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Proteoglycans comprise a part of the extracellular matrix that participates 
in the molecular events that regulate cell adhesion, migration and 
proliferation. Their structural diversity and tissue distribution suggest a 
functional versatility not generally encountered for other extracellular 
matrix components. This versatility is mainly dictated by their molecular 
interactions and their ability to regulate the activity of key molecules 
involved in several biological events. This molecular cooperativity either 
promotes or inhibits cell adhesion, migration and proliferation. A growing 
number of studies indicate that proteoglycans can play a direct role in 
these cellular events by functioning either as receptors or as ligands 
for molecules that are required for these events to occur. Such studies 
support a role for proteoglycans as important effecters of cellular processes 

that constitute the basis of development and disease. 
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Introduction 

Adhesion of cells to their micro-environment and their 
subsequent proliferation and migration are regulated in 
part by their interaction with various components of 
the extracellular matrix (ECM) [I**]. This regulation 
involves molecular interactions that govern the attach- 
ment of cells to specific ECM components, detachment 
of cells from these components and molecular rearrange- 
ments in the ECM that allow cells to change shape dur- 
ing division and/or migration. Proteoglycans (PGs) are 
one of the ECM components that participate in these 
regulatory events [ 2*-4*,5**--7**,8*]. Their involvement 
with a number of component molecules that take part 
in these processes is mediated either through charge 
interactions via the glycosaminoglycan (GAG) chains 
(carbohydrate-protein) or through protein-protein in- 
teractions via specific domains within the core proteins 
of the PGs. Recent reviews that stress the interactive na- 
ture of PGs and the role that they play in regulating cell 
behavior are available (Fig. 1) [ 5**-7**,8*] 

Cell adhesion 

Cells form stabilized contacts with the ECM by a complex 
process that depends on multiple interactions between 
ECM receptors and their various ligands and elements of 
the cytoskeleton [ 91. These contacts must be broken and 
reformed as cells proliferate and migrate. Proteoglycans 
promote cell adhesion by facilitating attachment of cells 
to specific ECM components (Fig. 2). For example, cell 

surface heparan sulfate (HS) PGs are necessary for the 
formation of stable focal adhesion sites on fibronectin- 
coated substrates [lO,ll]. Recent studies have identified 
a sequence within fibronectin that interacts specifically 
with a cell surface phosphatidylinositol-anchored HSPG 
in mouse melanoma cells [ 12*]. These observations in- 
dicate that specific classes of PGs can mediate integrin- 
independent adhesion events. 

Expression of cell surface PGs that interact with ECM lig- 
ands appears to be critical for some cells to maintain their 
differentiated phenotype. Sll5 mouse mammary epithe- 
liaf cells lose their flattened epithelial morphology and 
become tumorigenic when exposed to steroids. These 
changes are reversed when the cells are transfected with a 
full length cDNA to human syndecan, which is an interca- 
lated membrane PG [ 13**]. The importance of syndecan 
in cell adhesion is further illustrated by the obsetvation 
that this membrane PG is transiently expressed on pre- 
p- and immature p-lymphocytes when in contact with the 
bone marrow stroma, but is absent from circulating and 
peripheral lymphocytes following release from the mar- 
row (reviewed in [ 7**] ). As syndecan is known to exist in 
different polymorphic forms and bind a variety of ECM 
ligands (reviewed in [7**] ), either transient expression 
and/or structural modifications in this PG may regulate 
the adhesion of cells to different ECMs at different times 
during development. 

CD44 is another family of polymorphic integral mem- 
brane glycoproteins and PGs that participate in ceUu- 
lar adhesion [7=*,14**]. There are both low (80-90kD) 
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Fig. 1. Some of the molecular interactions in which proteoglycans participate 

and high (200 kD) molecular weight forms of CD44. The 
smaller form, which lacks GAG chains, predominates on 
lymphocytes and is responsible for the adherence of 
lymphocytes to the surface of high endothelial venules, 
a process referred to as lymphocyte homing. The high 
molecular weight form bears chondroitin or heparan sul- 
fate chains and participates in cell adhesion through the 
ability of the GAG chains to bind ECM ligands such as fi- 
bronectin. Many cells express PG forms of CD44 that can 
be localized to filopodia and zones of cell contact [ 14-I. 
CD44 also contains a domain that possesses homology 
to the hyaluronan-binding region of cartilage link protein 
and the amino-terminal portion of two interstitial CSPGs, 
aggrecan and versican (reviewed in [7*-l >. This domain 
allows these molecules to interact with hyaluronan, an in- 
teraction that is important in the adhesion and migration 
of cells in ECM enriched in hyaluronan [ 15,16*]. 

Syndecan and CD44 are members of different families of 
intercalated membrane PGs that have conserved cytoplas- 
n-tic domains containing potential phosphorylation sites 
(reviewed in (7-I). Intercalated membrane PGs such as 
NG2 [17*] do not contain these specific sequences, but 
do contain potential phosphorylation sites. The pres- 
ence of such sites has led to the suggestion that these 
molecules are important in signal transduction during cell 
adhesion. 

Cell surface PGs also promote the adhesion of micro- 
organisms to cells. Parasites such as Tgpancxoma cruzl 
[18*] and malaria (Phsmodia) sporozoites [ 19.1 contain 
membrane proteins that specifically bind heparin- or HS- 
containing PGs. Invasion of these parasites into cells can 
be blocked by competition with heparin or HS. The im- 
portance of surface-associated HSPG in Herpes simplex 

virus infection has recently been shown by demonstrat- 
ing that Chinese hamster ovary mutant cells defective in 
HSPG synthesis are resistant to infection by the virus 
[20*]. Such studies point towards an important new area 
of investigation of clinical relevance concerning plasma 
membrane PGs. 

Proteoglycans within the ECM or within specialized struc- 
tures such as basement membranes may themselves serve 
as ECM ligands for adhesion. For example, the principal 
PG in basement membranes is a large HSPG, perlecan. 
Recent studies reveal that the core protein in both mouse 
[21-l and human [ 220, 23-l perlecan contains multiple 
domains with homology to adhesive molecules such as 
laminin and neural cell adhesion molecule, suggesting 
perlecan may also serve as a ligand for cell surface re- 
ceptors. A 38 kD membrane protein has been tentatively 
identified as the cell surface receptor for this PG in 
cultured hepatocytes [24]. In addition, a heparin-bind- 
ing 78kD protein (moesin) [25*] has homology to a 
number of proteins that form structural links between 
the cell membrane and elements of the cytoskeleton. It 
remains to be shown whether the interaction of these 
membrane-associated proteins with extracellular HSPG 
affects adhesion and modulates the behavior of cells that 
synthesize perlecan or other HSPGs. 

Whereas the interactions described above promote ad- 
hesion, PGs can also interfere with adhesion in several 
ways. PGs in the ECM may interact with other ECM ad- 
hesion ligands, such as fibronectin, and block the inter- 
action of the ligand with its cell surface integrin receptor 
(Fig. 2) [8*]. The small interstitial dermatin sulfate (DS) 
PGs, decorin and biglycan, interact with a number of 
adhesive ECM kgdnds, either through their GAG chains 
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Fig. 2. Possible models in which proteoglycans (PCs) may regulate adhesive, anti-adhesive and migratory events. (a) PC as an adhesive 
ligand. (b) PC as a receptor for an adhesive ligand. (c) PC linked to phosphatidylinositol. (d) Selective synthesis of hyaluronan to facilitate 
movement of the cell. (e) Secretion of proteases and glycosidases to break adhesive bonds. (13 Selective expression of PCS to create 
migration pathways. (g) PC binds anti-adhesive molecules such as tenascin. (h) PC binds to the adhesive ligand fibronectin preventing 
ligand binding to receptor 

[ 26.1, or their core proteins [ 27*] and interfere with cell 
attachment. The presence of large interstitial PGs at the 
cell surface may prevent the interaction of cell surface 
receptors with their specific ECM ligands by steric exclu- 
sion [28]. In addition, cell surface associated PGs may 
interact with other anti-adhesive ECM molecules such as 
thrombospondin [29] and tenascin [30-l to destabilize 
cell contact points (reviewed in [3I--1). 

Cell migration 

Adhesion sites are continually disrupted and reformed as 
cells change shape and move. Cell movement is also 
accompanied by changes in the cellular micro-environ- 
ment involving the replacement of dense fibrous ECM 
that serves to stabilize stationary cells with a loose hy- 
drated micro-environment that creates pathways for cell 
migration. Proteoglycans and hyaluronan, a GAG that oc- 
cupies large solvent domains, influence these processes. 
Generally, the molecules that destabilize adhesion sites 
(e.g. CSPGs and hyaluronan) promote cell motility, while 
the PGs that contribute to the formation of tight cellular 
adhesion sites (i.e. HSPGs) inhibit cell migration. In fact, 
when stationary vascular endothelial cells are induced to 
migrate, they switch from synthesizing an ECM enriched 
in HSPG to an ECM enriched in CUDS PG [ 321. 

The importance of CSPGs in cell migration is well es- 
tablished. Removal of CSPG from the surface of mouse 
melanoma cells or inhibition of CSPG synthesis by these 
cells prevents their migration and invasion into type I 
collagen gels without affecting adhesion to a collagen 
substratum [33*]. The cell surface PG responsible for 
this activity is a CSPG whose core protein is immuno- 
logicaLly related to CD44. Furthermore, a spliced variant 
of CD44 is selectively expressed in metastasizing rat carci- 
noma cells and is capable of conferring metastatic behav- 
ior to non-metastasizing carcinoma cells [34-l. Although 
CD44 is not expressed by all cells during migration, other 
cell surface PGs may serve a similar role. For example, 
in the healing of cutaneous wounds, the migrating and 
proliferating epithelial cells and endothelial cells forming 
new blood vessels show increased expression of synde- 
can [35*]. While changes in specific PGs are associated 
with the onset of cell migration, the precise mechanism 
by which PGs influence this cellular event is not under- 
stood. 

Although certain PGs facilitate or promote celJ migration 
in some systems, other PGs inhibit or establish barri- 
ers to migrating cells. For example, regions enriched in 
CSPG in the developing mammalian retina exclude ad- 
vancing growth cones [36**]. Removal of CSPG from 
these regions results in new axonal growth. Localized 
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accumulation of CSPG also correlates with restriction 
of neural crest cell migration in developing chick em- 
bryos [37*]. m another mode1 of axonal guidance, ax- 
onal extensions of dorsal root ganglia avoid contact with 
explants of epidermis in co-culture [38*]. Inhibition of 
CSPG synthesis with P-xyloside, or incubation of the 
co-cultures with anti-CSPG antibodies, results in con- 
tact between extended axons and epithelial explants, 
abolishing avoidance of contact that is seen in control 
cultures. Also consistent with the conclusion that CSPGs 
delimit the pathways of neuronal outgrowth is the obser- 
vation that CSPGs isolated from rat brain inhibited nerve 
growth factor-induced neurite extension when bound to 
pheochromocytoma cells [39*]. Thus, it may be that 
PGs function as ‘avoidance’ molecules in the nervous 
system by acting as steric blockers for receptors in the 
growth cone of elongating axons (discussed in [31*-l >. 
Two recent papers, however, suggest novel mechanisms 
by which matrix PGs may influence ceU migration. For ex- 
ample, HS and CS signilicantly increase activation of plas- 
minogen by urokinase-type plasminogen activator [40-l, 
which has been previously localized to ceU adhesive sites, 
where it is thought to be involved in proteolytic events 
that are associated with ceU migration. Also, in a model of 
embryonic smooth muscle ceU migration in the ductus ar- 
teriosus, a critical event is the penetration of cells through 
elastic laminae. This process may involve shedding of a 
cetl surface elastin receptor, in a process induced by CS 
[41*]. 

The GAG, hyaluronan, formerly termed hyaluronic acid, 
also plays a role in ceU migration. Although the man 
ner in which this GAG exhibits its effect is not clear, 
several studies have shown an increased but transient 
production of hyaluronan that coincides with rapid cell 
migration during processes of in&nmation, wound re- 
pair, tumor invasion and morphogenesis (reviewed in 
[16*]). Addition of hyaluronan to some cells in cul- 
ture promotes their migration [42*,43-l, an activity that 
can be eliminated by removing hyaluronan with either 
enzyme treatments or blocking antibodies against ceU 
surface hyaluronan-binding proteins. Thus, hyaluronan- 
binding proteins are required for hyaluronan to influence 
ceU migration and they are associated with the leading 
1arneUae of rapidly migrating cells [43*-,44*]. This family 
of integral membrane glycoproteins and PGs has been re- 
cently named the hyaladherins, although synonyms such 
as ‘HAHAgrins’ and ‘gripabags’ have also been proposed 
[WI! 

Cell proliferation 

Different PGs can function to either inhibit or pro- 
mote ceU proliferation (Fig. 3). Several laboratories have 
demonstrated that heparin and HS suppress the entry 
of cells into S phase in response to some mitogens 
(reviewed in [45] > but the mechanism(s) remains un- 
clear. A number of studies have addressed several pos- 
sible mechanisms. For example, for some cells and n-r- 
togens, growth inhibition may involve the inactivation of 
the mitogen by heparin [46*,47-l. Although heparin and 
HS are usually considered the only GAGS with anti-prolif 
erative properties, DS of high iduronate content inhibits 
the proliferation of human fibroblasts [48*]. Such studies 

suggest that the uranic acid moiety in the GAG chain is 
important as a structural determinant for the anti-pro- 
liferative activity of these GAGS. Unusual disaccharides 
containing a 2sulfated uronate have been found in the 
nucleus of growth-arrested hepatoma cells [49,50], al- 
though similar structures have not been found in the 
nuclei of smooth muscle cells that are growth arrested 
with heparin [45]. The fmding of GAG fragments within 
the nucleus suggests that GAGS might influence prolif- 
erative activity by interacting with transcription factors 
that are critical for ceU replication. For example, hep- 
at-in treatment of 3T3 cells blocks phorbol ester induc- 
tion of c-myc and c-fos, two proto-oncogene products 
necessary for ceU replication in some cells [51,52] .Re- 
cent experiments suggest that heparin interferes with 
the activation of these proto-oncogenes by interacting 
with specific transcription factors, inhibiting the bind- 
ing of these trans-acting factors to DNA [53--l. Many 
of the transcription factors have heparin-binding basic 
amino acid sequences (discussed in [6-l). These ob- 
servations raise the distinct possibility that GAGS may, 
under some circumstances, regulate gene activity at nu- 
clear sites. 

Proteoglycans may also function as mitogens.The 80 kD 
subunit of colony stimulating factor-l (CSF-1) contains a 
single chain of CS [ 54*]. This PG regulates the prolifera 
tion and differentiation of mononuclear phagocytic cells 
in bone marrow. As CSF-1 PG possesses the same bio- 
logical activity as its lower molecular weight counterpart, 
which does not bear GAG chains, it is unlikely that the 
GAG chain participates directly in growth factor activa- 
tion. However, the GAG chain might permit the interac- 
tion of the growth factor with the ECM in the haemopoi- 
etic micro-environment for utilization by target cells in a 
manner similar to that described for the binding of other 
growth factors in bone marrow stroma [55,56]. 

Proteoglycans may also influence cell proliferation by in- 
teracting with growth factors either acting as growth fac- 
tor receptors [57-l or modifying the interaction of the 
growth factors with their high-affinity receptors [ 58,59*]. 
Such interactions are believed to induce conformational 
changes in the growth factor [6O*] or possibly in the 
growth factor receptor, perhaps involving dimerization, 
such that high-affinity interactions between Ugand and 
receptor are possible. Removing HS from the surface 
of 3T3 cells and skeletal muscle myoblasts dramatically 
reduces the binding of basic Iibroblast growth factor 
(bFGF) to these cells [6l*] while leaving the mitogenic 
activity of other growth factors such as of platelet-derived 
growth factor (PDGF) and epidemlal growth factor un- 
affected. Recent studies indicate that HS chains contain a 
specific carbohydrate sequence in which N-sulfate groups 
and iduronate-2-sulfates are essential for binding of bFGF 
[62**]. This is in contrast to the binding of transforming 
growth-factor (TGF)-PI to the PG component of the 
TGF-P receptor, betaglycan, in which the GAG chains 
are not required [63,64-l. These different binding sites 
allow for the binding of more than one growth factor to 
the same PG [65*]. 

Proteoglycans may also sequester growth factors in the 
ECM in a form protected from proteolysis [66**,67] and 
thereby regulate their availability and/or activity. Release 
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of the growth factor-PG complex could occur by the ac- 
tion of proteases, glycosidases or phospholipases [68*] 
made available during events associated with develop- 
ment, tissue injury and formation of new blood vessels 
169,701. Support for an effect by PGs on growth factor ac- 
tivity comes from studies that demonstrate that the small 
interstitial DSPGs, decorin and biglycan, can inactivate the 
mitogenic activity of TGF-j31 [71]. Interestingly, TGF-p1 
stimulates the synthesis of these small DSPGs in some 
cells (reviewed in [8*] ), and this reciprocal relationship 
may be one way in which specific PGs regulate the activity 
of growth factors. 

Cell proliferation is often accompanied by the selective 
expression of specific PGs. For example, syndecan is ex- 
pressed by proliferating cells in the mesenchyme dur- 
ing tooth bud morphogenesis [72*]. In addition, the 
stimulation of arterial smooth muscle cell proliferation 
by PDGF is accompanied by specific changes in the 
transcription/translation and post-translational process- 
ing of versican, which is a principle PG present in blood 
vessels [ 73.1. Although the relevance of these changes to 
the growth state of the cell is not yet understood, such 
modifications in specific PGs may alter the binding char- 
acteristics of the micro-environment surrounding cells af 
fecting growth factor availability and/or activity. It should 
be emphasized that although increased PG synthesis is 
correlated with cell proliferation, induction of PG syn- 
thesis does not always appear to be a prerequisite for 
cell proliferation as interruption of PG synthesis by /3- 
o-xylosides can be uncoupled from the anti-proliferative 
effect of this molecule [74*,75*]. 

Conclusion 

We have reviewed a number of examples published 
within the last year that implicate PGs in the regula- 
tion of cell adhesion, migration and proliferation. While 
some of the evidence is still circumstantial, several studies 
suggest that PGs can effect the biological activity of com- 
ponent molecules involved in these processes through 
highly specific interactions. The remarkable structural di- 
versity of the Merent families of PGs provides a mul- 
tiplicity of ways in which these interactions can occur. 
The challenge for the future will be to define the nature 
of these molecular interactions and the biological conse- 
quence( s) of such interactions in regulating cell function. 

Fig. 3. Proposed mechanisms in which 
proteoglycans (PCs) may participate in 
the regulation of cell proliferation. (a) 
PC binds growth factors in the extra- 
cellular matrix. (b) PC as a membrane- 
bound facilitator in high-affinity bind- 
ing of growth factors to their recep- 
tor. (c) PC as a mitogen. cd) Processing of 
phosphatidylinositol-linked PC to gener- 
ate growth inhibitory glycosaminogly- 
can (GAG) fragments, which are inter- 
nalized. GAG binds to nuclear transcrip- 
tion factors, which inhibits their activity. 
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