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Abstract 21 

In taxon-wide assessments of threat status many species remain not included due to lack 22 

of data. Here we present a novel spatial-phylogenetic statistical framework that uses a 23 

small set of readily available or derivable characteristics, including phylogenetically 24 

imputed body mass and remotely-sensed human encroachment, to provide initial baseline 25 

predictions of threat status for data-deficient species. Applied to assessed mammal 26 

species worldwide the approach effectively identifies threatened species and predicts the 27 

geographic variation in threat. For the 483 data-deficient species the models predict 28 

highly elevated threat, with 69% ‘at-risk’ species in this set, compared to 22% among 29 

assessed species. This results in 331 additional potentially threatened mammals, with 30 

elevated conservation importance in rodents, bats and shrews, and countries like 31 

Colombia, Sulawesi, and the Philippines. These findings demonstrate the future potential 32 

for combining phylogenies and remotely sensed data with species distributions to identify 33 

species and regions of conservation concern.  34 

35 
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Introduction 36 

Human activities continue to cause the loss of many species together with the function 37 

and services they provide [1].  In the face of these mounting threats and limited resources 38 

to conserve species [2], tools are required to identify those of greatest conservation 39 

concern. Global IUCN Red List assessments [3] have provided important knowledge 40 

about the state of biodiversity and have helped to identify priority species and regions for 41 

conservation [4-7]. On this basis approximately 20% of mammal, bird and amphibian 42 

species are currently identified as threatened [3]. In order to minimize potential biases in 43 

perceived patterns of biodiversity threat, species should be assessed comprehensively or 44 

at least representatively. In addition to undiscovered species [4, 8], species with too little 45 

information for threat categorization (‘data-deficient species’) are thus a major concern. 46 

The IUCN assessment process relies on available field-based knowledge of e.g. 47 

population size, rate of decline, and range size of each species to assigned threat status 48 

[9-12]. Paucity of data, e.g. due to financial or logistical limitations for field studies, 49 

makes complete assessments impossible for some species, with little prospects for change 50 

in the near future. The number of species lacking data may be substantial, with e.g.  2,436 51 

of 11,806 recognized mammal and amphibians species classified as ‘data-deficient’ in 52 

2011 [3], including 834 extant mammals. The potential for data-deficient species to 53 

change absolute threat levels of taxa has been acknowledged [4, 7]. In the absence of 54 

better knowledge, a risk-averse approach may be to simply assume that all data-deficient 55 

species are threatened. But given the sheer number of data-deficient species the 56 

implications for conservation prioritization may be substantial and carry a high cost if 57 

large numbers are in fact not threatened. At the other extreme data-deficient species may 58 
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be no more threatened than assessed species, for example as appears to be the case with 59 

data-deficient birds [13]. Model-based initial baseline threat predictions for data-deficient 60 

species and a general framework to provide them for groups assessed in the future would 61 

thus hold multiple benefits for conservation practice. 62 

 63 

The relative paucity of data on ecology and threats of many species stands in stark 64 

contrast to our rapidly growing detailed knowledge about species’ phylogenetic 65 

relationships and geographic distributions.  Technology now allows cost-effective and 66 

rapid generation of phylogenies for thousands of species. While often remaining coarse in 67 

grain [14, 15] or even limited to type specimen and thus for some species a main reason 68 

for data-deficient status, more facetted geographic distribution information is increasingly 69 

becoming available for many species [15; see also mol.org]. Distribution data permits 70 

two types of inference about potential threat status. First, statistical models can 71 

quantitatively capture the association between range size and threat status in assessed 72 

species [16] and then can be applied to data-deficient species [17-19] to account for this 73 

risk component. Second, geographic range information can be intersected with 74 

environmental layers that inform about broad-scale environmental niches and associated 75 

life history signals (e.g. on fecundity, generation time) related to threat status [16, 20]. 76 

And, more directly, remotely-sensed layers of land-cover can provide coarse estimates of 77 

potential habitat loss due to human encroachment. Information of this kind has recently 78 

been shown to successfully predict threat status in birds [20] and mammals [21].  Modern 79 

statistical tools allow the development of models of correlates of current threat levels that 80 

incorporate both phylogenetic and spatial data [17, 22-27]. 81 
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 82 

In previous work, modeled threat predictions for data-deficient species have been made 83 

without environmental or phylogenetic information [19], or without habitat encroachment 84 

information and using eigenvectors [17, 18] which are highly constrained in their ability 85 

to appropriately represent both phylogenetic and spatial signals [28, 29]. A general 86 

framework that readily capitalizes on the ever increasing availability of species 87 

distribution and remote sensing data, and rigorously incorporates phylogenetic and 88 

geographic information is thus still missing. In this study we build on our earlier work 89 

linking spatial and phylogenetic models [27] and predicting threat data with GIS-derived 90 

habitat information [20] to develop such a framework. We demonstrate the approach 91 

applied to mammals by parameterizing models of threat status based on readily available 92 

variables capturing key aspects of life history, rarity and range loss (body mass, 93 

geographic range size, human encroachment on species’ ranges) together with spatial and 94 

phylogenetic dependency for 3,703 mammal species across 16 orders with sufficient 95 

information to be assessed by the Red List. We then apply these models to 483 species 96 

classified as data-deficient species. We show, that the presented framework may offer a 97 

cost-effective way for initial baseline threat evaluation of many understudied (and 98 

potentially at-risk) species.  99 

 100 

Methods 101 

Data. We analyzed data on 4,186 terrestrial mammal species from 16 orders in the IUCN 102 

Red List [30] that could also be placed in the mammalian super tree phylogeny [31] (with 103 

recent updates). Of these, 3703 species had been assessed (with 812 deemed threatened, 104 
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i.e. categories “Vulnerable”, “Endangered” and “Critically Endangered”) and 483 105 

recognized but not assessed (category “Data-Deficient”) by IUCN. We gathered 106 

information on mammal body masses from [32] and from F. Smith (pers. comm.). One 107 

order (Perissodactyla) contained no data-deficient species. We selected native and 108 

reintroduced resident and breeding ranges that were extant or probably extant from the 109 

IUCN expert range maps [30] which we extracted over a 110x110km grid in Equal Area 110 

Cylindrical projection. We overlaid each species range map with information on 111 

transformed habitats owing to anthropogenic activities. Specifically, we estimated 112 

‘Encroachment’ as the proportion of expert range transformed by past human activities 113 

(i.e. cultivated or managed, mosaics, including cropland and urban areas) according to the 114 

Global LandCover 2000 land-cover classification [33]. At 1km native resolution this 115 

information is collected at much finer scale than expert range maps and analysis grid 116 

[14], but used as range summary measure it offers a concrete first-order estimate of 117 

overall range encroachment, and has recently been shown to be a strong correlate of 118 

expert-assessed IUCN threat status in birds [20]. We note that other high-resolution 119 

global land cover classifications exist and that all suffer from remaining classification 120 

errors [34]. As additional metric we also calculated the average Human Influence Index 121 

(‘HII’) value [35, 36] over the species ranges.  122 

 123 

Summary of approach 124 

To summarize our approach, we first imputed the body masses of species for which data 125 

are missing and then used Generalized Linear Models that include phylogenetic and 126 

spatial dependence to predict IUCN status. We account for statistical uncertainty in our 127 
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estimates of body mass by using Multiple Imputation. In order to incorporate uncertainty 128 

in our overall predictions, we express the model outputs as threat probabilities; i.e. given 129 

the predictions of the model and the statistical uncertainty in these, what is the probability 130 

that each species is threatened (i.e. IUCN categories Vulnerable, Endangered or Critically 131 

Endangered) or not?    132 

 133 

Statistical modelling framework 134 

The starting point for our analyses is a linear statistical model relating the values of a trait 135 

of interest to a set of predictors [24, 26]. The errors are assumed to have a multivariate 136 

normal distribution with mean 0 and a variance-covariance matrix that is defined by the 137 

phylogeny [23, 24, 26] and spatial distances [27]. Predictions from our models were 138 

generated by using the fitted parameter values together with the degree of phylogenetic 139 

and spatial similarity of species using the approach described in [26]. Our predictions 140 

therefore account for the phylogenetic /spatial structure in the data, i.e. they have the 141 

property that closely related, or species that live in the same place, should be similar to 142 

each other. We calculated variances for predicted values using the formulae in [24]. 143 

These variances are used to calculate the variance in estimates of body mass and IUCN 144 

status (below).  145 

 146 

Phylogenetic and spatial models for trait covariances 147 

We use the generalized least squares (GLS) approach described in Freckleton & Jetz [27] 148 

to account for both spatial and phylogenetic effects. A parameter φ is included in the 149 
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model to account for the influence of space. According to this model, of the total 150 

variance, a proportion φ is attributed to spatial variance, (1 – φ) is due to the non-spatial 151 

component. We also used the λ transformation suggested by Pagel [22, 37]. In the 152 

context of modelling spatial and phylogenetic effects simultaneously, the λ statistic 153 

allows us to include trait variation independent of both phylogeny and space in our 154 

analysis: a proportion γ = (1 - φ ) (1 - λ) of the trait variation is independent of phylogeny 155 

or space [27]. This approach is akin to including a ‘nugget’ in a spatial model [38]. We 156 

estimated φ and λ by maximum likelihood [39].  157 

 158 

The spatial matrix was calculated and tested using the approach described in Freckleton 159 

& Jetz [27]. The spatial matrix reduces the spatial configuration of the data to a series of 160 

pairwise distances that measure the distance between each species. Following Freckleton 161 

& Jetz [27] we did this by calculating the distances between the centroids of the ranges of 162 

each pair of species. The assumption is, therefore, that the variance between species’ 163 

traits grows linearly with spatial distances. As we showed before, this assumption can be 164 

tested graphically and in the analyses reported here, as well as in Freckleton & Jetz [27], 165 

this assumption was found to be adequate. Following Freckleton & Jetz [27], in order to 166 

aid interpretation of the model we define λ′ as the relative contribution of phylogeny (λ′ 167 

=λ (1 − φ )) once the effects of space have been accounted for . This parameterisation 168 

allows a simple interpretation of the joint estimates of φ and λ because, as shown in 169 

Freckleton & Jetz [27], the sum of γ, λ′, and φ is always 1. These parameters can be 170 

interpreted as the individual proportional contributions to variance of the different 171 
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variance components.   172 

 173 

Imputation of mammalian body mass  174 

We used estimates of mammalian body masses of 3462 species in the 16 analyzed orders 175 

to predict the values for the 723 species without body mass data. For each order we used 176 

the GLS approach described above to predict body mass based on the species with body 177 

mass data along with phylogenetic and spatial information. We conducted this analysis at 178 

the level of orders as previous analysis has shown that the Brownian model, modified to 179 

allow for varying degrees of phylogenetic dependence, provides an adequate description 180 

of body mass variation within orders [40]. Body mass was log-transformed prior to 181 

analysis.   182 

 183 

For species missing body mass we used the predicted values predicted as estimates of log 184 

mass in the modeling of IUCN threat status. A problem with using single imputation of 185 

this sort is that although parameter estimates should be unbiased [41], there is a 186 

possibility of under-estimation of variances for parameters using this method. We 187 

therefore conducted significance tests for our models using multiple imputation. For this 188 

we calculated for all species lacking body mass data predicted values using the above 189 

GLS model, along with a variance for each prediction (using the method in [24], see 190 

above). These estimates formed the basis for the multiple imputations  [for further 191 

background on the method see 42, 43, 44; for specific implementation here see also 192 

Nakagawa & Freckleton 2008].  We used 10 imputations, and the statistical tests reported 193 
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in Table S1 are the outcome of this analysis. We found that in practice the variance 194 

across the imputations was very small indeed so that this step was not vital in this case, 195 

although this need not always be true.  196 

 197 

In order to evaluate the accuracy of the predictions of body mass we used a simple 198 

randomization. Estimates of λ and φ from the best fitting model for each order were used 199 

to construct a variance-covariance matrix. This variance matrix formed the basis for 200 

generating randomized multivariate normally distributed data (using the rmvnorm in the 201 

R mvtnorm package). Species originally missing data were then removed and their values 202 

imputed. The correlation of these imputed values with the true values was then 203 

calculated. Note that because this analysis is conducted on randomly generated data, this 204 

is different from a cross-validation which is based on removal of data from the original 205 

data and would not normally be conducted using single-species removals. This was 206 

repeated 1000 times per missing species per order. The results of this analysis are 207 

summarized in Table S2. 208 

 209 

Application to IUCN categories 210 

The IUCN categories were treated as a five point ordinal scale ranging from “Least 211 

Concern”, 1, to “Critically Endangered”, 5. Although the response variable is a discrete 212 

ordinal variable, the models described observed threat levels well, offering explanatory 213 

power equal to, or better than that found in previous studies (Table S1, Fig. S1). This 214 

same approach has been taken in other recent analyses of threat status [45]. We compared 215 
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our results with those of generalized linear models in which responses are treated as 216 

multinomial or ordered logistic responses, which yielded very similar results, but are 217 

unable to address the spatial and phylogenetic covariance (see Figs S2, S3 and below).  218 

The main problem in generating an output from the model is that a fitted / predicted value 219 

is a point estimate and does not account for the statistical uncertainty in our estimates. To 220 

incorporate uncertainty, after the analysis we converted our predictions of IUCN status 221 

into probabilities of threat. Previous analyses have taken a similar approach in the 222 

analysis of threat status, but instead converting the threat to a binary variable before the 223 

regression analysis [17]. This has the disadvantage that information on the ordinal nature 224 

of the IUCN scale is ignored. Our analysis, however, retained the continuous information 225 

in the model fitting: for example we account for the fact that a species classified as 226 

category 5 (Critically Endangered) is more at risk than a species in category 3 227 

(Vulnerable).   228 

 229 

To produce these threat probabilities we calculated the probability that each species was 230 

threatened or not from the predictions of IUCN status. This was simply done by 231 

calculating: 232 

௜ܲ೟೓ೝ೐ೌ೟೐೙೐೏ = Z ൬୷೔೛ೝ೐೏ିଶ.ହ஢೔ ൰        (1) 233 

where Z() is the cumulative z (standardized normal) distribution, y
pred

 is the predicted 234 

value and ı is its standard deviation. This is the probability that the predicted value of 235 

species i is greater than 2.5 (see also [17, 20]. The choice of threshold in equation (1) is 236 

dependent on the interpretation of the categories and how these relate to continuous 237 

11 

  

Page 11 of 304

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For R
eview

 O
nly

  

model predictions. With eqn. (1), a species with an IUCN status predicted to be 2.5 (i.e. 238 

in between “near threatened” and “vulnerable”) will have a threat probability of 0.5.  We 239 

repeated the analysis using a threshold of 2 which yielded a visually clearer 240 

discrimination between the higher IUCN categories, but did essentially not affect the 241 

results of Fig. 1(Fig. S4), because the probabilities are simply rescaled such that the mean 242 

probability is 0.5 at a predicted value of 2 rather than 2.5. The results in Fig 2 are also 243 

extremely similar (Fig. S5), because the estimates of the proportions of species to be 244 

threatened or not are set by a threshold estimated from the data by receiver operator 245 

characteristic analysis (below). Thus, results were broadly invariant to the choice of 246 

threshold in equation (1).  247 

 248 

We used the full models in Table S1 for making predictions and did not attempt model 249 

reduction. There were several reasons for this. First, model reduction by elimination of 250 

variables (e.g. based on statistical significance) has undesirable consequences, such as 251 

degenerate sampling distributions and model selection bias [46]. Second, examination of 252 

the coefficients for the predictors indicated that, independent of statistical significance, 253 

the directions of effects were usually quite consistent between orders. For example 15 out 254 

of 16 coefficients for the effect of body mass are positive even if all are not statistically 255 

significant (Table S1); 12 of 16 coefficients for the encroachment variable are positive 256 

(Table S1). Finally, we checked predictions with and without the least significant 257 

variables and confirmed that the R
2
 values were not unduly inflated and giving a false 258 

impression of good fit.  In order to test the predictive ability of the threat probabilities we 259 

assessed how well the fitted threat probabilities predicted for assessed species were able 260 
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to distinguish threatened from non-threatened species using the Area Under the Curve 261 

(AUC) in the Receiver Operating Characteristic (ROC) curve [47]. AUC varies between 262 

0.5, which indicates that the predictions are no better than random, and 1, which is 263 

perfect agreement between observed and predicted. As threshold for assigning 264 

probabilities into binary categories of threatened and non-threatened, we used the value at 265 

which sensitivity equaled specificity in a given order. 266 

 267 

Model Approach and Limitations 268 

The methodology we have used is based on currently available tools and will be 269 

improved by future developments that include techniques such as logistic and 270 

multinomial generalized linear mixed models that could account for phylogenetic and 271 

spatial dependence and would enable to better model the discrete ordinal state variable 272 

[48, 49]. However such tools require very large datasets: logistic regression requires large 273 

amounts of data because binary observations contain relatively little information. 274 

Multinomial or ordered responses are an extension of logistic regression and as the 275 

number of states increases the data requirements increase. Given this, the approach taken 276 

here to treat the data as continuous is unlikely to seriously compromise the results (see 277 

also supplementary results).  Moreover existing methods for such responses do not 278 

combine spatial and phylogenetic signals, and can be very difficult to implement and 279 

tune. In the future, faster methods for fitting phylogenetic models are under development 280 

and these should facilitate further methodological advances [50]. We have assumed that 281 

the variance scales linearly with both phylogenetic and geographic distances. This is 282 

supported by diagnostics (e.g. see [27] for a worked examples). The assumption of 283 
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linearity is not terribly critical so long as variance increases with distance. In previous 284 

work we suggested how the assumption could be varied (Table 1 in [27]). However it 285 

should be noted that nonlinear transformations of variance matrices are potentially 286 

difficult to work with. For example we have recently shown that a commonly used 287 

transformation (the Ornstein Uhlenbeck) is severely biased under most circumstances for 288 

even large datasets (Thomas et al. in review).  289 

The models we developed are strongly dependent on range size as a predictor of IUCN 290 

status, which reflects the importance of range size in the formal assessment process. It is 291 

important to note that our predictive models are not aimed at testing the relevance of this 292 

variable (which would require variable elimination to avoid circularity), but to use this 293 

formally recognized association for prediction. In other words, we use A (assessed 294 

species) modeled by B (novel framework and independent variables) to predict C (not yet 295 

assessed species), not to make inference about A.  296 

 297 

Results 298 

Assessed species 299 

For the 16 mammal orders analyzed the threat probabilities (whether a species is non-300 

threatened or threatened) predicted by the models successfully explain observed variation 301 

in assessed threat score (R
2
 values were typically ~40% or greater; Table S1) and 302 

effectively predict species threat category (Fig. 1A). Range size and body mass were 303 

generally strong correlates of threat status, with smaller ranging and larger species 304 

typically being subject to greater threat (Table S1). Given the inherent role of  range size 305 

14 

  

Page 14 of 304

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For R
eview

 O
nly

  

in the IUCN assessment process [11] these associations are not altogether unexpected and 306 

confirm previous findings [19, 20, 51, 52]. Less consistently than recently observed in all 307 

terrestrial birds [20], land-cover encroachment and human influence measures are 308 

strongly positively correlated with IUCN threat category in several orders. This 309 

contributes to the overall predictive ability of the models and confirms the relevance of 310 

such variables for threat predictions (Table S1). 311 

 312 

In addition to the strong phylogenetic dependence of body mass (Table S2), 9 of the 313 

orders showed phylogenetic or spatial dependence in the residuals of the models for 314 

IUCN threat. The degree of net phylogenetic signal in the residuals of the final models is 315 

generally low, with the phylogenetic effect estimated as zero for seven and very low (0.1 316 

or less) for five orders. Notably higher estimates are obtained for primates (0.66). Six 317 

orders showed strong spatial signals, with estimates of the spatial coefficient, ĳ, as high 318 

as 0.6-1.0 (Table S1).  The threat probabilities resulting from our models are the 319 

probabilities that each species is in one of the threatened states rather than not threatened, 320 

given the mean and variance predicted by the model (see methods). The Receiver 321 

Operating Characteristic plot (Fig 1B) indicates a very strong discrimination of 322 

threatened from non-threatened species with an AUC of 0.90 for the whole dataset and a 323 

median of 0.91 for all orders.  These were associated with high degrees of sensitivity and 324 

specificity (typically ca. 0.8 - 0.9, Table S1). Predicted threat probabilities are remarkably 325 

effective in delimiting threat status, as especially illustrated by the most and least 326 

threatened IUCN classes: only 4% of species assessed to be of ‘least concern’ were 327 

predicted to have a threat probability of 0.5 or greater (Fig. 1C; see Fig. S1 for order-328 

15 

  

Page 15 of 304

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For R
eview

 O
nly

  

level plots) and only 11% of species assessed to be ‘critically endangered’ were assigned 329 

a threat probability lower than 0.5 (Fig. 1C). Across all threat categories, 61% of species 330 

assessed as being under some degree of threat had estimated threat probabilities greater 331 

than 0.6 and (with nearly 31% greater than 0.8) (Fig. 1C). Overall, our predicted threat 332 

probabilities are a strong discriminator of threat status with particularly high values 333 

(>0.8) extremely unlikely for species that are not actually threatened. 334 

 335 

The relative richness of species assessed as being threatened is geographically very 336 

uneven (Fig. 3A).  Applied to assessed species, our model predicts this observed pattern 337 

very well (Fig. 3B). Overall, however, there is a strong association between the predicted 338 

average probability or predicted proportion of species threatened and the observed 339 

proportion of species assessed threatened (r = 0.74 and r = 0.68, respectively; Fig. 4A, B) 340 

as well as, expectedly, between predicted and observed threatened richness (r = 0.82, Fig. 341 

4C). This suggests that our models successfully capture the biogeography of assessed 342 

threatened species.  343 

 344 

Data-deficient species 345 

Data-deficient species are predicted to be substantially more likely to be threatened than 346 

assessed species (Fig. 1D), with an average predicted threat probability of 0.40 compared 347 

to 0.21 in assessed species. For data-deficient species 28% of threat probability estimates 348 

were greater than 0.6, whereas for assessed species it was only 11%. Overall threat 349 

probabilities were higher for data-deficient species in 10 orders, and statistically 350 
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significantly so for 7 orders (Fig. 2). Classifying data deficient species into binary threat 351 

categories using a standardized order-specific threshold (the value at which sensitivity 352 

equals specificity) results in a total of 331 of 483 species predicted threatened, i.e. 69% of 353 

species threatened compared to 29% among assessed species. This difference is repeated 354 

among almost all orders, with a total of 298 potentially threatened data-deficient species 355 

identified among the Chiroptera, Rodentia and Eulipotyphla alone (for species-level 356 

results see Table S3). 357 

 358 

Geographically, data-deficient species are predicted to exhibit substantially higher 359 

average probabilities and proportions of species threatened (grid cell assemblage values 360 

of 0.12 and 0.17, respectively) than assessed species (0.06 and 0.06, respectively). At the 361 

grid cell level, the predicted average threat probabilities or proportion of data-deficient 362 

species shows barely any relationship with the proportion of species assessed to be 363 

threatened (Spearman rank correlations: r = 0.30 and r = 0.29, respectively; Figs. 4D,E). 364 

Equally, the richness of data-deficient species predicted to be threatened is only weakly 365 

correlated with that of species assessed to be threatened (r = 0.30, Fig. 4F). The 366 

discordance in geographic ‘hotspots’ of predicted assessed and data-deficient threat is 367 

apparent when comparing the maps of their predicted threat probabilities and species 368 

richness in Figure 3. Threat levels predicted for data-deficient species substantially 369 

exceed those of assessed species in many locations (note different color scales). Data-370 

deficient species hold much higher predicted threat levels than assessed species in 371 

Colombia and Central America, Southern South America, and parts of Southeast Asia. In 372 

terms of species richness (Fig 3F, 4F), data-deficient species are predicted to strongly 373 
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increase the number of at-risk species in Sumatra, New Guinea, Colombia, and especially 374 

Sulawesi, where in grid cell 10 likely threatened mammal species add to the known 16. 375 

This suggests that these regions are even more important for conservation than previous 376 

global conservation prioritization analyses may have suggested [53, 54]. In contrast, data-377 

deficient species predicted not to be threatened occur both outside (e.g. Southern South 378 

America) and inside (e.g. Borneo, Central and West African forests) some main areas of 379 

known (assessed) high prevalence of threatened species (Fig 3D, E).   380 

 381 

 382 

Discussion 383 

In this study we have shown that data-deficient species are much more likely to be under 384 

threat than those that have already been assessed and that the geographic distribution of 385 

data-deficient species that are likely threatened is different to that of assessed threatened 386 

species. This may have important implications for global mammal conservation strategies 387 

[55]. According to our analysis it is extremely likely that well over three hundred 388 

additional mammal species (69% of those data-deficient) are threatened, many of them 389 

potentially severely so. This is over an order of magnitude more than suggested by 390 

Davidson et al [19] which identified 28 data-deficient mammal species as potentially 391 

threatened, but did not use environmental, spatial or phylogenetic information. Using 392 

eigenvectors, no encroachment data and model validation with only bats, Jones and Safi 393 

[18] estimated 35% of 481 data-deficient mammal species to be potentially threatened. 394 

Our statistically more robust approach [28, 29] that additionally uses remotely sensed 395 

encroachment information thus suggests much greater levels of threat in data-deficient 396 
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species than previously thought. The relatively low degree of phylogenetic signal of 397 

IUCN status we found here contrasts with previous related results in carnivores [17]. This 398 

difference has two sources: firstly from the inclusion of species’ body masses in our 399 

analyses, and secondly from the inclusion of spatial effects, which also has phylogenetic 400 

signal. In particular mean mass is both strongly phylogenetically determined in all orders 401 

and strongly related to IUCN status (Table S1). Accounting for body mass thus decreases 402 

the detectable phylogenetic signal. 403 

 404 

Our findings suggest that data-deficient species cannot be ignored in conservation threat 405 

assessments and in interpretation of threat status for policy setting. In mammals data-406 

deficient species are clearly more likely than non data-deficient species to be under 407 

significant threat. The association between threat status and data deficiency arises, 408 

because narrow-ranged (and thus often scarce), large-bodied (that thus often low-density, 409 

long generation time) species, are also very likely to be those for which little data exist 410 

(Table S1, [see also 45]). There are notable exceptions: for instance, the threat probability 411 

of data-deficient primates is no higher than that of those that have been assessed, likely 412 

reflecting the relatively higher research effort directed at primates in the past. In contrast, 413 

rodents are much more difficult to study (they are small, live in inaccessible habitat and 414 

are frequently nocturnal) and for them over half of data-deficient species are predicted to 415 

be threatened whereas only 16% have been assessed as threatened (Fig 2).  Our findings 416 

contrast with recent results for birds, where just 0.6% of species are data-deficient and 417 

where species that were recently moved from this category were found to be less 418 

threatened than non-data-deficient species [13]. However, these only recently assessed 419 
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bird species are likely not a representative sample of data-deficient species as whole, as 420 

data-deficient species assessed first will likely be ones that are more easily studied (and 421 

thus face different, potentially lesser threats) than those assessed last. The statistical 422 

results gathered from all species may offer more reliable guidance.  423 

 424 

Our general aim was to demonstrate how readily-available information can be used to 425 

make initial predictions about the likely conservation status of species for which a formal 426 

assessment has not yet been possible. If a similar proportion of data-deficient yet 427 

threatened mammal species (69%) was to be found amongst data-deficient amphibians 428 

(1,600 out of 6,312 species are data-deficient, [3]), it would represent a very large 429 

increase of amphibian species at-risk. Such a scenario would add many new species to 430 

the threated categories in the Red List with strong potential consequences for geographic 431 

conservation prioritization. The transferability of mammal-based estimates to other taxa 432 

is of course unclear, but this realization highlights the importance of expanding 433 

assessment work and seizing the increasing opportunities for rigorous statistical inference 434 

of threat status. 435 

 436 

The strong importance of select life history traits and range size for predicting threat 437 

status has previously been illustrated [16]. Recently the complementary power of 438 

remotely-sensed measures of human land encroachment to predict threat status has also 439 

been demonstrated for birds [20]. Combined with an increasingly thorough understanding 440 

of the spatial context of species [15] and ever- improving data on the phylogenetic signal, 441 

a general predictive framework is emerging that may be instrumental for statistically 442 
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assessing the thousands of species for which an individual evaluation is time- or cost-443 

prohibitive. By identifying already assessed species with highly over- or under-predicted 444 

threat status for further scrutiny, it may also someday help improve the Red Listing 445 

process which is not without human error. Clearly, the presented framework is no silver 446 

bullet to replace the need for expert assessment based on field ecological data. We expect 447 

that assessment data for at least 50% of species, depending on representativeness, is 448 

needed to provide reasonably reliable threat predictions, but this will vary by group and 449 

likely often be higher. But this does potentially free up resources and lower completion 450 

thresholds [56, 57] that would benefit the assessment of neglected taxa such as 451 

invertebrates and plants. More generally, a complementary approach to traditional expert-452 

based assessment may emerge that combines available phylogenetic/biological data with 453 

improved species distribution knowledge linked to a remotely-sensed monitoring of land 454 

cover [15] –  all facilitating a dynamic and continuous baseline assessment of the state of 455 

species. 456 

  457 
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Figure Legends 

 

Fig. 1. Explanatory and discriminative power of the fitted models of threat status for assessed 

species. (A), the relationship between fitted threat probability and IUCN status for assessed 

species. Threat probability is the probability a species is in one of the ‘threatened’ categories 

according to our spatial-phylogenetic multi-predictor model. (B), Receiver Operator Characteristic 

(ROC) curve, showing the relationship between true positive (sensitivity) and false positive (1 

minus specificity) rate. The dashed line is the expected pattern if the threat probabilities were no 

better than random at discriminating threatened species. The AUC, which varies between 0.5 and 

1, is the area highlighted in grey and is a measure of explanatory power. (C), the frequency 

distribution of fitted probabilities for species of contrasting conservation status. The green bars 

refer to species of ‘least concern’ (IUCN status 1 in A), whilst the red bars refer to species which 

are ‘critically endangered’ (IUCN status 5 in A). (D) Fitted / predicted threat probabilities shown 

separately for assessed species (grey) and data-deficient species (red).   

 

Fig. 2. Prediction of threats for individual mammal orders. For each order the average fitted 

threat probabilities for assessed species (black points) and predicted threat probabilities for data-

deficient species (red points) are shown (± standard errors). F-ratios and p-values refer to tests of 

differences between the mean fitted threat probabilities of assessed and data-deficient species. The 

numbers of assessed species is given for each order, together with the number of data-deficient and 

threatened (i.e. not ‘least concern’) species. The grey vertical bars show the threshold threat 

probability for each order (see Table S1), which is used to denote which data-deficient species are 

predicted to be threatened. The threshold is the point at which sensitivity = specificity (where 
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threatened and non-threatened status have equal chance of being correctly predicted [58]). Based 

on this probability, the final column gives the number of data-deficient species which are predicted 

to be threatened. Note that there are no data-deficient species in Perrissodactyla and the orders is 

thus not included here. 

 

Fig. 3. The geography of observed and predicted mammal threat levels and richness. Panels 

illustrate the observed and predicted grid-cell proportions of all species assessed by IUCN to be 

threatened and analyzed here (A,B, 3,703 species, for model details see Table S1), and the 

predicted proportion of data-deficient species threatened  (C, 483 species, for details see Fig 2).  

(D-F) show observed and predicted richness patterns: the richness of observed (assessed) 

threatened species (D, 812 of 3,703 species in analysis, i.e. all those assessed “vulnerable”, 

“endangered” or “critically endangered”), those data-deficient species predicted by the combined 

spatial, phylogenetic and environmental model to be non-threatened (E, N = 152 of 483 species), 

and those predicted to be threatened (F, 331 of 483 species).  Quantile classification of values 

across 110km equal area grid cells in Behrman projection. Note that color scales vary to emphasize 

geographic differences. 

 

Fig. 4. Relationships between observed and predicted threat levels of grid cell assemblages. 

The model-based predictions of average probability (A) and total proportion (B) of species 

threatened successfully captures the observed variation in proportion species threatened (A, 

Spearman r = 0.72; B, r = 0.66; 3,703 species; cf. Fig 3A, B). Observed and predicted richness of 

threatened assessed species is tightly associated (C, r = 0.77, cf. Fig 3D). In contrast, the predicted 

average threat levels and proportions of data-deficient species (cf. Fig 3C) show only very weak 
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association with the proportional threat patterns of assessed species (D, r = 0.33, E, r = 0.23; 843 

data-deficient species). Equally, the areas with high richness of data-deficient species predicted to 

be threatened shows little covariance with those of high assessed threatened richness (F, r = 0.31, 

cf. Fig 3F). Darker gray represent higher density of points, line indicates 1:1 relationship. A total 

of  11,331 110km equal area grid cells that had ≥ 50% dry land or were oceanic islands and had ≥ 

2 assessed species were analyzed. 
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