dition, dynamic images with different temporal resolution can
be obtained from the same data.

2.B. Bulk motion detection

In order to detect the time points TBM when bulk motion
has occurred during data acquisition, recorded data are split
into N dynamics Di. Each Di is reconstructed using a small
number of subsequently acquired radial PE lines and therefore

describes a temporal snapshot much shorter than the total scan
duration (Fig. 2).

It is important to note that each radial PE point represents a
fully sampled frequency encoding line. Each dynamic covers
the entire FOV with less data compared to the recorded data
which leads to undersampling artifacts. Nevertheless, due to
the undersampling properties of RPE combined with a non-
Cartesian SENSE reconstruction scheme the image quality is
sufficient for bulk motion detection.

For motion detection, each of the dynamics Di is regis-
tered to all other dynamics Dj using an affine registration
algorithm.22 This registration yields motion fields aMFi-j de-
scribing affine transformations between Di and Dj. For each
motion field aMFi-j, the mean displacement Ri(j) is calculated
as the average length of all motion vectors of aMFi-j. If no
motion has occurred between Di and Dj, then the length of
all motion vectors is zero and the mean displacement value
is also zero. If on the other hand a bulk motion shift has
occurred, the mean displacement value will be larger than
zero. This approach is repeated for all dynamics which leads
to N displacement functions Ri. It is important to note that
this technique does not require a prior definition of a thresh-
old but all required information is obtained from the image
registration.

Figure 2 shows two displacement functions R1 and R4 for
dynamic D1 and D4 which describe two different bulk-motion
states. Each of them shows a sharp increase or decrease when
bulk motion occurs which allows for the detection of the time
points TBM as the crossings of the displacement functions.

We compared this approach to using normalized image
correlation coefficients obtained between the individual dy-
namics for bulk motion detection.

2.C. Bulk motion estimation

Based on TBM, a second set of images Bk is reconstructed
describing each of the bulk motion states (Fig. 2). Depending
on the motion, data acquired close to TBM can be excluded
from image reconstruction to ensure the obtained images are
not corrupted by bulk motion.

The images Bk are registered using a 3D hierarchical non-
rigid registration.22 The obtained motion fields Mk describe
the transformation of each bulk motion state BMk to a refer-
ence motion state BMRef. Here we selected the bulk motion
state with the highest number of radial PE lines as BMRef.
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2.D. Bulk motion compensation of MR images

The final 3D motion compensated MR images are ob-
tained by using a motion compensated non-Cartesian itera-
tive SENSE reconstruction23, 24 using the motion fields Mk

obtained in the previous step.

2.E. Bulk motion compensation of PET images

Similar to the compensation of the MR data, TBM and
Mk are used in a motion compensated PET reconstruction
to compensate for bulk motion shifts. A motion corrected
image reconstruction (MCIR) (Ref. 25) approach using the
motion fields Mk is applied to correct for subject motion.
Nonrigid bulk motion shifts are compensated for by directly
applying Mk to the activity distribution in each voxel dur-
ing a conventional iterative PET image reconstruction and
transform the voxels to the same motion state. In contrast to
approaches which carry out motion correction in the image
domain (reconstruct-transform-average), MCIR has been
shown to yield more accurate uptake values.26

As discussed previously, AC data required by the PET re-
construction need to be adapted for each bulk motion state in
addition to the correction of the PET emission data.

2.F. Volunteer experiments

A bit-reversed RPE sampling scheme was implemented
on a 3T MRI scanner (Philips Healthcare, Best, The Nether-
lands) for both gradient echo (GRE) and turbo spin echo
(TSE) sequences. In three volunteers, T1w GRE (flip an-
gle: 7◦, repetition(TR)/echo time(TE): 6.0/3.0 ms, total scan
time: 4 min) and T2w TSE (flip/inversion angle: 90◦/120◦,
repetition(TR)/echo time(TE): 365/7.1 ms, turbo factor: 16,
total scan time: 7 min) data were acquired using a 32 chan-
nel cardiac phased array coil: 288 mm3 FOV, acquisition ma-
trix: 192 × 192 × 128 (undersampling factor of 1.5 along
the angular direction), and 1.5 mm3 isotropic resolution. In
order to reduce scan times, a partial Fourier factor of 0.75
was used along the radial PE direction for the T2w TSE ac-
quisition. Respiratory navigation (navigator window: 6 mm)
was employed in both sequences to minimize respiratory mo-
tion artifacts using a pencil beam MR navigator placed on
the right hemi-diaphragm. During data acquisition, volunteers
were advised to carry out several bulk motion shifts of the
lower abdomen. Written informed consent was obtained from
all participants and the study was carried out following an ap-
proved protocol from our local hospital.

All images were reconstructed offline using MATLAB
(The MathWorks, Inc., Natich, MA) and the required coil
sensitivity maps were calculated from a separate reference
scan. In order to compensate for the partial Fourier acquisi-
tion, the T2w TSE data were reconstructed using a homodyne
approach.21

In addition to the free-breathing high-resolution scans,
a dual-echo DIXON acquisition was carried out between
the T1w GRE and the T2w TSE sequence to obtain
emission and attenuation maps for the PET simulation:27

repetition(TR)/echo times(TE): 3.3/1.2/2.1 ms, 288 × 240

× 288 mm3 FOV, 1.5 × 3 × 3 mm3 resolution. This scan was
obtained in one breathhold of approximately 20 s.

The acquired MR data were split into 55 dynamic time
frames Di (each with 20 radial PE lines) using a sliding win-
dow approach (window shift: two radial PE lines) each cover-
ing the entire FOV. In order to avoid artifacts from corrupted
data during the actual bulk motion shift, one radial PE line
before and after TBM were excluded from the image recon-
struction. This means approximately 4 s (T1w GRE) and 7 s
(T2w SE) of data acquisition were rejected around each TBM.

2.G. Data analysis

To quantify the bulk motion shifts eight anatomical land-
mark points, LM were manually selected in the 3D MR im-
ages describing each bulk motion state BM using distinct
anatomical features. The difference of the landmark position
between different BM provides a quantitative measure of the
displacement in different regions of the FOV due to bulk mo-
tion shifts. The maximum displacement of these landmark
points was determined for each scan and for each volunteer:

Dmax(i, j )= 1

8

8∑

lm=1

max ‖LM(lm, i) − LM(lm, j )‖, (1)

where i and j describe different bulk motion states, ‖.‖ is the
Euclidean norm and lm = 1. . . 8 are the indices of the different
landmarks.

The accuracy of the obtained motion fields was assessed
using the target registration error (TRE) between different
pairs of landmarks.28 For this study, the 3D TRE was deter-
mined by transforming the LMs to the reference motion state
BMRef and comparing them to the landmarks LMRef manually
selected in the reference motion state:

TRE = 1

8

8∑

lm=1

1

N

N∑

ms=1

‖MmsLM(lm,ms) − LMRef(lm)‖,

(2)

where ms refers to the different N bulk motion states de-
scribed by the motion fields Mms.

2.H. Accuracy of nonrigid motion detection
and estimation

The accuracy achieved with the proposed motion compen-
sation approach depends on the amplitude and duration of
the bulk motion states. In order to assess the shortest mo-
tion state which can still be accurately detected and estimated
with the proposed method, nonrigid bulk motion shifts were
simulated using image data and motion fields acquired in a
volunteer.

Small motion leads to little difference in the individual dy-
namic images Di and is more challenging to detect. There-
fore, the volunteer scan with the smallest overall landmark
displacement was selected for this study.

An MR data acquisition with three different bulk motion
states was simulated with different durations of the second
bulk motion state ranging from 25% to 3% of the total scan
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time. The duration of the third bulk motion state was adapted
accordingly.

The error of the motion detection approach (EDet) was de-
termined as the difference between the detected time points
T D

BM and the ground truth time point TBM used in the simula-
tion for different motion state durations:

EDet(p) = ∥∥T D
BM(p) − TBM

∥∥ (3)

with p = [3%, 5%, 6%, 9%, 13%, 16%, 19%, 22%, 25%] de-
scribing the duration of the second bulk motion state relative
to the total scan time. This assessment was carried out for two
different temporal resolutions of the dynamic images.

To assess the motion estimation approach the same sim-
ulated MR data were used. Nonrigid motion fields MD were
determined for different durations of the second bulk motion
state. The error of these motion fields EEst was determined by
calculating the mean target registration error (TRE) over eight
landmarks LM similar to Eq. (2):

EEst(p) = 1

8

8∑

lm=1

‖MD(p)LM∗(lm) − LMRef(lm)‖. (4)

The main difference to the TRE from above is that the
landmarks LM* were not manually selected but calculated by
applying the motion fields used for creating the simulated data
to the reference landmarks LMRef. This ensures that any errors
are due to inaccuracies of the motion fields and not due to the
selection of the landmarks.

In addition, the image reconstructed from the data of the
second bulk motion state was also transformed to the refer-
ence motion state using MD. The cross-correlation value be-
tween the transformed and the reference motion state was also
calculated to evaluate if it could be used as a surrogate of the
accuracy of the motion estimation.

2.I. PET simulation

Realistic PET data acquisition was simulated using semi-
automatically segmented MR images with manually inserted
virtual lesions.29 For this, the 3D DIXON MR images were
separated into bone, liver, lung, kidneys, soft tissue, and back-
ground signal. The 3D DIXON MR scans yielded two 3D data
sets acquired at two different echo times which allowed for an
automatic segmentation of water, fat, background, and lung
image information. Kidneys and liver were separated from
other soft tissue manually. Bone information was segmented
using an approach based on signal inversion as suggested by
Helle et al. followed by a manually removal of regions which
were falsely classified as bone due to their low signal such as
air in the bowels.30

Typically measured standardized uptake values (SUV) for
FDG were assigned to the different tissue types to create 3D
emission maps: air 0, lung tissue 0.5, soft tissue and fat 1,
bone 0.3, liver 2.5, and kidneys 3.0. These maps were then
transformed to the different bulk motion states using the mo-
tion fields obtained with the RPE acquisition scheme.

Soft tissue tumor lesions with different diameters varying
between 7.5 and 19.5 mm were placed manually in the emis-
sion maps of each bulk motion states at accurately determined

anatomical landmarks. The uptake values assigned to the le-
sions were 11 for lesions in the kidney and 8 for lesions close
to the spine.

AC maps were created by assigning the following atten-
uation values:31 background 0 cm−1, bone 0.15 cm−1, fat
0.09 cm−1, lung tissue 0.03 cm−1, and soft tissue (also includ-
ing liver and kidneys) 0.1 cm−1. The same AC information
was used for the PET simulation and PET image reconstruc-
tion to ensure that any errors of the measured uptake values
are due to the effects of bulk-motion.

The image resolution of the AC and emission maps was
reduced from the high MR resolution to a realistic PET res-
olution using 3D Gaussian filtering with a kernel width of
6 mm.

AC and emission maps were used in an analytic 4D PET
simulation approach based on the open-source library STIR
(Software for Tomographic Image Reconstruction, release
2.4) (Ref. 32) to obtain PET sinograms for each bulk mo-
tion state. This very fast approach generates realistic 4D PET-
MR datasets from measured MR acquisitions. It provides
simulations of simultaneously acquired data which are use-
ful for the validation of motion correction strategies and has
been previously compared against Geant4 based Monte Carlo
simulations.29

A Philips Gemini TF scanner was simulated with a cylin-
drical bore (90 cm diameter, 18 cm length) and 28 detector
blocks with 44 × 23 crystals each. The crystals measured
22 × 4 × 4 mm3.

Compton scattering was simulated analytically in 3D such
that it accounts for 35% of the obtained events.33, 34 The emis-
sion maps were scaled to a total number of 75 × 106 counts
corresponding to a 5 min 3D FDG-PET respiratory-gated ac-
quisition. To generate multiple realizations of the acquisition
process, Poisson noise was added taking 20 different seeds
from a random number generator for each realization.

Image reconstruction was performed with STIR using the
iterative three-dimensional ordered subsets expectation maxi-
mization (OSEM) algorithm with 23 subsets and two full iter-
ations and 4 mm isotropic 3D Gaussian post-filtering. Subject
motion during PET data acquisition impairs the final image
quality in two different ways. It leads to a blurring of lesions
and to a misalignment between attenuation maps and recon-
structed emission data. To study the impact of these two ef-
fects on the final image quality, the following PET images
were reconstructed:

� Motion free (MF) reference image: All PET data were
acquired using the emission map of the reference bulk
motion state.

� No motion correction (noMC): PET sinograms were ob-
tained for each of the different bulk motion states and
combined without motion correction.

� Motion correction of sinograms (MCS): PET sinograms
were obtained for each of the bulk motion states. A
MCIR approach using the motion fields Mk obtained
from the MR data were applied to correct for subject
motion. For MCIR, the motion information is used to
transform the recorded PET data to a common reference
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motion state during PET image reconstruction which
yields a final motion corrected PET image.

� Motion correction of sinograms and attenuation correc-
tion maps (MCSA): Identical to MCS but the attenua-
tion correction maps were also transformed to the dif-
ferent bulk motion states before they were applied in the
MCIR approach.

2.J. PET data analysis

The relative error (RE) between the motion free reference
image (MF) and noMC, MCS, and MCSA was calculated as

RE = 100 ∗ C − CMF

CMF
, (5)

where C is the SUV of each image voxel.
In order to assess the effect of motion correction on tu-

mor visibility and uptake of the radiotracer, the maximum
(SUVmax) uptake value was calculated within a spherical
region-of-interest (ROI) centered at each lesion.35 In addition,

the contrast recovery coefficient (CRC) relative to the motion
free case was calculated for all lesions:

CRC = SUVH/SUVB

SUVMF
H /SUVMF

B

, (6)

where SUVH and SUVB describe the average uptake value for
lesions (H) and background (B), respectively. All parameters
were assessed in MF, noMC, MCS, and MCSA images. All
measurements, definition of spherical ROIs and analysis were
carried out using MATLAB (The MathWorks, Inc., Natich,
MA).

3. RESULTS

The MR data acquisition and PET simulations were suc-
cessfully carried out for all volunteers. Every bulk motion
shift in any of the six datasets could be accurately detected
and corrected.

The individual steps of the bulk motion detection and es-
timation are depicted in Fig. 4 for one volunteer. Figure 4(b)

FIG. 4. Results of bulk motion detection and estimation. (a) The obtained data are split up into short time frames D for motion detection. Based on the detected
motion states, the data are split into the individual bulk motion states B. A few RPE lines are excluded in order to ensure corrupt data acquired during the
transition from one motion state to the other does not negatively impair the image reconstruction. (b) One slice of the dynamics 10, 30, and 52 reconstructed
from 20 radial phase encoding lines. The white outline describes the position of the kidneys at the beginning of the MR scan and is used to visualize the
displacement between these three time frames describing the beginning, middle, and end of data acquisition. (c) An affine registration is used to determine the
average displacement functions R of all dynamics. R of dynamic 10, 30, and 52 are shown here. A low value of R10 between dynamic 1 and 20 indicates that
these dynamics are in the same motion state as dynamic 10. The following sharp increase of R10 suggests that bulk motion has occurred. The time points when
bulk motion shifts took place are detected as crossings of the displacement functions (black arrows). Based on this information, the acquired data are split into
multiple bulk motion states (three motion states in this case). (d) One slice of the 3D image volume for each of the bulk motion states B1, B2, and B3. Depending
on the duration of each bulk motion state, more data are used for the image reconstruction of B1, B2, and B3 compared to the dynamics D leading to a superior
image quality. (e) Difference images between motion state B1, B2, and B3, respectively. Bulk motion leads to displacements between the different motion states
which are clearly visible in the difference images. A local affine registration algorithm is used to obtain motion fields describing the transformation between the
different bulk motion states (i.e., transformation between B1 and B2 and B1 and B3, respectively). (f) Applying the obtained motion fields leads to the corrected
data cB1, cB2, and cB3 which are now all describing the same motion state. (g) The difference images of the corrected data do not show any visible displacement
anymore.
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FIG. 5. Comparison of motion detection using average displacement (R) and image correlation coefficient (Corr) functions. (a) and (b) Selecting a threshold
for R of 2 mm allows identifying the three different bulk motion states BM1–3 in both volunteers. To achieve similar results for Corr, the threshold would need
to be adapted for each volunteer and possibly motion amplitude. (c) and (d) Determining BM1–3 using the proposed method of calculating the crossings of R
and Corr, respectively, leads to accurate results in both volunteers and does not require any manual selection of a threshold. Only two curves for R and Corr are
shown here for simplicity. In practice, one function for each dynamic volume would be used, i.e., in this case 55 curves. For volunteer one, R42, Corr42 (solid
lines), and R10, Corr10 (dashed lines) and for volunteer, two R22, Corr22 (solid lines), and R10, Corr10 (dashed lines) are shown. The index x indicates that this
function was obtained by comparing dynamic x to all other dynamic volumes.

shows in vivo images with high temporal resolution used for
motion detection. Each image is reconstructed using only 20
radial phase encoding lines. Despite this high undersampling
factor, the image quality of the dynamic images was suffi-
cient to obtain affine motion estimations which allowed for
a reliable detection of the time points when bulk motion oc-
curred [Fig. 4(c)]. The images used for motion estimation are
reconstructed from a variable number of radial phase encod-
ing lines depending on the duration of each bulk motion state
[Fig. 4(d)]. For the volunteer shown here, these images were
obtained using at least 34 radial phase encoding lines for each
image leading to a better image quality compared to the dy-
namic images shown in Fig. 4(b). They allowed for accurate
nonrigid motion estimation [Figs. 4(e)–4(g)].

Figure 5 compares obtained displacement (R) and normal-
ized correlation coefficient (Corr) functions for two volun-
teers. Both R and Corr show a similar behavior with a high
correlation coefficient corresponding to a low displacement.
Using thresholds of 2 mm for R and 0.9 for Corr, leads to
a reliable detection of the three bulk motion states BM1–3

in volunteer 1. BM1–3 can also be determined with the same
threshold for R but not for Corr in volunteer 2. With the pro-
posed approach of determining the crossings of R and Corr
[Figs. 5(c) and 5(d)], BM1–3 can be detected in both volun-
teers. The proposed approach is subject independent and does
not require the manual selection of a threshold value. For the
volunteer experiments, TBM was determined from the cross-
ing of R rather than Corr because R provides quantitative in-
formation which does not just show the occurrence of bulk
motion but also its amplitude in millimeters.

Motion corrupted and motion corrected MR images are de-
picted in Fig. 6. Bulk motion shifts during data acquisition led
to strong artifacts and severely impaired MR image quality.
The proposed approach could accurately detect and correct
for bulk motion shifts which strongly improved the images.

The maximum displacement of the selected landmarks
ranged from 10 mm to more than 30 mm. The target reg-
istration error was 1.71 ± 0.29 mm over all volunteers and
scans. Figure 7 shows the displacement and the TRE for each
volunteer and each scan. There was no visible dependency of
the TRE on either the scan type (T1- or T2-weighted) or on
the motion amplitude (i.e., the maximum displacement of the
landmark points).

The accuracy of the proposed motion compensation ap-
proach for different durations of a bulk motion state is de-
picted in Fig. 8. For both temporal resolutions (55 dynamic
and 115 dynamic time frames), the accuracy decreases with
decreasing duration of the bulk motion state. For the 55
dynamic cases, the motion detection fails for motion states
shorter than 9% of the total scan time (i.e., the time it takes to
acquire 128 RPE lines). Splitting the data into 115 dynamic
time frames increases the temporal resolution of the motion
detection approach and bulk motion states with less than 5%
of the acquired data can be detected. For the T1w scan, this
means a bulk motion state with a duration of approximately
11 s can still be correctly identified.

The error of the motion estimation EEst is below the spatial
resolution of 1.5 mm even for motion states with durations as
short as 6% of the total scan time [Fig. 8(b)]. Furthermore,
the cross-correlation value (XCorr) shows excellent inverse
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FIG. 6. Result of bulk motion correction for MRI. T1-weighted (T1w) and T2-weighted (T2w) 3D MR images of the abdominal area were obtained in three
volunteers. Volunteers were advised to carry out two to three bulk motion shifts during data acquisition which caused severe image artifacts (corrupt). The
proposed motion detection and correction scheme successfully compensated for the bulk motion shifts and led to a strong improvement in image quality
(corrected).

correlation with the accuracy of the obtained motion fields.
Bulk motion during data acquisition also led to severe artifacts
in PET images (Fig. 9). The misalignment of the sinograms
caused a blurring of tumor lesions and of anatomical fea-
tures such as the outline of the kidneys. Correcting for motion
before combining the individual PET motion states strongly
improved the final PET image. Nevertheless, the relative er-
ror could still locally reach values of up to 80% if the AC
maps were not adapted for each bulk motion state. That adap-
tion was especially important in areas where the AC values
were changing locally such as along the spine which can be
clearly seen in Fig. 9(a) for MCS and the difference image
MCS-MF. This effect is also visible in tumor profiles where
the misalignment between AC maps and image data led to a
wrong increase of measured SUV values for a lesion close to
the spine [Fig. 9(b)]. For a lesion surrounded by soft tissue,
such as a lesion in one of the kidneys, the adaption of AC
maps to the different motion states only led to a small im-
provement in SUV [Fig. 9(c)]. In summary, the best image

quality was achieved if both the AC maps and the PET image
data were motion corrected.

Figure 10 shows SUVmax and CRC measured for different
lesion sizes. Bulk motion shifts of the subject led to an under-
estimation of uptake values of up to 67% depending on the
maximum displacement and the lesion size. The difference
between MCS and MCSA is clearly visible for lesions close
to the spine, where misalignment of AC maps and image data
in the MCS approach can distort the measured SUV values.
That distortion caused errors of more than 25%.

4. DISCUSSION

We have successfully demonstrated a technique which
provides automatic image-based nonrigid motion detection
and correction for T1w and T2w 3D MR images with high
isotropic resolution. In addition, the obtained motion infor-
mation can be used to motion correct simultaneously acquired
PET and MR images. Our approach does not require any
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FIG. 7. Quantitative evaluation of bulk motion correction. Eight anatomical
landmark points (blue crosses in small figure insert) were determined in all
motion states. The displacement of these landmarks due to bulk motion was
determined for all volunteers in each of the T1- and T2-weighted 3D data
sets. The maximum displacement ranged from 10 mm to more than 30 mm
(blue bars). The obtained motion fields reduced this error to 1.71 ± 0.29 mm
(gray bars with standard deviation in white).

additional acquisition of motion information but utilizes the
obtained image data and can be applied to images with differ-
ent contrasts.

High-resolution 3D RPE data were acquired using a bit-
reversed order of the PE lines. This sampling scheme ensures
that successively obtained radial PE lines are spread far apart
and that recorded data are optimal distributed at the end of
the scan. It also restricts the number of radial PE lines to a
power of two. This limitation could be overcome by using a
Golden-angle RPE sampling scheme.36

The dynamics used to detect the bulk motion shifts were
reconstructed using an iterative non-Cartesian SENSE algo-
rithm. Although this approach yielded a sufficient image qual-
ity, a higher temporal resolution (i.e., more dynamic frames
reconstructed using fewer radial PE lines) could be achieved
by incorporating further constraints such as total variation into

the image reconstruction algorithm. This approach could al-
low for the detection of even very fast and short bulk motion
shifts.

The accuracy of the motion detection is higher if the data
are split into 115 dynamic time frames rather than into 55 dy-
namics. Nevertheless, for the volunteer experiments we used
the latter approach because it requires less computational time
as each dynamic time frames requires approximately 2 min of
reconstruction time using MATLAB (The MathWorks, Inc.,
Natich, MA). In the in vivo study, the motion state with the
shortest duration and thus least amount of data contained
17.15% of the total scan. For this case, splitting the data into
55 dynamics provided sufficiently accurate motion detection.

The assessment of the accuracy of the motion estimation
showed that accurate nonrigid bulk motion fields can be ob-
tained even for motion states as short as 10% of the total scan
time. Data from shorter motion states could be rejected to en-
sure that inaccuracies in the nonrigid motion estimation do not
negatively impair the final image reconstruction. A more so-
phisticated approach would be to utilize the cross-correlation
information between the reference and motion corrected im-
ages similar to the data weighting algorithm by Pipe37 to ex-
clude misregistered data which would lead to image artifacts.

The quality of the reference bulk motion state BMRef also
influences the accuracy of the obtained motion fields. Here,
BMRef was chosen as the bulk motion state with the largest
amount of acquired data. Nevertheless, other selection crite-
ria such as choosing the bulk motion state with the sharpest
image features will be investigated in the future.

So far we have assumed that bulk motion shifts occur as
distinct changes of the body in a time interval, which is short
compared to the overall scan time. Nevertheless, the presented
approach could also be used to detect and compensate for bulk
motion drifts, i.e., a small but continuous change of body po-
sition during the entire scan.

As already discussed, bulk motion affects MR and PET
image quality differently. Depending on the data acquisi-
tion scheme, even small and fast bulk motion can severely
impair MR image quality. For PET, the effect of motion
is highly dependent on the length the subject remaining in

FIG. 8. Accuracy of motion detection and estimation. (a) Error EDet of motion detection for different durations of bulk motion states. EDet is given for two
different cases: splitting the obtained data into 55 time frames (blue crosses, 55 dyn) and splitting the data into 115 time frames (red circles, 115 dyn). Motion
detection fails for a motion state shorter than 9% (equivalent to 12 RPE lines) and 5% (equivalent to 6 RPE lines), respectively. (b) Error EEst (blue crosses)
of motion estimation for different durations of bulk motion states. In addition the cross-correlation value (XCorr, red circles) between the reference image and
the images transformed to the reference bulk motion state is shown. Accurate motion estimation can be carried out even for images obtained from less than 6%
(equivalent to 8 RPE lines) of the total scan time (equivalent to 128 RPE lines). EDet and the duration of the bulk motion states are given in percent of the total
scan time and in numbers of RPE lines.

Medical Physics, Vol. 41, No. 8, August 2014



082304-11 Kolbitsch et al.: Nonrigid bulk motion correction in PET-MR 082304-11

FIG. 9. Results of PET simulation. (a) Grayscale images show simulated PET data with two 9 mm lesions close to the spine (L1) and in one of the kidneys (L2)
without bulk motion (MF), with bulk motion but without motion correction (noMC), with motion correction of just the emission data (MCS) and with motion
compensation of both emission data and attenuation correction (AC) maps (MCSA). The colored images show the relative error [RE, see also Eq. (3)] between
the MF and the other three cases. Bulk motion causes strong artifacts which severely impairs the PET image quality. The MCSA approach leads to the smallest
relative error. (b) and (c) This is also visible in the tumor profiles obtained along a horizontal line through the center of the lesion for L1 (b) and L2 (c). MCSA
shows the best agreement compared to the MF reference. The negative effect of the mismatch between AC and emission data is highest for L1 which is close to
a strong local change of the AC values (i.e., interface between bone and soft tissue). The difference in SUV (�SUV) was calculated as the relative difference of
the full width at half maximum profile area between MF and noMC, MCS, and MCSA.

each bulk motion state. Nevertheless, we believe that even
for short movements which do not lead to immediately vis-
ible image degradation motion detection and correction is
important to ensure reliable and accurate quantitative PET
imaging.38

Respiratory motion artifacts in the MR images were min-
imized using navigator-based gating. This ensures excellent
image quality but leads to longer scan times. Buerger et al.
have presented an approach to correct for respiratory motion
artifacts39 and future studies will focus on combining respi-
ratory and bulk motion compensation to allow for a highly
efficient PET-MR acquisition of the abdominal area. In the
presented PET simulation, respiratory motion was not con-
sidered to ensure the obtained results demonstrate clearly the
effect of bulk motion.

The SUV values and lesion profiles shown in Fig. 9 are
lower than the values assigned to the segmented emission
maps because the emission values were assigned in the seg-
mentations of the high-resolution MR images. Prior to the
PET simulation, these high-resolution emission maps are fil-
tered and down sampled to achieve a realistic PET image res-
olution. In addition, a Gaussian filter is applied to the recon-
structed PET images as a post processing step.

Figure 10(b) shows that if the AC maps are not adapted
to the different bulk motion states, SUVmax is overestimated.
This effect is due to the fact that the lesion should be cor-
rected with a soft tissue AC value. Nevertheless, due to the
bulk motion, the AC map is misaligned and the value of bone
is used which leads to an overestimation of the SUV value of
the lesion. If the lesion should actually be corrected using the
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FIG. 10. Assessment of standardized uptake values. Maximum standardized uptake values (SUVmax) and contrast recover coefficients (CRC) of the three
different reconstruction approaches noMC, MCS, and MCSA are compared relative to the motion free reference images (MF). The analysis was carried out for
six different lesion sizes (7.5, 9, 10.5, 13.5, 16.5, and 19.5mm) for a lesion in the kidney (a) and two lesions next to the spine [(b),(c)] with different maximum
bulk motion amplitudes (Dispmax). The error of the relative SUVmax and CRC is proportional to the displacement amplitude. In addition, bulk motion has a
stronger negative effect on the measured uptake values for smaller lesions. Adapting the attenuation correction (AC) maps to the different bulk motion states is
more important for larger displacements and lesions close to changes of AC values, such as close to the spine. The error bars show the standard deviation of
each value over ten different noise realizations.

AC value of bone but instead the AC value of soft tissue is ap-
plied, SUVmax is underestimated [Fig. 10(c)]. For both cases,
using misaligned AC maps leads to artifacts around the lesion
which increase the background signal. The higher background
signal decreases the measured CRC.

A partial or complete metabolic response to cancer treat-
ment is defined as a change in SUV between 20% and 50%
depending on tumor and study type.2, 40 The presented results
of the PET simulation indicated that even bulk motion shifts
less than 20 mm can lead to an error in SUV assessment of
more than 40%. If the sinograms are motion corrected but the
attenuation maps are not adapted to the different bulk mo-
tion states measured SUVs can deviate from the true value
by almost 25%. Both errors can thus have serious impact
on assessment of cancer treatment which shows the impor-
tance of detecting and correcting for even small bulk motion
shifts.

While the effect of MR based nonrigid bulk motion correc-
tion has been demonstrated for MRI in healthy volunteers the
impact on PET image quality was assessed using PET simula-
tions only, which is a limitation of the presented study. Further
studies are required to verify the obtained results for in vivo si-
multaneous PET-MR imaging. The scatter correction applied
in the image reconstruction of the PET simulation is based on
segmented emission and attenuation maps. For in vivo scans,
true emission maps are not available and scatter correction
has to be estimated from the acquired PET data and AC map.
If sinograms are corrupted and the AC maps are misaligned
due to motion, this approach might lead to much more severe
artifacts than simulated here.

The presented technique requires a simultaneous acquisi-
tion of PET and MR data and cannot be applied to sequential
PET-MR systems.

We have shown the effect of our proposed approach in
bulk motion shifts of the abdominal area. Nevertheless, this
method can be applied to the detection and correction of other
nonrigid motion. Especially, patients who are more likely to
move during a PET-MR scan, such as newborns, could benefit
strongly from this technique.41

5. CONCLUSION

We have presented a novel technique which detects and
corrects for nonrigid bulk motion shifts ranging from 10 to
30 mm with an accuracy of 1.71 ± 0.29 mm. In addition, the
obtained bulk motion fields were used to successfully com-
pensate for the same bulk motion in a simulated simultane-
ous PET-MR acquisition. Our proposed method does not re-
quire any additional data acquisition but all necessary motion
information is obtained directly from the acquired 3D high
resolution MR image data. Furthermore, it is applicable to
both T1- and T2-weighted MR imaging and its accuracy is
not affected by the different image contrasts. The results of
our PET simulation suggest that bulk motion can lead to an
error in SUV assessment of up to 67%. Motion compensat-
ing both PET emission data and the corresponding AC maps
reduced this error to below 10% compared to a motion free
reference.
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