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1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
2Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter,

California Institute of Technology, Pasadena, California 91125 USA
3Station Q, Microsoft Research, Santa Barbara, California, 93106-6105, USA

4Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
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The ν = 12/5 fractional quantum Hall plateau observed in GaAs wells is a suspect in the search for non-

Abelian Fibonacci anyons. Using the infinite density matrix renormalization group, we find clear evidence

that—in the absence of Landau level mixing—fillings ν = 12/5 and ν = 13/5 are in the k = 3 Read-Rezayi

phase. The lowest energy charged excitation is a non-Abelian Fibonacci anyon which can be trapped by a

one-body potential. We point out extremely close energetic competition between the Read-Rezayi phase and

a charge-density ordered phase, which suggests that even small particle-hole symmetry breaking perturbations

can explain the experimentally observed asymmetry between ν = 12/5 and 13/5. Reducing the thickness of

the quantum well drives a transition from the homogeneous Read-Rezayi phase to the charge-density ordered

phase, providing a plausible explanation for the absence of a ν = 12/5 plateau in narrow GaAs wells.

I. INTRODUCTION

The richness of the emergent excitations in many-body sys-

tems can belie the simplicity of their underlying Hamiltonian.

This sentiment underlies the continued effort to realize quan-

tum materials that exhibit fractionalized non-Abelian quasi-

particles. Such phases of matter, apart from their fundamental

interest, are the proposed building blocks of quantum comput-

ers resilient to decoherence.1,2

While significant progress has been made towards realiz-

ing emergent Majorana zero modes in a variety of experimen-

tal systems,3–8 the number of candidate hosts for Fibonacci

anyons – which are in some sense an interacting generaliza-

tion of Majoranas – remains much more limited. Unlike Ma-

joranas, Fibonacci anyons have “universal” braiding statis-

tics: braiding Fibonaccis alone is sufficient to approximate

any quantum gate.9 Various lattice models have been pro-

posed realizing Fibonacci anyons, but they require complex

interactions.10–14

Here we investigate one of the simplest possibilities for re-

alizing Fibonacci anyons: as the emergent low-energy excita-

tions of incompressible states at ν = 12
5 and ν = 13

5 fractional

quantum Hall plateaus in GaAs quantum wells.15,16 Exper-

iments by Kumar et al.16 on a symmetrically-doped, 30 nm
quantum well sample have observed an incompressible state

at ν = 12
5 with a gap of about 80mK, larger than expected

from the model of non-interacting composite fermions.17 Cu-

riously, the ν = 13
5 plateau is replaced by a reentrant integer

quantum Hall state (RIQH) with quantized Hall conductance

σxy = 3 e2

h , indicative of broken translation invariance and

suggesting the formation of charge density order (CDO).18–20

A similar RIQH plateau develops directly proximate to the

ν = 12
5 plateau, so the approximate particle-hole symmetry

relating fillings 12
5 and 13

5 is at least weakly broken in the

given experimental sample.16

A theoretical proposal for a novel phase at ν = 13
5 and 12

5

filling was put forward by Read and Rezayi.21 They described

a class of incompressible phases – the Zk “Read-Rezayi”

phases (RRk) – which occur at filling fractions ν = k
k+2 . The

Laughlin phase22 (k = 1) and Moore-Read phase23 (k = 2)

are the simplest entries in the Read-Rezayi sequence. The

k = 3 member (“Z3 state”) at filling ν = 3
5 and its particle-

hole conjugate at ν = 1 − 3
5 , which we call RR3 and RR3

respectively, involve “pairing” of triplets of particles and sup-

port Fibonacci excitations. They are candidates for incom-

pressible plateaus at fillings ν = 13
5 and ν = 12

5 , assuming an

inert ν = 2 lowest Landau level and full spin-polarization of

the remaining “valence” filling ν̃ = 3
5 ,

2
5 .

While Read and Rezayi proposed a representative wave-

function for the Z3 phase which is the ground state of a Hamil-

tonian with a 4-body interaction,21 it is not clear whether the

two-body Coulomb interaction could stabilize such a phase.

Refs. 21 and 24 presented some evidence that the ground state

of the Coulomb interaction at ν = 13
5 is described by the

RR3 phase. These exact diagonalization studies were lim-

ited to small systems and based on two assumptions: (1) elec-

tron spin is fully polarized; and (2) cyclotron energy is infi-

nite (i.e., absence of Landau level mixing). Taken together

one cannot account for the particle-hole asymmetry between

ν = 12
5 and ν = 13

5 observed in experiment. More recently, it

was suggested that finite sample width25 pushes the Coulomb

ground state deeper into the Read-Rezayi phase.26 Tuning the

mass gap in chiral Dirac systems was also found to have a

favorable effect on the Read-Rezayi state.27 We note that al-

ternative candidate states have been proposed for ν = 12/5,28

which appear to be energetically competitive in small finite

systems.29 Most of these studies, however, rely on wavefunc-

tion overlaps to identify the phase, which can be ambiguous

since two wavefunctions can have a high overlap yet represent

different phases. It desirable to extend the previous studies to

larger systems using an unambiguous criteria for identifying

a topological phase which can be reliably extrapolated to the

thermodynamic limit.

In this work, we utilize two recent methodological ad-

vances to determine the nature of the ν = 12/5 plateau.

First, using the infinite density matrix renormalization group
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(DMRG),30,31 the problem can now be studied on the geom-

etry of an infinitely long cylinder at large circumferences,32

greatly reducing finite-size effects and allowing us to inves-

tigate the competition between liquid and CDO phases that

is more difficult to study on the sphere or torus.33–37 Sec-

ond, advances in the understanding of quantum entanglement

in topological phases allow us to use “entanglement spec-

troscopy” to extract topological invariants from the ground

state wavefunctions,32,38–42 providing an unambiguous signa-

ture of the RR3 phase.

The principle findings of this work are as follows. We es-

tablish that the Coulomb interaction gives rise to the RR3

/RR3 phase at ν = 12
5 and ν = 13

5 , assuming full spin-

polarization and no Landau level mixing (Sec. II). Using a

recently developed variant of DMRG for studying the proper-

ties of a single anyonic excitation,32 we compute the energies

and charge distributions of the anyon excitations (Sec. III).

We identify the lowest energy charge excitation with the Fi-

bonacci anyon. We probe the spin polarization and verify that

the state does indeed spontaneously spin-polarizes by enlarg-

ing the Hilbert space to include both spin species (Sec. IV).

We also probe the stability of the Read-Rezayi phase against

short-range perturbations (Sec. V), and determine the energy

scale favoring RR3 phase over the Abelian hierarchy state.

Finally, we study the competition between CDO and RR3

phases. In the absence of Landau-level mixing, we indeed

find that the Coulomb Hamiltonian has a competing CDO

phase with an energy remarkably close to the RR3 phase,

on the order of a few mK per flux. In fact, for sufficiently

small well thickness w, the CDO phase has lower energy than

the RR3 phase, which may explain the absence of ν = 12
5

plateau in narrow wells. This close competition implies that

even small perturbations arising from Landau level mixing –

which breaks particle-hole symmetry – may tune the system

between the RIQH and Z3 phases.

II. IDENTIFICATION OF ν = 12/5 AND 13/5 QUANTUM

HALL STATES AS THE k = 3 READ-REZAYI PHASE

We begin with the simplest model of fully spin-polarized

electrons interacting via the Coulomb potential:43

V Coulomb =

∫

r,r′

e2

4πǫ

:ρ(r)ρ(r′) :

|r− r′|
, (1)

where r = (x, y, z) is a position vector, with a magnetic

field in the z-direction. The electron gas is confined in the

z-direction by an infinite square well potential of width w.

The Coulomb interaction is projected into the spin-polarized

N = 1 LL of the lowest subband of the square well.25,43 Ener-

gies are expressed in units ofEC = e2/4πǫℓB , where ℓB is the

magnetic length. For reference, a 5T magnetic field roughly

corresponds to EC ∼ 120K for GaAs samples. Without in-

ternal degrees of freedom (spins or LL indices), the 12
5 and 13

5
states are related by an exact particle-hole symmetry, so we

only present results for ν = 12
5 .

We use infinite DMRG to study the Coulomb interaction (1)

on an infinitely long cylinder of circumference L, where

3
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FIG. 1. Orbital entanglement spectra for the two degenerate ground

states at L = 32ℓB , w = 3ℓB . For each ground state, we pick

two orbital cuts and plot the entanglement energies vs. angular mo-

mentum. The low-lying spectra (highlighted in red) agrees with the

CFT prediction given in Eq. (2), and thus provides an unambiguous

identification of the RR3 phase.

its ground state is expected to have topological degeneracy.

Rather than trying to identify the phase via the ground states’

overlap with trial wavefunctions, we examine patterns in the

quantum entanglement of the ground states which serve as the

“order parameter” for topological order.

For circumferences L ≥ 17ℓB , we consistently find ten

ground states, as expected for the RR3 phase.44 The splitting

of the degeneracy is consistent with an exponential decrease

with system size, shown in Fig. 2(a). The ten ground states

split into two groups of five; within each quintuplet the states

are related by translating the center of mass. We label the

representative ground states from each quintuplet as |Ω1〉 and

|Ωτ 〉.
45

The first evidence for the RR3 phase comes from the en-

tanglement spectra. We partition the infinite cylinder into left

(L) and right (R) halves, each semi-infinitely long. Given

a wavefunction |Ψ〉 on the cylinder, the entanglement spec-

trum46 {ǫα} is the set of eigenvalues of − log ρL, where

ρL = TrR |Ψ〉〈Ψ| is the reduced density matrix for the left

half of the system. Each eigenvalue ǫα is called an “entangle-

ment energy” level, and carries quantum numbers of charge

and angular momentum, just as a physical edge of the cylin-

der would. Generically the low-lying levels of the entangle-

ment spectra (along with their quantum numbers) mimic the

physical edge theory of the phase,38,46,47 which can be used

to identify the topological order. For the RR3 phase, the cor-

responding edge structure is a product of the Z3 parafermion
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FIG. 2. (a) The splitting of the topological degeneracy E(|Ωτ 〉) −
E(|Ω1〉) as a function of cylinder circumference L is consistent with

an exponential decrease. w is the width of the well. (b) Scaling

of the momentum polarization M with circumference squared L2,

which reveals the shift S. Dashed lines indicate the theoretical pre-

dictions for the 1 and τ ground states of RR3, and dotted lines for the

competing hierarchy (AH) and Bonderson-Slingerland (BS) states.

conformal field theory (CFT)48 with a U(1) boson. Each en-

tanglement spectra corresponds to one of six primary fields of

the Z3 parafermion CFT: 1, ψ, ψ†, ε, σ, σ†. The predicted

level countings (i.e., the number of low-energy states for each

momentum) are

1 : 1, 1, 3, 6, 12, . . . , ε : 1, 3, 6, 13, 24, . . . ,

ψ/ψ† : 1, 2, 5, 9, 18, . . . , σ/σ† : 1, 2, 5, 10, 20, . . . .
(2)

Figure 1 shows the orbital entanglement spectra for the ground

states |Ω1/τ 〉 at L = 32ℓB . The pattern of the low-lying levels

(highlighted in the figure) is indicative of a chiral edge mode,

with level counting consistent with the corresponding CFT of

the Read-Rezayi phase. In each spectra, the first four levels

unambiguously match the theoretical prediction.

Robust quantitative evidence for the RR3 state comes from

the “momentum polarization”,32,42,49 which effectively com-

putes the modular T -transformation. The momentum polar-

ization M is defined to be M = Tr[ρLK̂] with K̂ the angular

momentum operator on the cylinder; it measures the average

amount of momentum carried in the left half of the system.

As explained in Ref. 50, M encodes three topological invari-

ants: the “shift”51
S, the chiral central charge c, and the anyon

topological spin ha:

M
[

|Ωa(L)〉
]

= −
ν SL2

(4πℓB)2
+ ha −

c

24
+O(e−

L
ξ ). (3)

Figure 2(b) shows M(L) plot vs. L2 for ground states |Ω1/τ 〉.
From the slope of the data, we see that S = 0, consistent

FIG. 3. Cuts through the density profile for anyons with charge

e/5, computed by using various boundary conditions [a, b] on a

L = 21ℓB cylinder. The pinning potential is a gaussian of width

≈ 4ℓB . The top figure shows an Abelian e
5

particle while the bottom

two shows the Fibonnaci e
5
τ anyon. These quasiparticles are about

15ℓB in diameter.

with the RR3 phase and definitively ruling out the ν = 2
5

hierarchy phase (S = 6) and the Bonderson-Slingerland (BS)

phase (S = 4).28,29 The intercepts ha −
c
24 are also consistent

with RR3 (cf. Appendix A).

III. THE NATURE AND ENERGETICS OF THE ANYONIC

EXCITATIONS

Having established the properties of the ground states, we

turn our attention to the anyonic excitations. There are a num-

ber of anyon properties we can infer from theory – e.g., the

anyon types, their charges, and fusion rules. However, we are

interested in the non-topological aspect of the anyons relevant

to the physical system, which depend on microscopic details.

In particular, we wish to study the size, shape, and energetics

of the fractional excitations.

There are two anyon types for each charge m e
5 (m ∈ Z),

one Abelian and the other of Fibonacci type, which we label
me
5 and me

5 τ respectively. (For the m = 0 neutral particles,

we simply label them 1 and τ .) The Coulomb interaction will

generally drive charges to fractionalize into the smallest possi-

ble units, with charge ± e
5 , but there remains two possibilities:

± e
5 , which are Abelian, and ± e

5τ , which are non-Abelian.

Braiding and fusion of the e
5τ excitations would in principle

be sufficient for universal topological quantum computing.
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To answer these questions we perform “defect-DMRG” on

an infinite cylinder with the boundary conditions at infinity

chosen to trap an anyon at the center of the cylinder.32 The ten

degenerate ground states obtained from DMRG are labeled

by the topological flux (anyon type) a threading the cylinder,

{|Ωa〉}. Similar in spirit to the Su-Schrieffer-Heeger soliton

of polyacetylene, anyons appear as a “domain wall” between

different degenerate ground states in {|Ωa〉}, though their en-

ergy is point-like, not extensive in the circumference. On the

far left / right of the cylinder, we fixed the wavefunction to

be |Ωa〉 / |Ωb〉, and variationally optimize the state in a finite

portion of the cylinder in order to ‘glue’ these boundary con-

ditions together. (cf. Appendix D) A domain wall of [a, b]
(which denotes |Ωa〉 on the left, |Ωb〉 on the right), can trap

an anyon of type c if the fusion a × c → b is permitted. In

other words, the possible anyon types arising from boundaries

[a, b] is the list of possible fusion channels ā × b, where ā is

the antiparticle of a. The variational procedure will choose

the fusion channel with the lowest possible energy.

A domain wall [1, b] will always trap a b-type anyon. In

Fig. 3(a) and (b), we show the density distribution of the

anyon arising from such boundary conditions, trapping a e
5

(Abelian) and e
5τ (non-Abelian) anyon. Their charge distri-

butions are qualitatively distinct, so in principle they could

be distinguished by their quadrupole moment Qzz , where ẑ
points normal to the plane. For comparison, the sizes of ele-

mentary excitations in the model RR3 state are much smaller,

∼ 3ℓB in diameter.52 In Fig. 3(c), we set up the domain wall

[τ, e5τ ], for which there are two possible anyon types allowed

by the fusion rules: τ × e
5τ = e

5 +
e
5τ . The DMRG algorithm

should choose the anyon type with lower energy; noting the

similarities in the density profile between Fig. 3(b) and (c), it

appears the non-Abelian e
5τ has lower energy than its Abelian

counterpart.

To confirm the energetics quantitatively, we define the en-

ergy Ea of anyon a to be the energy required to add a to

the groundstate in the absence of a pinning potential plus

the electrostatic interaction between a chargeQa point-charge

and a neutralizing medium. With this definition, we find

E e
5
= −0.0508 and Eτ e

5
= −0.0511 at L = 21ℓB , w = 3ℓB .

0 1 2 3
Well thickness (w/ℓB )

0.000

0.001

Q= +e
5

Q=−e
5

Anyon energies EQ,11−EQ,τ

0 1 2 3
Well thickness (w/ℓB )

0.010
0.012
0.014
0.016
0.018
0.020

Charge gap E−e
5
+E+e

5

FIG. 4. Anyon excitation energies EQ,a at various quantum well

thicknesses, for the RR3 phase in absense of disorder. (Left) The

difference between the Abelian and Fibonacci anyons for charges

Q = ± e
5

. The data shows that for a fixed charge Q, it is energetically

favorable to trap a Fibonacci rather than an Abelian anyon. (Right)

The energy require to disassociate a pair of ± e
5

quasiparticles. See

the main text for caveats in regards to this data.

As expected, the energy of the non-Abelian particle is lower;

in addition, the energy Eτ e
5

obtained from boundary condi-

tion [1, e5τ ] is in very good agreement with boundary condi-

tions [τ, e5τ ]. We find that for well-widths w = 0–3ℓB and

charge ± e
5 , the non-Abelian anyon type always has lower en-

ergy than the Abelian type. We show this energetic differ-

ence (at L = 21ℓB) in Fig. 4. Thus, in the absence of a

pinning potential, it is energetically favorable to bind a Fi-

bonacci τ to a ± e
5 charge. Furthermore, when including a

pinning potential such as the width 4ℓB Gaussian pin used in

Fig. 3, the Fibonacci charge receives a significantly lower po-

tential energy from the pin because its charge distribution is

better concentrated at the center. This suggests an array of

Fibonacci anyons can be pinned by trapping ± e
5 -charged par-

ticles with a weak one-body potential and slowly cooling the

system. Such a setup may be employed in a measurement-

only quantum computing scheme.53

The “charge gap” for the RR3 phase is the energy required

to create and separate a pair of charge + e
5 ,−

e
5 particles from

the ground state, ∆ = E+e/5τ + E−e/5τ , which we find nu-

merically to be about 0.017. This corresponds to about 2 K

at 5T, far larger than the 80mK activated-transport gap ob-

served in experiments.16 A similar discrepancy was found for

the Moore-Read state at ν = 5
2 , where numerics find a charge

gap of about 0.022 (≈ 2.5 K at 5 T)54 while the experiments of

Dean et al.55 report an activated-transport gap of about 0.0047

(≈ 540 mK at 5 T). At ν = 5
2 the discrepancy is reduced some-

what by including the effects of Landau-level mixing54 and

(presumably) dressing the excitation with spin flips, but it is

believed that disorder broadening plays a large role as well,

for example Γ ≈ 0.8 K in the sample of Dean et al..56 We

cannot say whether the discrepancy at ν = 12/5 could be

resolved by including these additional corrections or if quali-

tatively different physics is involved, such as some signature

of the competing CDO discussed below.

IV. EVIDENCE FOR SPONTANEOUS

SPIN-POLARIZATION

There have been few experimental studies on the spin-

polarization of the 12
5 plateau.57 The experiments of Ref. 57

found that applying an in-plane B-field, which increases the

Zeeman splitting, drove the 12
5 plateau through a transition;

at a critical in-plane B-field the gap measured from activated

transport closed, then reopened at larger field. A natural ex-

planation, believed to explain similar physics at ν = 2/3,58,59

is that the Coulomb point is spin-unpolarized until a criti-

cal effective Zeeman field spin-polarizes the phase. Ref. 57

pointed out that the spin transition observed at ν = 12/5 re-

sembles to some extent the transition at ν = 2/5, which likely

occurs between the 332 Halperin state60 and the Abelian hier-

archy (composite fermion) state. In this particular sample, the

behavior of the gap of the spin-polarized ν = 12/5 state ap-

peared to conform with the predictions of composite fermion

theory17, although the transport was also anisotropic. It is

known, however, that tilt-field experiments are complicated

to interpret because the in-plane B field combines with the fi-
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nite well width to change the interaction in important ways,

for example by mixing in higher sub-bands with a N = 0 LL

character and reducing the effective well-width.61

Rather than attempting to model the experiment in Ref. 57,

here we are interested in whether the ground state of the

Coulomb Hamiltonian (1) spontaneously spin polarizes or not

when the Zeeman splitting vanishes. Indeed, the typical Zee-

man splitting of the electron spin is small in comparison to the

Coulomb energy, gµBB/EC ≈ 1
70 , hence the spin-singlet vs.

spin-polarized character of a plateau is largely determined by

interactions.

We check the spontaneous spin-polarization of the

Coulomb state by keeping the full Hilbert space of both spin

species with density ν̃ = 1
5 + 1

5 and enforcing number con-

servation of each spin separately (we ignore fully filled ν = 2
and Landau level mixing). Using iDMRG, at w = 3ℓB and

L = 21ℓB we observe long-range ordering of the fermion spin

in the XY plane, signaling spontaneous breaking of SO(3)
(see Appendix B). Despite the larger Hilbert space, the en-

ergy obtained agrees with the spin-polarized filling to good

precision. For small system sizes that can be studied by exact

diagonalization we also find that the ground state as well as

the low-lying energy spectrum are fully spin polarized.

V. STABILITY OF THE READ-REZAYI PHASE AGAINST

SHORT-RANGE PERTURBATIONS

The ground state at ν = 2/5 in the N = 0 LL is the spin-

polarized Abelian hierarchy or composite fermion state, and

an obvious competitor at ν = 12/5. Here we examine the

stability of the RR3 phase at ν = 12/5 as we perturb the

N = 1 LL projected Coulomb interaction by the short-range

V1 pseudopotential.

As the node of N = 1 LL wavefunctions softens the inter-

action, we expect that adding ∆V1 > 0 will drive the RR3

phase back into the Hierarchy phase. This is indeed what hap-

pens, Fig. 5. In terms of the ratio V1/V3, the transition be-

tween the RR and Hierarchy phase is about 1/3 of the way

between the Coulomb N = 1 and N = 0 LLs. ∆V1 is a

‘best-case’ perturbation for the Hierarchy state, as a typical

real-space potential will be distributed across all Vm. In fact,

we have verified that projecting a V (r) = δ′(r) interaction

into the N = 1 LL favors a CDO phase, not the Hierarchy

state. Linearly extrapolating the energy of the Hierarchy state

to the Coulomb point, we obtain a splitting between the RR3

and Hierarchy state of about ∆EH - RR ∼ 1.5 · 10−4 per flux

at well-width w = 2.

We directly probe the stability of the entire low-energy

spectrum of the RR3 phase upon varying V1 using exact di-

agonalization (ED) [Fig. 6]. We assume complete spin polar-

ization and no Landau level mixing. The energy spectrum of

the system is resolved as a function of pseudomomentum K
62,

and the RR3 phase is characterized by a two-fold degenerate

ground state in K = 0 sector. Additionally, as discussed in

Sec. II, there are five copies of those that are related by the

center of mass translation and can be factored out.

In Fig. 6 we show the phase diagram of the system as V1

is modified, for zero width (left) and w/ℓB = 4 (right). We

compute 10 lowest energies per momentum sector of the sys-

tem with 25 flux quanta through the hexagonal unit cell. The

energies are given in units of EC, and for clarity we plot them

relative to the average energy of the system Ẽ = E−Ē. Black

symbols denote the levels belonging to K = 0 sector. For zero

width (left), we identify the RR3 ground state degeneracy in

a narrow shaded region around the Coulomb point δV1 = 0.

In this region the ground state also has large overlap O with

the model RR3 wavefunction (inset). Because of the strong

mixing of four lowest energy levels with K = 0 around the

Coulomb point, we define the overlap O as a sum of singu-

lar values of the 4 × 2 overlap matrix Oij ≡ |〈ψi
exact|ψ

j
Z3
〉|,

i = 1, . . . , 4, j = 1, 2. At larger width w/ℓB = 4, the RR3

phase widens and becomes more robust as the two quaside-

generate K = 0 levels become better separated from the rest

of the spectrum. By inspecting the level degeneracy and com-

puting the overlaps, we also deduce that the RR3 phase is sur-

rounded by the hierarchy/composite fermion state for larger

positive δV1, and several charge density ordered phases for

negative δV1. The phase CDO I was identified with a stripe

in Ref. 24. The estimate of critical V1 for the transition into

the Hierarchy state is in agreement with DMRG estimate in

Fig. 5.

VI. COMPETING CHARGE DENSITY ORDER

In several experiments, the filling ν = 13
5 lies within a

RIQH plateau (called “R2c”) with Hall conductance σxy =

3 e2

h ;18,19 since Galiean invariance implies σxy = e2

h ν, trans-

lation invariance must be strongly broken. It is thought that

some form of charge-density order spontaneously develops

and is pinned by disorder, neutralizing the fractional filling

of electrons/holes in the valence LL. A similar RIQH plateau

FIG. 5. Transition between the RR3 and Hierarchy states as the Hal-

dane pseudopotential ∆V1 is added to the Coulomb interaction. In

the cylinder geometry the transition is first order. For perspective, in

the N = 0 LL, V1/V3 = 1.6; in the N = 1 LL, V1/V3 = 1.3;

at the observed transition V1/V3 = 1.43. Linearly extrapolating the

energy of Hierarchy state to the Coulomb point, we obtain a splitting

of ∆EH - RR ∼ 1.5 · 10−4 per flux. Data is taken from DMRG at

Lx = 20 and well-width w = 2.



6

FIG. 6. Phase diagram as a function of modified V1 pseudopoten-

tial, for zero width (left) and w/ℓB = 4 (right). Data is obtained by

exact diagonalization of the system with 25 flux quanta through the

hexagonal unit cell. We compute the lowest 10 energies (in units of

e2/ǫℓB) per momentum sector and plot them relative to the average

energy of the system Ẽ = E − Ē. Black symbols denote levels in

K = 0 sector. For zero width (left), we identify the Z3 ground state

degeneracy in a narrow shaded region around the Coulomb point

δV1 = 0. In this region the ground state has large overlap O with the

model Z3 wavefunction (inset). At width w/ℓB = 4 (right), the Z3

phase widens and becomes more robust. It is surrounded by the hi-

erarchy/composite fermion state for larger positive δV1, and several

charge density ordered phases for negative δV1.

(“R2b”) with σxy = 2 e2

h lies directly proximate to the ν = 12
5

plateau. Ref. 19 found that the partial filling at the center of

the RIQH plateaus, ν2b, ν2c, very nearly satisfies particle-hole

symmetry: 1 − ν2c = ν2b − 0.006. The width of the R2b

plateau is a bit thinner than R2c, and ν = 12
5 filling just es-

capes the RIQH region and develops as a separate plateau.16

The nature of the charge density order in the RIQH R2b

and R2c phases is not known.18–20,63,64 A Hartree-Fock (HF)

analysis predicts that among mean-field states either a two-

particle “bubble” (a Wigner crystal of two-electron droplets)

or a stripe (smectic) phase may be competitive at 2/5 and

3/5 partial filling.65–67 For a pure N = 1 Coulomb interac-

tion the stripe is predicted to occur at a wavelength λHF ≈
4.91ℓB .67 It is expected that effects beyond HF will spon-

taneously modulate the density along the stripes, effectively

forming an anisotropic bubble phase without the symmetries

of the triangular-lattice.68,69

Because our current study neglects LL mixing, our model

has a particle-hole symmetry relating valence fillings ν̃, 1− ν̃,

so cannot directly account for the observed asymmetry. Nev-

ertheless the above phenomenology suggests a CDO phase

should be in close competition with the RR3 phase, which

we show below is the case.

Charge density order is subtle to study in finite-size numer-

ics; the sphere geometry will strongly frustrate CDO while

the torus has to be tuned to the correct aspect ratio (this is

further discussed in Appendix C). On the infinite cylinder we

must consider the finite circumference L and the unit cell used

in the infinite DMRG; at filling p/q the unit cell must contain

m ·q flux (m ∈ Z), corresponding to a period λm = m ·q
2πℓ2B
L

along the length of the cylinder. The RR3 phase is commen-

surate with m = 1 for all L.

In the numerics presented so far, CDO was implicitly for-

bidden because we used the minimal DMRG unit cell m = 1.

To remedy this, we run simulations for a variety of circum-

ferences L and unit cells m · q chosen to accommodate the

bubble and stripe phases, even including pinning potentials to

preference various orders in the initial stages of the DMRG.

For Coulomb interaction plus well width, the only CDO found

is a stripe phase with a wavelength λCDO quite close to λHF.

Even though our geometry is quasi-1D, spontaneously break-

ing translation is not forbidden by Mermin-Wagner because

the magnetic algebra renders the symmetry discrete along the

length of the cylinder.

Holding fixed the DMRG unit cell at m · q, the wavelength

of the CDO is forced to be λm = 5m
2πℓ2B
L . As the circum-

ference L is changed, λm deviates from the optimal λCDO and

the CDO is forced to compress or stretch. Consequently we

expect the energy density of the CDO depends parabolically

on L, viaE ∼ (λm−λCDO)
2, as found in Fig. 7(a). Atw = 0,

this feature is found both for m = 3, L ∼ 20ℓB and m = 4,

L ∼ 27ℓB . The optimal λCDO can be determined from the

minimum of the parabola, and depends on w at the level of

10%, with larger w preferring smaller λCDO.

As shown in Fig. 7(c), the CDO has remarkably close en-

ergy (∆E/flux ∼ 10−5) to the RR3 phase; for L ∼ 20ℓB and

w = 0, the CDO is the true ground state! Increasing w favors

the RR3 state; our finite size numerics points to a transition

around w ∼ 1ℓB .

While λCDO ∼ 4.75ℓB is rather close to λHF, the CDO

we find is a highly entangled state rather different from the

naive HF ansatz. In the HF ansatz of a stripe, the orbital oc-

cupation alternates between ν = 1 and ν = 0, effectively

forming decoupled stripes of IQH. Because the IQH has chi-

ral edge modes, the correlations are algebraic along the length

of the stripe. As shown in Fig. 7(b), the CDO orbital occupa-

tion forms a near perfect sine-wave, with higher Fourier com-

ponents falling of exponentially in k. This implies that the

Greens function decays exponentially along the length of the

stripes, suggesting interaction effects have gapped out the chi-

ral edge modes. This appears to be consistent with theoretical

predictions that the HF smectic order is unstable towards bub-

ble formation along the stripes.68,69 The precise nature of the

CDO will have important experimental signatures, and will be

investigated in a subsequent work.

VII. SUMMARY AND DISCUSSION

We numerically simulated the fractional quantum Hall ef-

fect at a filling factor ν = 12/5 using the infinite density

matrix renormalization group and exact diagonalization meth-

ods. Our simulations include realistic Coulomb interaction

appropriate for GaAs quantum wells of finite width. In the

absence of Landau level mixing, the topological properties of

the ν = 12/5 ground state are consistent with the k = 3
Read-Rezayi phase. The ground state remains spin-polarized

for a range of well-widths, even as the Zeeman splitting van-

ishes. The lowest energy (spin-polarized) charged excitation
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FIG. 7. (a) Energies for the RR3 states (red and blue triangles) as a function of L and CDO (green circles) as a function of wavelength

λ, at with zero well-width. For data points denoted by triangles, the energies are computed while enforcing translational invariance of the

wavefunctions. The two ground states |Ω1/τ 〉 are metastable, and their energy approaches ERR ≈ −0.13717e2/ℓB in the thermodynamic

limit. For data points denoted by circles, a charge density wave of wavelength λ is imposed along the length of the cylinder (illustrated in the

inset). Here the CDO minimum ECDO dips below ERR, which suggests that at w = 0, the quantum Hall phase is unstable to formation of

CDO. (b) Orbital (dots) and real-space (line) density profile of the CDO minima at λ ≈ 4.8ℓB . Inset shows the Fourier transform of the orbital

density, with an exponential decay. (c) Energy splitting (per flux) between the RR3 phase and the CDO phase (ECDO −ERR), as a function of

w. The data shows that increased well-width w tends to stabilize the Read-Rezayi phase.

was identified with a non-Abelian Fibonacci anyon, which

supports universal braid statistics.

The full spin polarization of the ground state and the large

charge gap we obtain (0.017 ∼ 2 K) are encouraging but not in

complete agreement with experiments.16,57 The estimated gap

in Ref. 16 is ∼ 80 mK, and Ref. 57 detected a spin transition

upon tilting the field. While it may be possible that the lowest

charge excitation is actually a skyrmion and/or strongly renor-

malized by the LL mixing, a better theoretical understanding

of activated transport and spin polarization in the exotic 2nd

LL plateaus is also desired. As discussed in Ref. 56 in the

context of ν = 5/2 plateau, the size of the quasiparticles

(d ∼ 15ℓB) is comparable to the length scale of disorder aris-

ing from the remote ionized donors. In this regime there is a

larger tunneling amplitude across saddle points of the disorder

potential; it would be interesting if these amplitudes could be

numerically estimated using the single-anyon DMRG.

Perhaps most intriguingly, we find an exceptionally close

competition between the CDO and RR3 phase. Our numer-

ics shows that with increased width w the RR3 phase is pre-

ferred over the CDO; it is advantageous to fabricate the quan-

tum well as wide as possible to stablize the RR3 phase. At

the same time, with increased w the 1st excited subband LL

also comes down in energy, crossing with the N = 1 LL at

w ∼ 3.8ℓB . Furthermore, our result suggests that including

the perturbative effects of Landau level mixing might explain

the asymmetry between the ν = 12
5 and 13

5 plateaus, which

would give confidence to the numerics and shed light on the

RIQH phases. DMRG can be used to simulate several Landau

levels,50 so we plan to investigate this possibility in a subse-

quent study.

Note: During the final preparation of this work, we learned

of overlapping results by W. Zhu, D. Haldane and D. Sheng.
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Appendix A: Further charactization of the Read-Rezayi phase

via entanglement

We discuss in details the various entanglement measures to

identify the RR3 phase at filling ν = 12
5 . The data presented

here are are computed assuming full spin-polarization and no

Landau level mixing, i.e., a single n = 1 Landau level at 2
5

filling. (The data atw = 0 are taken while enforcing a uniform

density to stablize the RR3 phase. It appears rather “messy”,

possibly due to a CDO instability.)

We first return to the momentum polarization for the ground

states |Ω1〉 and |Ωτ 〉. As alluded to in the Sec. II, the mo-

mentum polarization reveals the shift, chiral central charge c,
and topological spin ha. We numerically calculate the Berry

phase UT ;a of performing a 2π twist on the left half of the

cylinder for ground state |Ωa〉: comparing to the theoretical

prediction32

UT ;a = exp
[

2πi
(

ha −
c

24
−

η
H

2π~
L2

)

+ . . .
]

. (A1)

The ellipsis denotes term exponentially suppressed with cir-

cumference L, and η
H

is the “Hall viscosity”,70 related to the

shift via η
H

= ~

4
ν

2πℓ2
B

S. (For the RR3 phase, the shift is

computed at ν = 2
5 .) The formula given in the main text is

the “logarithm” of Eq. (A1), and in principle ambiguous mod-

ulo 1. In practice, because UT ;a is a continuous function of

the circumference, one can easily extract the S by taking the

slope and compute the combination h− c
24 modulo 1.

Figure 8(a) shows the momentum polarization for L =
15–22ℓB , using various range of thicknesses w. From the

slope of the data, we extract S = 0 ± 0.1, in excellent agree-

ment with the RR3 phase at zero shift. Assuming the shift is

exactly zero, the data shows the residue ha−
c
24 . These values

corroborate well with those of the RR3 phase with h1 = 0,

hτ = − 2
5 and chiral central charge c = 1 − 9

5 = − 4
5 , shown

as the pair of dashed lines.

Finally, we also study the entanglement entropy of the

ground states, given by S = Tr[−ρL log ρL]. The entangle-

ment entropy is expected to scale with the circumference as

Sa ≈ sL − γa, where γa is a constant called the “topologi-

cal entanglement entropy” (TEE) associated with anyon type

a.38,39 The TEE is given by γa = logD − log(da), where da
are the quantum dimensions of the anyon type a, and D is the

total quantum dimension of the system given by D2 =
∑

a d
2
a.

Figure. 8 shows the entanglement entropy as a function of

L. Unfortunately the data S1/τ suffer from very strong fi-

nite size effects, it is not possible to extract γ1/τ with any

meaningful degree of certainity (the slope s is sensitive to mi-

croscopic details and non-universal). However, the difference

Sτ −S1 = γ1− γτ is universal, predicted to be log(ϕ) where

ϕ = 1+
√
5

2 is the golden ratio. While the entropy data alone

cannot confirm the existence of a Fibonacci anyon, it is nev-

ertheless completely consistent with the RR3 phase.

+

+

+
+

+

+

+
+

+
+

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ
à

à

à
à

à

à à

à à

à

ì

ì

ì ì
ì

ì
ì

ì ì

ì

ò

ò
ò

ò

ò

ò

ò
ò

ô
ô

ô

ô

ô
ô

ô

ô

- -
-

- -

-
-

-

- -
ç ç

ç

ç ç
ç ç

ç
ç ç

á á

á

á á
á

á
á

á á
í í

í
í í

í
í

í í í

ó ó ó ó
ó

ó
ó ó

õ
õ õ

õ
õ

õ õ
õ

15 16 17 18 19 20 21 22

-0.6

-0.4

-0.2

0.0

0.2

L � lB

M
om

en
tu

m
Po

la
ri

za
tio

n

(a)

+

+

+

+

+

+

+

+

+

+

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ô

ô

-

-

-

-

-
-

-

-

-

-

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

á

á

á

á

á

á

á

á

á

á

í

í í

í

í

í

í

í

í

í

ó

ó
ó

ó

ó

ó

ó

ó

õ

õ

õ

õ

õ

õ

õ

õ

w�lB
0 1 2 3 4 5

W1 \ + æ à ì ò ô

WΤ \ - ç á í ó õ

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
nt

an
gl

em
en

tE
nt

ro
py

+

+

+

+

+ +

+

+ +

æ

æ

æ

æ

æ

æ

æ
æ æ

à

à
à

à

à
à

à

à

à

ì

ì ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò
ò

ò

ô

ô

ô

ô
ô

ô

ô

15 16 17 18 19 20 21 22
0.0

0.2

0.4

0.6

0.8

1.0

L � lB

E
nt

ro
py

D
if

fe
re

nc
e

(b)

FIG. 8. (a) Momentum polarization for the ground states |Ω1/τ 〉. The

dashed lines are the predicted values of ha − c
24

for the two ground

states. (b) Entanglement entropies S1 and Sτ , along with their dif-

ference Sτ − S1. The dashed line at log(ϕ) ≈ 0.48 is predicted for

the RR3 phase.
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system for comparison. Both spectra are taken at L = 21ℓB , w = 3ℓB .

Appendix B: Spin Polarization

We first clarify the expected signatures of spin-polarization when explicitly preserving Sz invariance at filling ν↑/↓ = 1
5 . If

|θ〉RR3
represents a RR3 state spontaneously polarized in the XY plane at angle θ, we force the state into the superposition

|Ψ〉 =

∫

dθ |θ〉RR3
. (B1)

This state has infinite bipartite entanglement, so cannot be represented by a MPS. However, as a variational method the DMRG

will do its best, so we expect that the 〈S+(r)S−(r′)〉 correlations will be large and nearly constant out to a distance which

will depend on the MPS bond-dimension χ, after which it will decay exponentially. (We define S+ = c†↑c↓, and S− to be its

Hermitian conjugate.) This effect (in orbital space) is shown for in Fig. 9 for L = 21ℓB , w = 3ℓB . In the χ → ∞ limit, we

expect the correlation function to approach the number-number correlator for the RR3 phase (shown in dashed line).

The entanglement spectrum provides further evidence. Recall that the entanglement spectrum can be sorted by the U(1)
charges (Q↑, Q↓). In Fig. 10 we show the entanglement spectrum for a 5× 5 grid of (Q↑, Q↓) sectors. For constant Q, the line

Q↑+Q↓ = Q contains many copies of the charge Q RR3 spectrum, up to some cutoff |Q↑−Q↓| < Smax
z (χ) that depends on χ.

This is because in order to support long-range XY correlations, there must be very large fluctuations in Sz across any bipartition

of the system. The entanglement spectrum of a symmetry broken phase was discussed in Ref. 71, where it was shown that the

spectrum contain a “tower of states” associated with the broken symmetry; the many identical copies of RR3 we find is this

tower of states.

We also note that similar computation was perform for ν = 13
5 and we also found evidence for spontaneous spin-polarization.
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spectrum is obtained by exact diagonalization and plotted relative

to the average energy of the system. Black symbols denote levels

belonging to K = 0 sector.

Appendix C: Exact diagonalization: effects of finite well-width

and torus aspect ratio

We showed in Sec. II and VI that finite width stabilizes

the homogeneous fluid phase. In Fig. 11(left) we systemati-

cally study the effect of well width on the energy spectrum (in

particular, the topological ground state degeneracy) via exact

diagonalization. We consider a hexagonal torus threaded by

NΦ = 25 and NΦ = 30 flux quanta.

For a smaller system (NΦ = 25), the topological degener-

acy is not well-resolved for zero width due to the mixing with

a higher level belonging to K = 0 sector (black symbols). In

this case, the main effect of non-zero w/ℓB is to lift the spuri-

ous level in energy, leaving a robust two-fold degenerate man-

ifold of ground states. The gap separating these two quaside-

generate states from the rest of the spectrum further widens

as w/ℓB is increased. At the same time, the overlap with the

model Read-Rezayi state slightly increases as a function of

width (not shown). For a larger system (NΦ = 30), the two-

fold degeneracy appears to be present already for zero width,

but it gets better resolved for moderate widths w/ℓB ≈ 1.7.

In Fig. 12(top) we show the effect of changing the geome-

try of the torus unit cell. We consider a rectangular Lx × Ly

torus in this case, whose area is fixed due by the condition

LxLy = 2πℓ2BNΦ. By changing one of the linear dimen-

sions of the torus (Lx), we can drive a transition between the

homogenous phase and the CDO. In Fig. 12, Lx ≈ 11ℓB cor-

responds to an isotropic torus (Lx = Ly) where the ground

state is approximately two-fold degenerate and belongs to the

Read-Rezayi phase. Beyond Lx ≈ 19ℓB , the system evolves

towards another, much deeper, energy minimum, which was

identified in Sec. VI with the CDO phase. The difference in

ordering between the two phases is captured by the pair corre-

lation function g(r) =
LxLy

Ne(Ne−1) 〈δ(r −Ri +Rj)〉 shown in

Fig. 12(bottom). Unfortunately, because the area of the torus

must be preserved as we change Lx, this implies that corre-

lations along the y-direction in the ground state of the sys-

tem at Lx ≈ 19ℓB are artificially truncated because of small
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(bottom row) of the system. Energy spectrum is obtained by exact

diagonalization of the rectangular torus with NΦ = 20 flux quanta,

and black symbols denote levels belonging to K = 0 sector. Varying

Lx induces charge density order in the ground state, as seen in the

pair correlation function g(r) for several values of Lx (bottom).

Ly . Therefore, the CDO ground state in this case is likely not

faithfully reproduced due to finite-size effects and has signif-

icantly less entanglement than what we found by DMRG in

Sec. VI.

Appendix D: defect-DMRG

Here we briefly discuss the method use to generate pinned

anyons. The iMPS ansatz for a single anyon excitation was

discussed in Ref. 32. Because the anyons are charged, in the

absence of a pinning potential the single-anyon states form a

Landau level. It is convenient to study the anyons in the Lan-

dau gauge so that anyon a forms a plane wave with momen-

tum k around the cylinder and is localized near x ∝ k
ℓ2B
L along

the length. This choice allows us to conserve momentum in

the DMRG simulations (interestingly, k is actually fractional

because of the topological spin of the anyon). After DMRG

we obtain single-anyon states |k〉a; just like a Landau level,

their energy is independent of k, and different k are related

by a magnetic translation Tx along the length of the cylinder.

The energy Ea reported in the main text is the energy of |k〉a
relative to the ground state, combined with the interaction of

a point-charge with a neutralizing background.

We caution that we have not performed finite size scaling of

the gaps. If one is familiar with gap calculations on the sphere,

this might seem problematic: on a sphere with N electrons,
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the corrections are of order 1/N and it is imperative to ex-

trapolate gaps in 1/N . However, the absence of curvature on

the cylinder leads to a much more favorable scaling. We can

show that if in the thermodynamic limit, the quasiparticle den-

sity is bounded by an exponential tail, our estimate of the gap

will converge exponentially quickly in the cylinder circumfer-

ence to its Coulomb value. (Strictly speaking, for a Coulomb

interaction the quasiparticles will have 1/r5 tails, but this will

lead to weak corrections.) For comparison, if we apply the

procedure to the integer quantum Hall effect at the same cir-

cumference (L = 21ℓB) and precision as the results quoted

in the text, we obtain a quasihole energy of E ≈ 1.2531; the

exact result is
√

π/2 ≈ 1.25331.

To pin the anyons in 2D we need to introduce a pinning

potential φ(x, y), but it is too expensive to work in the full

Hilbert space without conserving momentum. In the limit of

a weak pinning potential we can use first-order degenerate

perturbation theory and project φ into the variational space

spanned by the anyonic Landau level {|k〉a}. We compute the

many-body matrix elements Heff
kk′ = 〈k′| φ̂ |k〉a using stan-

dard MPS techniques, diagonalizeHeff, and compute the real-

space density of the lowest energy state
∑

k Ψk |k〉a.

The total energy of the pinned excitation is the energy Ea

reported in the main text plus the potential energy Heff from

the pin. For a width 2ℓB Gaussian, the pin lowers the en-

ergy of the non-Abelian e
5τ excitation by 85% more than the

Abelian e
5 ; for a width 6ℓB Gaussian, the difference is 25%.
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