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higher vertebrates), while relatively low AP upstroke velocities
enable only relatively slow propagation of contraction over the
heart.
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ABSTRACT

Hagfishes and lampreys (order Cyclostomata) are living
representatives of an ancient group of jawless vertebrates
(class Agnatha). Studies on cyclostome hearts may provide
insights into the evolution of the vertebrate heart and thereby
increase our understanding of cardiac function in higher
vertebrates, including mammals. To this end, electrical ex-
citability of the heart in a basal vertebrate, the European river
lamprey (Lampetra fluviatilis), was examined. Ion currents of
cardiac myocytes, action potentials (APs) of atrial and ven-
tricular muscle, and electrocardiogram (in vivo) were mea-
sured using the patch-clamp method, intracellular micro-
electrodes, and trailing wires, respectively. The characteristic
features of fairly high heart rate (28.4 5 3 beats min21) and
short AP duration (550 5 44 and 122.1 5 28.5 for ventricle
and atrium, respectively) at low ambient temperature (57C)
are shared with cold-active teleost fishes. However, the ion
current basis of the ventricular AP differs from that of other
fishes. For inward currents, sodium current density (INa) is
lower and calcium current density (ICa) higher than in teleost
ventricles, while the kinetics of INa is slow and that of ICa is fast
in comparison. Among the ventricular repolarizing currents,
the delayed rectifier K1 current is smaller than in myocytes
of several teleost species. Unlike mammalian hearts, ATP-
sensitive K1 channels are constitutively open under normoxic
conditions, thus contributing to negative resting membrane
potential and repolarization of APs. Upstroke velocity of AP
(5.4 5 0.9 and 6.3 5 0.6 V s21 for ventricular and atrial
myocytes, respectively) is slower than in teleost hearts. Ex-
citability of the lamprey heart seems to possess both primitive
and advanced characteristics. Short APs are appropriate to
support brief and vigorous contractions (in common with
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(E-C) coupling of the heart and its autonomic nervous con-
trol among vertebrates. For example, isoforms and molecular
assemblies of ion channels responsible for electrical activity
at the sarcolemma (SL) vary between piscine and mamma-
lian hearts (Haverinen et al. 2007; Hassinen et al. 2008b, 2011).
Relative roles of sarcoplasmic reticulum (SR) Ca21 release
and SL Ca21 influx in the activation of contraction in cardiac
myocytes also differ between ectothermic (fishes, frogs, rep-
tiles) and endothermic (mammals and birds) vertebrates (Fa-
biato 1983; Klizner and Morad 1983; Driedzic and Gesser
1994; Vornanen et al. 2002b; Vornanen and Haverinen 2012).
To better understand the functional and adaptive roles of
these differences in cardiac E-C coupling, physiological stud-
ies on extant species of ancient vertebrate groups may be used
to provide insights into the evolutionary origin, adaptive value,
and genetic limitations of physiological traits.
Hagfishes and lampreys (order Cyclostomata) are living

representatives of an ancient group of jawless vertebrates (class
Agnatha). The agnathans appearedmore than 555million years
ago, but most of the species became extinct about 200 mil-
lion years later. Currently, the group comprises about 120 cy-
clostome species (Shu et al. 1999). Although molecular data
suggest a shared ancestry of lampreys and hagfishes—that is,
they diverged after the split of Agnatha and Gnathostome (the
jawed vertebrates) lineages (Delarbre et al. 2002; Heimberg
et al. 2010)—in morphological and physiological terms lam-
preys share a number of characteristics with both Gnatho-
stomes and hagfishes. Because lampreys and hagfishes are
close relatives, it would be informative to know how the shared
and divergent physiological traits of lampreys, with hagfishes
on one hand and gnathostomes on the other, are associated
with the current biology of these groups, that is, which traits
are ancestral, degenerate, or adaptive for each group.
The lamprey heart displays some distinctive features whose

mechanistic basis remains poorly elucidated. For example,
neural regulation deviates from that of both hagfishes and
gnathostomes (for review, see Farrell 2007 and Satchell 1991).
Autonomic control of the lamprey heart differs from the
typical vertebrate pattern in three respects: (i) it completely
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lacks sympathetic adrenergic control; (ii) cholinergic control
is excitatory, in contrast to the inhibitory control of other
vertebrates; and (iii) cholinergic control is mediated via

analyzed using the HR variability subroutine of LabChart 7.
HR variability was evaluated from Poincaré plots, where each
RR interval (fig. 1A; RRn, X-axis; fig. 1C) is plotted against
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nicotinic rather than muscarinic receptors (Greene 1902;
Carson 1906; Augustinsson et al. 1956). The hagfish heart
lacks any autonomic control and therefore differs from the
lamprey heart in regard to the parasympathetic system. Al-
though the lamprey heart is devoid of adrenergic control, the
endothelial surface of the myocardium has catecholamine-
containing chromaffin cells, which may release adrenaline and
noradrenaline to cardiomyocytes (Augustinsson et al. 1956).
Another characteristic feature of both lamprey and hagfish,

evident from electrocardiograms (ECG), is a slow rate of
action potential (AP) transmission over the heart (Davie et al.
1987). Electrical conduction rate depends on the density of
sarcolemmal sodium current (INa). On other hand, the effects
of adrenaline and noradrenaline on E-C coupling are medi-
ated by SL b-adrenergic receptors, which in vertebrates are
coupled to L-type Ca21 channels. Because there are no previous
cellular studies on the lamprey heart, the objective of this study
was to analyze ion currents to explore the basal arrangement
underlying electrical excitation of the vertebrate myocardium.

Material and Methods

Animals

Experiments were conducted on European river lamprey
(Lampetra fluviatilis; 565 12 g, np 32) caught from the river
Kemijoki (Finland) in October 2008–2011. In the animal
house, lampreys were maintained in 500-L metal aquaria at a
water temperature of 57–67C. No food was provided for the
fish. Photoperiod was a 12L∶12D cycle. The experimental
protocols were approved by the Animal Experiment Board in
Finland (permissions STH998A and PH472A).

Recording of Electrocardiograms (ECG)
ECG recordings were made following previously described

methods (Campbell et al. 2004). Lampreys were anesthetized
by MS-222 (0.85 mg L21, Sigma) in neutralized water
(NaHCO3, pH ∼7) and placed ventral side up on an operating
table. Recording electrodes were made of two seven-strand
Teflon-coated wires (length p 40 cm, diameter p 0.23 mm;
A-M Systems), which were obliquely inserted from the ventral
side of the fish laterally close to the pericardium. The trailing
wires were bound together and attached by a suture to the
back of the lamprey. The operated fish was placed into a glass
jar (2.3 L) that was immersed in the fish tank (500 L, O2

concentration about 11 mg L21). The ECG wires and the
reference electrode were connected to a bioamplifier (AD
Instruments, Oxford, UK) for continuous recording of bipolar
ECG signals on computer. Off-line analysis of the recordings
was made by using LabChart 7 software (AD Instruments).
Heart rate (HR) and HR variability of resting fish were

determined 3–12 d (mean 5 SEM p 6 5 1.16) after the
attachment of the recording electrodes. To this end, 1-h
stretches of constant ECG recordings were automatically
This content downloaded from 193.167.4
All use subject to JSTOR
the next RR interval (RRn11, Y-axis; fig. 1C). Points falling
above and below the line of identity indicate interbeat in-
tervals longer and shorter than the preceding RR interval,
respectively. For each Poincaré plot, standard deviations of the
longer and shorter axis (SD1 and SD2, respectively; fig. 1;
Tulppo et al. 1996) were determined from the following equa-
tions, where NN refers to normalized RR intervals generated
by discarding artifacts and ectopic beats from the raw RR
intervals (LabChart 7):
Figure 1. Electrocardiogram of Lampetra fluviatilis at 57C. A, Rep-
resentative electrocardiogram showing depolarization of sinus ve-
nosus (v), depolarization of atrium (P), repolarization of atrium (PT),
depolarization of ventricle (QRS), and repolarization of ventricle (T).
The dotted line indicates the zero voltage line. B, Tachogram from
bipolar electrocardiogram recording of a nonanesthetized lamprey
showing a stable long-term cardiac rhythmicity. C, Poincaré plot
showing a larger long-term variability (length) than short-term var-
iability (width) in heart rate. All recordings are from the same fish. RR
interval refers to the interval between the peaks (R) of two consecutive
QRS complexes of the electrocardiogram.
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SD12 p 0.5# SDDNN2;

SD22 p 2# SDNN2 0.5# SDDNN2 .

Single-channel currents of Kir2 potassium channels and
ATP-sensitive K1 channels were recorded in the cell-attached
configuration using an EPC-9 amplifier and Pulse software or

Ion Currents of Lamprey Heart 819
SDNN and SDDNN are standard deviation of the NN intervals
and standard deviation of the differences between adjacent NN
intervals, respectively.

Recording of Action Potentials
The whole heart was gently fixed with insect pins on the

After checking normality of distribution and homogeneity of
Sylgard-coated bottom of a 10-mL recoding chamber filled
with continuously oxygenated (100% O2) physiological saline
solution containing (inmmol L21) 150NaCl, 5.4 KCl, 1.8 CaCl2,
1.2 MgCl2, 10 glucose, and 10 HEPES, with pH adjusted to 7.7
with NaOH (at 57C). Cardiac preparations were allowed to
stabilize for about 1 h before APs were recorded with sharp
microelectrodes as described earlier (Haverinen and Vornanen
2009). Recordings were analyzed in Clampfit software (Axon
Instruments) to determine restingmembrane potential (RMP),
AP overshoot, AP amplitude, and AP duration at 50% of re-
polarization (APD50).

Patch-Clamp Recordings
Ventricular myocytes were isolated with enzymatic digestion

APs were recorded with sharp microelectrodes from intact
with established methods (Vornanen 1997; Vornanen and
Haverinen 2012) and were used within 8 h of isolation. A
small aliquot of dissociated cells was placed in a small (150 mL)
recording chamber and then superfused continuously, with the
external solution precooled to 57 5 17C.
For measurement of K1 currents the external solution

contained (in mmol L21) 150 NaCl, 5.4 KCl, 1.5 MgSO4,
0.4 NaH2PO4, 2.0 CaCl2, 10 glucose, and 10 HEPES at pH
7.7. Tetrodotoxin (TTX; 1 mM), nifedipine (10 mM), and
glibenclamide (30 mM) were added in the external saline so-
lution to block Na1, Ca21, and ATP-sensitive K1 currents,
respectively. Pipette solution contained (in mmol L21) 140 KCl,
4 MgATP, 1 MgCl2, 5 EGTA, and 10 HEPES at pH 7.2.
Na1 current (INa) wasmeasured inCs1-based, low-Na1 saline

solution, which contained (in mmol L21) 20 NaCl, 120 CsCl,
1 MgCl2, 0.5 CaCl2, 10 glucose, and 10 HEPES (pH adjusted to
7.7 with CsOH). In addition, 10 mM nifedipine (Sigma) was
added to both solutions to block L-type Ca21 currents. The pi-
pette solution contained (mmol L21) 5 NaCl, 130 CsCl, 1 MgCl2,
5 EGTA, 5 MgATP, and 5 HEPES (pH adjusted to 7.2 with
CsOH). To ensure adequate voltage control, a minimum of 80%
series resistance compensation was applied. INa was elicited from
the holding potential of 2120 mV.
The composition of the physiological solution used for re-

cording Ca21 current (ICa) contained (in mmol L21) 130 NaCl,
5.4 CsCl, 1.5 MgSO4, 0.4 NaH2PO4, 1.8 CaCl2, 10 glucose, and
10 HEPES (adjusted to pH 7.7 with CsOH). For recording
ICa, the pipette solution contained (in mmol L21) 130 CsCl,
5 MgATP, 15 tetraethylammonium chloride, 1 MgCl2, 5 suc-
cinate, 5 EGTA, 0.3Na2GTP, and 10HEPES (adjusted to pH 7.2
with CsOH).
This content downloaded from 193.167.4
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Axopatch 1D amplifier and PClamp 9 (Axon; Paajanen and
Vornanen 2004; Hassinen et al. 2008b). Electrode resistance
varied between 9 and 11 MQ when they filled with K1-based
solution (in mmol L21): 134 KCl, 1.8 CaCl2, 2 MgCl2, 10 glucose,
and 10 HEPES (adjusted to pH 7.7 with KOH; [K1]p 141mM).
Physiological saline solution (see “Recording of Action Poten-
tials”) was used as the bath solution. All single-channel re-
cordings were sampled at 4 kHz and low-pass filtered at 2 kHz.
Single-channel conductance was determined by applying 30-s
square pulses from 2120 to 220 mV in 20-mV increments ev-
ery 10 s.

Statistical Analyses
variances, a t-test for independent samples was used to
compare the parameters of atrial and ventricular APs and
effects of isoprenaline and acetylcholine on L-type Ca21

current. Interspecies differences in voltage dependence and
rate of inactivation of INa and ICa were tested with one-way
ANOVA using Tukey’s honest significant difference as the
post hoc test. A P value of 0.05 was the limit of statistical
significance. Data are presented as means 5 SEM.

Results

Heart Rate and Electrocardiogram

A typical ECG of the lamprey heart included v, P, PT, QRS,
and T waves (fig. 1A) corresponding to depolarization of sinus
venosus, atrial depolarization, atrial repolarization, ventric-
ular depolarization, and ventricular repolarization, respec-
tively. The mean in vivo HR of lamprey at 57C was 28.5 5 3.0
beats min21 (n p 7), with a Q-T interval (ventricular AP
duration) of 831 5 92 ms (fig. 1B). Figure 1C shows a typical
ellipsoid Poincaré plot of a resting lamprey. Typical for the HR
of a resting vertebrate, the short-term variability (width) of
HR is less than the long-term variability of HR (length). For all
animals (n p 7), Poincaré plots were elliptical in shape with a
mean standard deviation of 1965 38 ms (SD1) and 3115 65
ms (SD2) for short- and long-term variability, respectively
(P ! 0.05). The SD1/SD2 was 0.64 5 0.02. Duration of the
QRS complex, ameasure for the rate of AP propagation over the
ventricle, was 218.4 5 55.8 ms.

Cardiac Action Potentials
atrial and ventricular muscle of the lamprey heart. APs of the
lamprey ventricle had a typical shape of the vertebrate cardiac
APwith an upstroke velocity of 5.45 0.9 V s21 (mean5 SEM),
prominent AP overshoot (18.7 5 7.9 mV), and long plateau
duration (APD50 p 5505 44.6 ms) at 57C (fig. 2; table 1). The
RMP was267.75 9.8 mV. In comparison to ventricular APs,
1.1 on Mon, 15 Jun 2015 07:34:05 AM
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(13.05 10.1mV,P! 0.01) and similar upstroke velocity (6.35

(133.2 mV; fig. 3). Typical for INa, the current inactivated
relatively quickly during maintained depolarization, with a
time constant of 2.2 5 0.3 ms at 230 mV.

The long duration of ventricular AP is maintained by a balance

When INa, ICaL, and IKr were blocked with TTX, nifedipine, and
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0.6 V s21, P 1 0.05; fig. 2; table 1).

Sodium Current (INa)
The fast upstroke of cardiac AP is produced by a rapid influx of

ti
Na1 ions through the voltage-gated Na1 channels generating
INa. Ventricular myocytes of the lamprey heart had a robust
INa, which was blocked by low concentrations of tetrodotoxin
(data not shown), a specific blocker of Na1 channels (Vorna-
nen et al. 2011). INa had a peak amplitude of 14.95 3.5 pA pF21

at 230 mV, and the current reversed at 133 5 3.3 mV,
that is, close to the theoretical reversal potential of Na1 ions

Table 1: Characteristics of atrial and ventricular action poten
Ventricle Atrium Pa

impalements of at lea
rences between atria APs. NS p not sign
R
A
A
M

This content downloaded from 193.167.4
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L-Type Ca21 Current (ICaL)
between Ca21 influx through L-type Ca21 channels and K1

efflux through different K1 channels. The peak density of ICaL
occurred at110 mV, and the current inactivated much slower
than INa (fig. 4). ICaL was 90% blocked by 10 mM nifedipine (not
shown), a blocker of L-type Ca21 channels. A nonspecific b-
adrenergic agonist, isoprenaline (2 mM), increased the peak
density of ICaL by 65% from 3.05 0.42 to 4.25 0.56 pA pF21. In
contrast, acetylcholine (1 mM) had no effect on ICaL (fig. 4).

Inward Rectifier K1 Current (IK1)
E-4031, respectively, large inward and outward currents re-
mained in lamprey ventricular myocytes (fig. 5A). Low con-
centrations of Ba21 (0.2 mM) blocked a part of the inward and
outward currents. The Ba21-sensitive current had a typical
shape of the inward rectifier K1 current (IK1), and the current
reversed at 282 mV, close to the reversal potential of K1 ions
(fig. 5B). The remaining current had a linear voltage depen-
dence with a reversal potential at about 260 mV, suggesting
that it was alsomainly carried by K1 ions, possibly representing
the ATP-sensitive K1 current (IK,ATP). Similar to the IK,ATP of
teleost fishes (Paajanen and Vornanen 2002; Abramochkin and
Vornanen 2014), the lamprey current was only partially (50%–
60%) blocked by 10 mMglibenclamide, a specific blocker of IK,ATP
(data not shown).
To identify the linear Ba21-insensitive current, single-

channel recordings of K1 currents were conducted under the
same experimental conditions (temperature, external saline
solution) as the whole-cell recordings (fig. 5C, 5D). Single-
channel recordings were overwhelmed by frequent occurrence
of large-amplitude (10 5 1.2 pA at 2120 mV) currents, with
frequent and rapid openings and closings. This channel had a
slope conductance of 61 pS. These features are characteristic of
the ATP-sensitive K1 channels. Small-amplitude (1.2 pA at
2120mV) and kinetically slower inward rectifier currents were
also present, with a slope conductance of only 9 pS. Such data
indicate that under these conditions, at least two types of inward

als (APs) of the lamprey (Lampetra fluviatilis) heart at 57C
atrial APs were much shorter in duration (APD50 p 122.1 5

28.5 ms, P ! 0.001) and had a slightly smaller AP overshoot

Figure 2. Representative microelectrode recordings of atrial and
ventricular action potentials (AP) of the lamprey (Lampetra fluviatilis)
heart at 57C.
esting membrane potential (mV) 267.7 5 9.8 270.8 5 4.2 NS

ction potential overshoot (mV)
ction potential duration (APD ; ms)
18.7 5 7.9
550 5 44.6
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Figure 3. Sodium current (INa) of lamprey ventricular myocytes at 57C. A, Mean current-voltage relation (5SEM) of INa. Voltage protocol and
representative current tracings are shown at the top. B, Voltage dependence of the inactivation time constant (t) of the lamprey INa (left) and
comparison of INa inactivation time constants between lamprey and teleost fishes at 0 mV (right). The results are means (5SEM) of 10–12 cells.
Dissimilar letters indicate a statistically significant difference (P ! 0.05) between species. Data for trout (Oncorhynchus mykiss), crucian carp
(Carassius carassius), and burbot (Lota lota) INa are from Haverinen and Vornanen (2004).
This content downloaded from 193.167.41.1 on Mon, 15 Jun 2015 07:34:05 AM
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lamprey ventricular myocytes.
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Delayed Rectifier K1 Current (IKr)
The final rapid repolarization of fish cardiac AP is produced
This study provides the first patch-clamp analysis of cardiac
by inactivation of ICaL and by activation of IK1 and the delayed

rectifier K1 currents, which may have two major components,
slow (IKs) and fast (IKr; Hassinen et al. 2008a, 2011). Lamprey
ventricular myocytes demonstrated a small E-4031-sensitive
(2 mM) IKr current at 57C with a peak tail current density of
1.3 5 0.33 pA pF21 (fig. 6). Very little outward current re-
This content downloaded from 193.167.4
All use subject to JSTOR
Discussion
ion currents in a cyclostome vertebrate, the European river
lamprey. It is demonstrated that the shape of ventricular AP
and its ion current basis are in many respects similar to those
of teleost fishes. However, electrical excitation shows several
quantitative and qualitative differences from the teleostean
rectifier channels are active ATP-sensitive K1 channels and
background inward rectifier (Kir2) channels.

mained in the presence of E-4031, suggesting that the slow
component of the typical delayed rectifier (IKs) is not present in

Figure 4. L-type Ca21 current (ICaL) of lamprey ventricular myocytes at 57C. A, Mean results (5SEM) of current-voltage relationship in the
absence and presence of 2 mM isoprenaline or 1 mM acetylcholine. The voltage protocol is shown between the two graphs. Representative
recordings of ICaL at 110 mV in the absence and presence of 2 mM isoprenaline (ISO) or 1 mM acetylcholine (Ach) and after the washout of the
drugs are shown above the graphs. B, Voltage dependence of the inactivation time constant (t) of lamprey ICa (left) and comparison of inactivation
time constants between lamprey and teleost ICa at 0 mV (right). The results are means (5SEM) of 10–12 cells. Dissimilar letters indicate a
statistically significant difference (P ! 0.05) between species. Data for trout (Oncorhynchus mykiss), crucian carp (Carassius carassius), and burbot
(Lota lota) ICa are from Shiels et al. (2000), Vornanen (1998), and Shiels et al. (2006), respectively.
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ings on ventricular ion currents provide mechanistic expla- impulse conduction (see “RestingMembrane Potential”) in the
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nations for the physiological characteristics of the lamprey
heart and insights into the early evolution of vertebrate heart
function.

Electrocardiogram and HR
The waveform of ECG in Lampetra fluviatilis is similar to

what has been reported for the hagfish Eptatretus cirrhatus
(Davie et al. 1987). The lamprey (cyclostome) ECG is different
from the teleostean ECG in that it includes the PT wave, an
electrical signal from the repolarization of the atrial tissue.
This difference can be explained by two distinctive features of
cardiac excitation in the European river lamprey: the very
short duration of the atrial AP and the relatively slow velocity
of impulse conduction over the heart. At similar temperatures,
AP duration of the lamprey atrial muscle (122 ms) is only
about 30%–45% of the atrial AP duration of the teleost heart
(Haverinen and Vornanen 2009). Because of the short AP
duration, depolarization of the atrial muscle is almost imme-
diately followed by atrial repolarization and is not, therefore,
This content downloaded from 193.167.4
All use subject to JSTOR
lamprey heart extends the time delay between atrial and ven-
tricular depolarizations, preventing the overlap of the PT wave
and the QRS complex.
The in vivo basal HR of the liver lamprey at 57C agrees well

with previous measurements from the same species of 25 beats
min21 at 77C for L. fluviatilis (Claridge and Potter 1975), while
25 beats min21 at 57C is reported for another species, Ento-
sphenus tridentatus (Johansen et al. 1973). The HR of the river
lamprey is similar to that of cold-active teleosts at similar
temperatures, for example, rainbow trout (Oncorhychus my-
kiss; 32.5 beats min21 at 6.57C), and markedly higher than in
more sluggish species such as goldfish (Carassius auratus; 10–
14 beats min21 at 57C), crucian carp (Carassius carassius; 10–
14 beatsmin21 at 57C), common carp (Cyprinus carpio; 8.8 beats
min21 at 57C), eel (Anquilla anquilla; 9–13 beats min21 at 57C),
and hagfish (Eptatretus stautii; 8.3 beats min21 at 107C; Priede
1974; Seibert 1979; Tsukuda et al. 1985; Matikainen and Vor-
nanen 1992; Stecyk and Farrell 2006; Cox et al. 2010). These
findings are consistent with the relatively highmetabolic rate of
this cyclostome subgroup, with standard oxygen consumption
type of cardiac activity in regard to ECG waveform, AP shape,
and composition and densities of SL ion currents. Our find-

masked below the ventricular depolarization (QRS complex), as
happens in teleost hearts. Furthermore, the slower rate of

Figure 5. The inward rectifier potassium current (IK1) and the ATP-sensitive K1 current of the lamprey ventricular myocytes at 57C. A,
Current-voltage relation of the Ba21-sensitive inward rectifier K1 current (IK1). B, Voltage dependence of the Ba

21-resistant current (IK,ATP). The
results are means5 SEM from 10 myocytes. C, Cell-attached single-channel recordings of K1 currents in ventricular myocytes of the lamprey
heart. Representative recordings from a membrane patch containing either inward rectifier channels (top) or ATP-sensitive K1 channels
(bottom). D, Mean current-voltage relations of inward rectifier potassium channels and ATP-sensitive K1 channels of the lamprey ventricular
myocytes at 57C. The results are means 5 SEM from 11 or 12 cells, as indicated.
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several times higher than that recorded at comparable tem-
peratures for the hagfishes (Hardisty et al. 1989).

However, the RMP values measured in this study for L. fluvi-
atilis are much more negative than previously reported for
hagfish (Myxine glutinosa,Myxine circifrons, Eptatretus stoutii,

AP of the vertebrate heart is characterized by a long plateau

824 J. Haverinen, S. Egginton, and M. Vornanen
Rhythm of the vertebrate heart is characterized by marked
HR variability. Similar to higher vertebrates, there is signifi-
cant variability of HR in the resting lamprey, as shown by the
elliptical shape of the Poincaré plot (Tulppo et al. 1996).
Width and length of the Poincaré plots represent short- and
long-term variability of HR, which are considered to result
from the balance of parasympathetic and sympathetic regu-
lation of HR. High vagal tone of the resting animal is generally
considered to cause the short-term variability of HR (SD1) in
mammals. It is interesting that in the lamprey, which is devoid
of inhibitory cholinergic innervation, HR variability is largely
similar to that of higher vertebrates, including a prominent
short-term variability. Acceleration/deceleration of HR in
lampreys is considered to be mediated via nicotinic stimu-
lation of catecholamine release from cardiac chromaffin tissue
(Augustinsson et al. 1956). Experiments using blockers of
nicotinic acetylcholine and adrenergic adrenaline receptors
are needed to solve the autonomic regulation of HR variability
in lampreys.

Resting Membrane Potential
RMPs (268 to 271 mV) of the lamprey atrium and ventricle

are 11–14 mV more positive than the theoretical reversal
potential of K1 ions (282 mV) and only slightly less negative
than in many teleost fishes (Haverinen and Vornanen 2009).
This content downloaded from 193.167.4
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and Eptatretus deani) hearts (230 to 250 mV at 207–237C;
Jensen 1965; Arlock 1975). RMP of the cell is measured relative
to the external solution and is largely dependent on K1 ion
concentration of the bathing solution (assuming that RMP is
determined by K1 currents). Ion compositions of the saline
solutions were not given in the previous studies, but assuming
that they were similar to the K1 concentration of hagfish blood
(10 mM; Robertson 1954), the RMP of hagfish heart should be
close to265mV, that is, muchmore negative than the reported
values. A depolarized RMP would mean that a greater portion
of the Na1 channels are inactivated (unable to open), and,
consequently, the rate of AP rise and velocity of AP propaga-
tion will be slow. At the reported RMP values of the hagfish
hearts, INa would be completely abolished. The rate of AP up-
stroke inL.fluviatilis ismore thanfive times faster (5.4–6.3V s21

at 57C) than in Myxine (1 V s21 at 207–227C; Arlock 1975),
consistent with the relatively negative RMP values. On the
other hand, the rate of upstroke in L. fluviatilis atrium and
ventricle is somewhat slower than in teleost hearts under sim-
ilar experimental conditions (Haverinen and Vornanen 2006),
suggesting a slower AP transmission.

Cardiac Action Potentials
phase, which is particularly prominent in ventricles and
clearly shorter in the atrial chamber (Rosati et al. 2008;
Haverinen and Vornanen 2009). Similarly, atrial AP of L.
fluviatilis was markedly shorter than ventricular AP (see
“Electrocardiogram and HR”). Functionally, the short atrial
AP duration adjusts electrical excitation of the myocytes to
high myofibrillar ATPase activity of atrial myocytes and thus
to short atrial systole (Minajeva et al. 1997; Aho and
Vornanen 1999), providing a rapid and powerful boost to
ventricular filling. In this regard, the lamprey heart seems to
be no exception.
Although the shape of the lamprey cardiac AP is similar to

that of other vertebrates, there are several quantitative dif-
ferences. In comparison to several teleost fishes under similar
experimental conditions, the duration of ventricular AP is re-
markably short (table 2; Haverinen and Vornanen 2009). Short
APs and short contraction durations are typical of vertebrates
that display an active lifestyle, relatively high HRs, and pow-
erful cardiac contractions, as exemplified by salmonid and
tuna fish hearts (Haverinen and Vornanen 2009; Shiels et al.
2011). The brevity of atrial and ventricular APs of the lam-
prey heart is consistent with the high resting HR values mea-
sured in vivo and the marked contribution of SR Ca21 stores
to contractile activation (Vornanen and Haverinen 2012).
There seems to be a contradiction between ventricular AP

duration measured with microelectrodes (550 ms) from the
excised tissue and that derived from the Q-T interval (831 ms)
of the ECG. This difference is explained by the slow AP
transmission over the ventricle (duration of QRS complex,
of adult lamprey (Petromyzon marinus and L. fluviatilis) being

Figure 6. Density of the rapid component of the delayed rectifier K1

current (IKr) in lamprey ventricular myocytes at 57C. The current was
measured as an E-4031-sensitive (2 mM) tail current using the voltage
protocol shown above the graph. The results show the mean current
density (5SEM) of 10 ventricular myocytes as a function of membrane
voltage.
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erage AP duration of the ventricle gives a value of 5501 218p
768 ms, which is close to the measured Q-T value (831 ms).

ferences.
Outward K1 currents are repolarizing; that is, they maintain

Table 2: Comparison of ventricular action potentials and cardiac ion current densities between the river lamprey
(Lampetra fluviatilis) and selected teleost fishes

ea nt tri 4 th
h yo em d a ere ar
r 57 S m . l ass
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Ion Current Basis of Cardiac Excitation
For single-cell patch-clamp experiments, cardiac myocytes

L-type Ca21 channels are phosphorylated and dephosphory-
were isolated from the lamprey with methods shown to
produce large numbers of myocytes from teleost hearts. An
adequate number of viable and Ca21-tolerant myocytes were
obtained from lamprey ventricles but only a few viable
myocytes from atria. Therefore, these patch-clamp results
represent ion current properties of ventricular myocytes.
Electrical excitation of a cardiac myocyte is the result of

concerted activity of Na1, K1, and Ca21 ion channels gen-
erating the AP (Rosati et al. 2008). It is shown that lamprey
ventricular myocytes express at least INa, ICa, IKr, IK1, and IK,ATP
currents, which are also present in teleost cardiac myocytes
(Paajanen and Vornanen 2001; Vornanen et al. 2002a;
Haverinen and Vornanen 2006; Hassinen et al. 2008a, 2008b,
2011). Current densities, inactivation kinetics, and the relative
importance of those currents in cardiac excitation differ from
those of the teleost ventricular myocytes, in particular in
regard to ICa, INa, and IK,ATP.
The density of cardiac INa in L. fluviatilis is lower than in

teleost fishes, which (in addition to the less negative RMP) will
contribute to the slow rate of AP upstroke and propagation.
Also different from the teleost INa, the kinetics of INa inacti-
vation in lamprey is remarkably slow. Unusually, this means
that INa could contribute to the plateau duration of the
ventricular AP. The distinct properties of the INa are probably
related to the Na1 channel composition of the lamprey
ventricle, with prominent contribution by an ortholog of the
vertebrate Nav1.1 channel instead of Nav1.4 and Nav1.5 in
teleosts and Nav1.5 in mammals (Vornanen et al. 2011). A
closer comparison of INa between lamprey and teleost hearts is
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the negative RMP and contribute to final repolarization of AP.
Of the three K1 currents identified in lamprey, the density of
IK1 is similar to that in teleost ventricular myocytes, while the
density of IKr is lower in comparison to the IKr of several teleost
species (table 2; Haverinen and Vornanen 2009). The total
repolarizing power of these K1 currents is less in lamprey than
teleost myocytes and probably unable to generate the very
short APs of the lamprey heart. On the other hand, ATP-
sensitive K1 channels seem to be open under normoxic
conditions, generating the strongly repolarizing IK,ATP. While
this may explain the missing repolarizing power in lamprey
myocytes, the finding is quite unexpected. Normally ATP-
sensitive K1 channels open in hypoxic insults when the
intracellular ATP level drops, protecting myocytes against
energy insufficiency via reductions in AP duration and cardiac
contractility (Noma 1983). The high constitutive activity of
ATP-sensitive K1 channels in normoxic cardiac myocytes is a
novel finding and suggests that participation of IK,ATP in
regulation of AP duration may represent the original function
of this channel.

Adrenergic and Cholinergic Control of the Cardiac ICa
lated by excitatory adrenergic and inhibitory cholinergic sig-
naling, respectively, resulting in powerful control of cardiac
contraction via ICa (McDonald et al. 1994; Mery et al. 1997).
Considering that the lamprey heart completely lacks adrener-
gic innervation and that the cholinergic innervation is exci-
tatory and mediated via nicotinic receptors, adrenergic and
cholinergic regulation of the lamprey ICa is of interest. The
isoprenaline-induced increase of ICa indicates that, despite the
absence of adrenergic innervation, b-adrenergic receptors exist
Species RMP (mV) APD50 (ms) ICa (pA pF21) INa (pA pF21) IKr (pA pF21) IK1 (pA pF21)

Lampetra fluviatilis 267.7 5 9.8 550 5 44.6 3.0 5 .4 14.9 5 3.5 1.0 5 .2 2.5 5 .3
c c b d c c
Lota lota

Oncorhynchus mykiss

271.4 5 3.3
282.7 5 1.0c
1,002.3 5 39.8
702.2 5 8.2c
.8 5 .1

.6 5 .2b
1.1 on Mon, 15 J
 Terms and Con
33.2 5 2.8
25.9 5 1.4d
un 2015 07:34:05
ditions
1.8 5 .2
2.2 5 .1c
 AM
2.3 5 .3
5.4 5 .5c
Carassius carassius
 274.4 5 1.3c
c

1,477.3 5 55.5c
c

1.1 5 .2a
e

9.4 5 1.0d
e

.7 5 .1c
c

16.1 5 1.2c
c
Perca fluviatilis
 269.4 5 1.5

c

815.6 5 115.2
c

.8 5 .2
 27.5 5 4.5
 .9 5 .05
c

2.6 5 .2
c
Esox lucius
 271.0 5 1.1

c

794.8 5 20.5
c

ND
 ND
 .7 5 .04
c

6.2 5 1.0
c
Rutilus rutilus
 270.0 5 1.9
 890.5 5 53.0
 ND
 ND
 1.0 5 .2
 8.0 5 1.7
Note. All ion current m
 surements are from
 patch-clamp experime
 s on isolated ven
 cular myocytes at
 7–57C, except for
 e rainbow trout

(Oncorhynchus mykiss) ICa, w
 ich is from atrial m
 cytes at 77C. Resting m
 brane potential an
 ction potentials w
 measured with sh
 p microelectrodes

from multicellular ventricula
 preparations at 47–
 C. Results are means 5
 EM. ND, not deter
 ined. Species are L
 ota, burbot; C. car
 ius, crucian carp;
218 ms). Summing the impulse transmission time and the av- needed to clarify the physiological importance of these dif-

P. fluviatilis, perch; E. lucius, pike; R. rutilus, roach.
aData are from Vornanen and Paajanen 2004.
bData are from Shiels et al. 2003.
cData are from Haverinen and Vornanen 2009.
dData are from Haverinen and Vornanen 2004.
eJ. Haverinen and M. Vornanen, unpublished data.
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on lamprey ventricular myocytes and that they are coupled to SL
Ca21 channels. On the other hand, insensitivity of ICa to acetyl-
choline shows that cholinergic stimulation of the lamprey heart is

trout Oncorhynchus mykiss: effects of thermal acclimation. J
Exp Biol 202:2663–2677.

Arlock P. 1975. Electrical activity and mechanical response in
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notmediated by the SL ICa. Collectively, thesefindings conform to
the proposal that acetylcholine indirectly stimulates cardiac
contractility by releasing catecholamines from the cardiac
chromaffin cells (Augustinsson et al. 1956). The released cate-
cholamines subsequently bind to the b-adrenergic receptors of
cardiac myocytes and augment ICa.

Conclusions

Fairly high HR rate and short AP duration at low ambient
temperature (57C) are characteristic features of the river
lamprey heart in common with cold-active teleost fishes, while
the slow rate of impulse propagation separates the lamprey
heart from teleost hearts. The electrophysiological phenotype
of the lamprey cardiac myocytes (short AP) is consistent with
the E-C coupling of the lamprey heart, which relies strongly
on intracellular Ca21 stores of the SR (Vornanen and Ha-
verinen 2012). The above features of the lamprey myocardium
are appropriate to generate short and powerful (localized)
contractions, which propagate relatively slowly over the heart
and squeeze blood into the ventral aorta. In this respect the
lamprey heart might share features of cardiac function with
its invertebrate predecessors, the urochordate tunicates. In
the tubular heart of the sea squirt (Ciona intestinalis), con-
traction proceeds as a peristaltic wave over the heart, which is
considered to provide almost complete emptying of the heart
at each contraction (Kriebel 1967). Clearly, the cardiac func-
tion of this basal vertebrate includes both primitive and ad-
vanced traits. It remains to be shown to what extent the dis-
tinct properties of the lamprey heart (constitutive opening of
ATP-sensitive K1 channels, slow AP propagation) are shared
with other basal vertebrates and whether the advanced fea-
tures (e.g., short AP and reliance on SR Ca21 stores) are re-
stricted to lampreys and might be absent in hagfishes (Thomas
et al. 1996). Studies on the molecular background of the
physiological traits are needed to solve these issues (Wilson
et al. 2014).
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