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ABSTRACT

The bacteriophage j pM promoter is required for
maintenance of the j prophage in Escherichia coli,
as it facilitates transcription of the cI gene, encod-
ing the j repressor (CI). CI levels are maintained
through a transcriptional feedback mechanism
whereby CI can serve as an activator or a repressor
of pM. CI activates pM through cooperative binding
to the OR1 and OR2 sites within the OR operator,
with the OR2-bound CI dimer making contact with
domain 4 of the RNA polymerase p subunit (p4). Here
we demonstrate that the 261 and 287 determinants
of the C-terminal domain of the RNA polymerase
a subunit (aCTD), as well as the DNA-binding
determinant, are important for CI-dependent activa-
tion of pM. We also show that the location of aCTD
at the pM promoter changes in the presence of CI.
Thus, in the absence of CI, one aCTD is located on
the DNA at position �44 relative to the transcription
start site, whereas in the presence of CI, aCTD is
located at position �54, between the CI-binding
sites at OR1 and OR2. These results suggest
that contacts between CI and both aCTD and p
are required for efficient CI-dependent activation
of pM.

INTRODUCTION

Bacteriophage l is a temperate phage which can enter one
of two alternative developmental pathways, lytic or
lysogenic, upon infection of its host, Escherichia coli
(1,2). When the lysogenic pathway is chosen, phage DNA
is incorporated into the E. coli genome, forming a

prophage that can be maintained in this state for many
cell generations. Stable maintenance of the prophage
is achieved through the action of the phage-encoded
repressor, the l repressor (CI), which both represses the
lytic promoters, pL and pR, and stimulates transcription of
its own gene from the pM promoter (3). The pR and pM
promoters are divergently arranged with their start sites
separated by only 82 bp. Both promoters are regulated by
the binding of CI dimers to three related 17-bp sequences,
OR1, OR2 and OR3, located at �74 to �58, �50 to �34
and �27 to �11, respectively, with respect to the tran-
scription start site at pM. A CI dimer bound at the high-
affinity operator, OR1, acts as a repressor of the pR
promoter but also stabilizes the binding of a second CI
dimer to a lower-affinity operator, OR2, and the second
dimer, in turn, interacts with RNA polymerase (RNAP)
to stimulate transcription from pM above basal levels
(3,4). This stimulation occurs at the isomerization step (kf)
in the transcription initiation pathway that leads to open
complex formation (5,6). At higher concentrations, CI
also binds to OR3, thereby repressing pM (7).
Each CI monomer comprises an N-terminal DNA-

binding domain (residues 1–92) and a C-terminal oligo-
merization domain (residues 132–236) connected by an
interdomain linker known as the ‘hinge’ region (8).
Detailed structural information is available for the
isolated N-terminal and C-terminal domains (9–13). The
oligomerization domain participates in dimerization of
CI monomers and is also involved in weaker cooperative
interactions between pairs of dimers bound to adjacent
operator sites. The nature of both of these types of
interaction have been elucidated by X-ray crystallography
(12,13). It has also been shown that repressor tetramers
(i.e. pairs of dimers) bound at OR1–OR2 and OL1–OL2
can interact through their oligomerization domains over
a distance of �3 kb, forming an octamer that enhances
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repression of pR (13–15). The N-terminal domain of CI
contains a DNA-binding helix-turn-helix motif which is
responsible for operator recognition. In addition, residues
exposed on the first helix (specifically E34 and D38)
generate a negatively charged patch which, in the case of
the downstream subunit of the CI dimer bound to OR2, is
involved in interactions with positively charged residues
(R588, K593 and R596) on the surface of domain 4 of the
RNAP s70 subunit (s4) during activation of pM (6,16–23).
For this reason, CI is classified as a Class II activator,
along with other activators which bind to sites over-
lapping the �35 region and, in most cases, activate
transcription by contacting s4 (22,24,25).
At many bacterial promoters, the C-terminal domain of

the RNAP a subunit (aCTD) interacts with upstream
promoter DNA, the RNAP s70 subunit and/or transcrip-
tion activator proteins (24,26). These interactions are
mediated by determinants on the surface of aCTD and are
facilitated by the presence of a flexible linker connecting
aCTD to the N-terminal domain (27–29). For example,
residue 265, and neigbouring residues, contribute to the
265 determinant, which is responsible for interactions with
DNA (30–33). Similarly, residue 261 and neighbouring
residues contribute to the 261 determinant, that can
contact s4 (34–36), whereas the side chains of valine 287
and neighbouring residues form a surface-exposed patch,
the 287 determinant, which interacts with an activatory
surface, AR1, on CRP (cyclic AMP receptor protein) and
with other activators (33,34,37,38).
Previously, we have shown that the rpoA341 mutation,

leading to substitution of glutamate for lysine at position
271 within aCTD, decreases l prophage stability (39,40).
This observation could be explained by a defective
interaction between the mutant aCTD and the CI
repressor at pM. Therefore, the aim of this work was to
determine whether aCTD plays a role in CI-dependent
activation of pM. Our results show that determinants on
the surface of aCTD are required for fully efficient
activation by CI. In addition, we demonstrate that the
location of aCTD at pM is shifted further upstream in the
presence of CI. These observations suggest that CI makes
direct contact with aCTD at pM and that this interaction is
important for transcription activation by CI.

MATERIALS AND METHODS

Bacterial strains

The E.coli rpoAþ strain, WAM106 [araD139, �(argF-lac)
U169, �(his-gnd), thi, rpsL150, gltS0, flbB5301, relA1,
deoC1, rbsR], and its otherwise isogenic rpoA341 deriva-
tive (WAM105), bearing a chromosomal mutation that
results in the K271E substitution in the RNAP a
subunit (39), were used. Strains WAM140, WAM141
and WAM144, harbouring chromosomal rpoA261,
rpoA269 and rpoA287 alleles, encoding a subunits with
alanine substitutions at positions 261, 269 and 287,
respectively, are otherwise isogenic with WAM106 and
were isolated by a previously described procedure
(34,41,42). Strain WAM142, bearing the chromosomal
mutation rpoA271, which results in substitution K271A in

a was isolated as a Cymþ Melþ pseudorevertant of
strain WAM105. The E. coli strain, TAP90 (supE44,
supF58, hsdR, pro, leuB, thi-1, rpsL, lacY, tonA1,
recD1903::minitet) was used to titrate bacteriophage
containing the S7 amber allele (43).

Bacteriophage, plasmids and gene fusions

Bacteriophage lcI857S7 (44), which is unable to lyse
E.coli cells unless the supF suppressor allele is present,
was used for measuring prophage stability. For the
expression of mutant rpoA alleles for the aCTD alanine
scan analysis, derivatives of plasmid pHTf1a, encoding a
mutants with alanine substitutions at positions 255–271
and 302, and pREIIa, encoding a mutants with alanine
substitutions at the remaining positions in aCTD, were
used (27,30,37,45–47). Plasmids pGW857 and pAClcI,
both of which are p15A derivatives, were used to express
the phage l cI gene. pGW857 encodes the thermolabile
CI857 protein under control of the lac promoter (48) and
thereby allows for complete inactivation of repressor
function by growth at 428C. Plasmid pAClcI was used to
overexpress the wild-type cI gene from the lacUV5
promoter (49). For measuring the activity of the pM
promoter, two pM–lacZ fusion plasmids were used:
pAHA1, a pBR322-based replicon, and pTJSpM, an
RK2-based replicon. To construct pAHA1, the wild-type
pM promoter region (248 bp) was amplified by PCR using
the l plasmid pKB2 (50) as a template, and the following
primers: 50-GCC GGA TCC CCA TCT TGT CTG C and
50-TAT GCG TTG TTA GCT ATA GAC TCC TTA
GTA C (35 cycles of the following program were
performed: denaturation at 958C for 30 s, annealing at
55.48C for 30 s, extension at 728C for 30 s). The product of
the amplification was digested with BamHI and cloned
between the BamHI and SmaI sites upstream of the lacZ
gene of pHG86 (51). To construct pTJSpM, the EcoRI–
HindIII fragment containing the pM promoter was cut
from plasmid pEM9-ORP (52) and used to replace the
BamHI–EcoRI fragment of pTJSpI containing pI (53),
following treatment of both the vector and the promoter
fragment with T4 DNA polymerase. The pM promoter
present in pEM9-ORP (and pTJSpM) contains the wild-
type OR1 and OR2 operators, but OR3 is inactivated by
multiple mutations (TACAGCTGCAAGGGATA).
These changes (underlined) abolish CI binding but do
not alter the �35 or �10 sequences of the pM promoter.
pJMH1 is a pSC101 derivative carrying the lacIq and
kanamycin resistance genes (39). pRLGpMmut was
constructed by amplifying a DNA fragment containing
the phage l pM promoter using primers 50-GCC GAA
TTC GTA CAT GCA ACC ATT ATC-30 and 50-TTG
TAA GCT TAC GTT AAA TCT ATC ACC ACA AGG
G-30 (35 cycles of the following program were performed:
denaturation at 958C for 20 s, annealing at 508C for 30 s,
extension at 728C for 60 s). This fragment was ligated
between the HindIII and EcoRI sites of pRLG770 (54).
The second primer introduces a G to A point mutation at
�18 (underlined) which reduces binding of CI to OR3 and
consequent repression of pM (55).
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Measurement of the effect of mutant rpoA alleles
on CI-dependent activation in vivo

For the alanine scanning experiment (merodipoid),
expression of wild-type cI from pAClcI, and mutated
rpoA alleles from pHTf1a and pREIIa derivatives,
was simultaneously induced by addition of IPTG
(0.1mM final concentration) to cultures of WAM106
harbouring pJMH1 and pTJSpM growing at 378C. The
b-galactosidase activity was measured 1 h later. To assess
the effect of haploid rpoA alleles on CI-dependent
activation of pM, strains harbouring chromosomal
mutant rpoA alleles were transformed with pGW857 and
pAHA1, and cultures were grown at 438C to OD575¼ 0.2
[the cI857(ts) gene product is inactive under these
conditions and b-galactosidase activity is very similar to
that measured in cells devoid of pGW857; data not shown]
whereupon IPTG was added (0.05mM final concentra-
tion) and the culture was immediately shifted to 308C.
Following incubation at this temperature for 1 h the
b-galactosidase activity was measured. This induction
regime minimizes problems due to CI occupancy of OR3
present on pAHA1 (data not shown).

Measurement of b-galactosidase activity

The activity of b-galactosidase in bacterial cells was
measured according to Miller (56). Since we used a
multicopy lacZ fusion, the b-galactosidase activities were
calculated per plasmid copy number, estimated as
described previously (57), to compensate for any possible
copy number variation between strains. For the alanine
scanning experiment, bacteria were grown at 378C to
OD578¼ 0.2, induced with 0.1mM IPTG and, following
further incubation for 1 h, b-galactosidase assays were
performed. Results presented are averages of at least three
independent experiments and are shown with standard
deviations.

Measurement of the efficiency of prophage maintenance

l prophage maintenance in lysogenic E.coli strains was
estimated by measuring the efficiency of spontaneous
induction of a lcI857S7 prophage as described previously
(40). Briefly, samples (5ml) of exponential phase cultures
(OD578 0.2–0.5) of bacteria lysogenic for bacteriophage
lcI857S7, growing at 308C, were withdrawn and shaken
vigorously with chloroform (0.5ml) for 1min to release
progeny phage. Following centrifugation, liberated phages
were titrated on the suppressor strain, TAP90, at 378C.
Other samples, withdrawn at the same time as those
for phage titration, were centrifuged. Cell pellets were
resuspended in 0.9% NaCl and used for titration of
bacteria on LB agar at 308C. Finally, the number of
phages yielded per bacterial cell was calculated.

Protein purification and reconstitution of RNA polymerase

Plasmid pT7lcISa109His6 (21) was used for overproduc-
tion of C-terminally His-tagged CI protein, which
was purified as described previously (21). For the
reconstitution of RNAP, inclusion bodies of RNAP b, b0

and s70 subunits from strains XL1-Blue (MKSe2),

BL21(DE3)(pT7b0) and BL21(DE3)(pLHN12s), respec-
tively, were prepared as described previously (58). His-
tagged RNAP a subunits were prepared using plasmid
pHTT7f1NHa (58). Derivatives of pHTT7f1NHa carry-
ing mutant rpoA alleles were constructed by replacing the
HindIII–BamHI fragment, which encodes aCTD and the
interdomain linker, with the corresponding fragments
from derivatives of pHTf1a and pREIIa encoding the
appropriate alanine-substituted a mutants (see above)
or from pLAW2phs (encoding a containing the K271E
substitution) (39). Overexpression of the a subunits in
strain BL21(DE3), purification of a by Ni2þ-affinity
chromatography and reconstitution into RNAP were
performed essentially as described previously (30,58).
Purification of a subunits with single cysteine residues,
conjugation with Fe.BABE, and reconstitution into
RNAP was performed as described by Lee et al. (59).

In vitro transcription

Single round in vitro transcription reactions were per-
formed in a total volume of 20 ml in buffer containing
50mM KCl, 40mM Tris-HCl (pH 8.0), 10mM MgCl2,
1mM DTT, 100 mg/ml BSA and 30 ng linear template
DNA. Template DNA containing the pM promoter was
prepared by isolating the 1260-bp NdeI–EcoRI fragment
from plasmid pRLGpMmut. The 1313-bp NdeI–PstI
fragment from the same plasmid, containing the RNA I
gene, served as the internal control. The binding reaction
of CI (80 ng) to the DNA (30 ng) was carried out at 378C
for 10min, after which time in vitro reconstituted RNAP
was added and the incubation continued for a further
10min (this concentration of CI gave rise to �4-fold
activation of pM in the presence of wild-type reconstituted
RNAP (results not shown)). After the addition of
nucleotides (CTP, GTP and ATP, each to a final
concentration of 150 mM, UTP to 15 mM and 0.6 mCi
[a-32P]-UTP per reaction) and heparin to 50 mg/ml,
the samples were incubated at 378C for 15min and
the reactions were stopped by the addition of an equal
volume of 95% formamide containing 20mM EDTA,
0.05% bromophenol blue and 0.05% xylene cyanol.
The samples were separated by electrophoresis in 6%
polyacrylamide gels containing 46% urea in TBE buffer.
The gel was dried, and RNA bands were visualized and
quantified, following background subtraction, using a
PhosphorImager (Bio-Rad). Concentrations of RNAP,
calibrated to give the same amount of transcription from
the activator-independent RNA-I promoter, were: 46 nM
wild-type RNAP, 34 nM RNAP aK271E, 54 nM RNAP
aK271A, 13 nM RNAP D258A, 28 nM RNAP aE261A,
35 nM RNAP aR265A, 34 nM RNAP aV287A.

Fe�BABE-mediated hydroxyl radical footprinting

A 150-bp DNA fragment containing the l pM promoter
was amplified from bacteriophage l DNA by PCR using
primers 50-GCT TTA AGC TTA CGT GCG TCC TCA
AGC TGC-30 and 50-CCT GAA TTC ATG CAA CCA
TTA TCA CCG-30, cleaved with HindIII and EcoRI and
cloned into the vector pSR (60). A 220-bp AatII–HindIII
fragment was purified from the resultant plasmid
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(pSRpM) and labelled at the HindIII end with [g-32P]-
ATP and T4 polynucleotide kinase. The Fe�BABE-
mediated DNA cleavage reactions were carried out in a
reaction volume of 25 ml (5mM MgCl2, 100mM potas-
sium glutamate, 40mM HEPES pH 8.0, 50 mg/ml BSA,
10 mg/ml herring sperm DNA). Promoter DNA fragments
were incubated with CI protein (250 nM final concentra-
tion) at 378C for 10min. After 10min, RNAP holoenzyme
was added (600 nM final concentration) and incubated at
378C for 30min. Complexes were then challenged with
heparin (50mg/ml final concentration) for 1min at 378C
then DNA cleavage was initiated by the addition of 3mM
sodium ascorbate and 3mM hydrogen peroxide. The
reactions were incubated for 10min before being stopped
by the addition of thiourea and EDTA to final concentra-
tions of 7mM and 45mM, respectively. DNA was then
extracted with phenol/chloroform, precipitated with
ethanol and analysed by electrophoresis in a 6% denatur-
ing polyacrylamide gel. The gels were calibrated with
Maxam–Gilbert GþA ladders and analysed using a
PhosphorImager and Quantity One software (Bio-Rad).

RESULTS

Identification of aCTD determinants important
for CI-dependent activation of pM

To identify whether amino acid side chains on aCTD are
important for activation by CI, we used an alanine
scanning approach, exploiting a set of plasmids encoding
the RNAP a subunit in which residues 255–329 were each
changed individually to alanine. This approach has been
used to identify aCTD residues important for transcrip-
tion activation mediated by a number of different
activator proteins (34,37,38,41,53,61–63). These plasmids
were introduced into an E.coli rpoAþ strain carrying
a pM–lacZ fusion plasmid and inducible CI function.
The results show that, under conditions promoting CI

stimulation of pM, alanine substitutions at residues R255,
P256, D258, E261, S266, N268, C269, L270, V287 and
S299 in aCTD most strongly impaired the activity of pM
(i.e. activity �80% of that afforded by plasmid-encoded
wild-type a) (Figure 1A). The location of these residues in
the aCTD structure is shown in Figure 1B (the residues at
positions 266, 270 and 299 are buried in the aCTD
structure and are therefore not included in this figure).
Most of them are located on one side of aCTD and create
a patch on the surface of the domain, whereas V287 is
located on the opposite side of aCTD.

Effect of substitutions in aCTD on CI-dependent
activation of pM in vitro

To determine whether the effects of the alanine substitu-
tions on in vivo pM activity are direct, we measured the
efficiency of CI-mediated stimulation of pM in vitro, using
run-off transcription assays. RNAP was reconstituted
with the wild-type a subunit, and with some of the mutant
a subunits giving rise to a significant decrease in pM
promoter activity in vivo (i.e. a containing the 258A, 261A
and 287A substitutions). To confirm that R265, within
the aCTD DNA-binding determinant, does not play an

important role in CI-dependent activation of pM, RNAP
was also reconstituted with the R265A a subunit. In
addition, due to our previous observation that the K271E
substitution in a causes decreased prophage stability, we
included RNAP reconstituted with the 271E and 271A a
subunits in the analysis.

Our results are in general agreement with the in vivo
results, i.e. the abundance of pM-derived transcripts was
significantly decreased when RNAP was reconstituted
with a containing the 258A, 261A and 287A substitutions,
whereas the efficiency of transcription obtained using
RNAP reconstituted with a harbouring the 265A
substitution was comparable to that of wild-type RNAP
(Figure 2). Consistent with its effect on prophage stability,
RNAP reconstituted with 271E a was significantly less
active at the pM promoter in vitro. This was also the
case with 271A a, although alanine substitution at this
position does not exert a negative effect at pM in vivo
(Figure 1A).

Effect of substitutions in aCTD determinants important
for CI function in vivo in the absence of wild-type a

In vivo transcription assays. To investigate the full effect
of amino acid substitution within aCTD on CI-dependent
activation of the pM promoter in vivo, we constructed
E. coli mutant strains harbouring mutations within the
chromosomal rpoA gene that result in alanine codon
substitutions at positions 261, 269, 271 and 287 (rpoA261,
rpoA269, rpoA271 and rpoA287, respectively) [it was not
possible to transfer to the E.coli chromosome alleles
encoding substitutions at positions 265, 268 or 299 within
the DNA-binding determinant (34; M.S.T., unpublished
data)]. The mutant strains were transformed with a
plasmid containing inducible CI function and a plasmid
harbouring a pM–lacZ fusion, and the effect of induction
of cI expression on pM activity was measured.

Under these conditions we observed �5-fold activation
of transcription from pM in the rpoAþ host (Table 1),
which compares favourably with previously reported
induction ratios (19,20). However, in strains harbouring
the mutant rpoA alleles, CI-dependent activation of pM
was only 45–60% as efficient as in the wild-type strain,
with the C269A substitution causing the most profound
effect (Table 1). By way of comparison, the pM activity in
the strain harbouring the rpoA341 allele, encoding the
K271E substitution in a (39,40), was �55% as efficient as
in the wild-type strain (Table 1). These results confirm the
important roles played by the 261 and 287 determinants
and the DNA-binding region of aCTD in CI-dependent
activation at pM.

� Prophage stability. As maintenance of a l prophage
only requires CI function, we investigated whether
substitutions within aCTD which impair CI-dependent
activation of the pM promoter also impair l prophage
maintenance. To do this, we compared the efficiency of
spontaneous induction of a lcI857S7 prophage in hosts
harbouring wild-type or mutant rpoA alleles on the
chromosome. As expected, we found that alanine sub-
stitution at positions 261, 269, 271 and 287 in a resulted in
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a higher frequency of spontaneous induction of the l
prophage relative to the wild-type host (3–8-fold
increase, depending on the position of the substitution)
(Table 1). Consistent with the pM promoter activity
measurements, the prophage was most unstable in the
host carrying the rpoA269 allele. As shown previously, we
measured a 5-fold increase in spontaneous induction of l
prophages in the rpoA341 mutant relative to the wild-type
(Table 1; 40). In support of the hypothesis that decreased
prophage stability was due to decreased CI levels,
overexpression of the cI gene from plasmid pAClcI
resulted in equally efficient maintenance of the prophage
in the wild-type and in all tested mutant strains (data not
shown).

Location of the aCTD–DNA interactions
at the pM promoter

To determine the location of aCTD at the
pM promoter we exploited the DNA cleavage reagent,
iron [S]-[p-bromoacetamidobenzyl] ethylenediaminete-
traacetate (Fe�BABE), that can be attached to cysteine
residues introduced at specific locations within aCTD
(59,64,65). Thus, we derivatized aCTD with Fe�BABE by
employing a functional a subunit in which cysteine was
introduced at position 273, and used the derivatized
product to reconstitute RNAP (53,59).
Analysis of DNA scission products following forma-

tion of the RNAP–Fe�BABE–pM complex revealed that,
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Figure 1. Identification of aCTD residues important for CI-dependent activation of pM in vivo. (A) Strain WAM106, containing plasmids pTJSpM,
pJMH1 and pAClcI, was transformed with each of a set of plasmids encoding the RNAP a subunit in which each residue of aCTD was changed
individually to alanine. Cultures were grown at 378C to OD�0.2 in LB medium containing appropriate antibiotics, at which time IPTG was added to
a final concentration of 0.1mM. After 60min induction of a and CI synthesis, the b-galactosidase activities were determined. The activities are
presented relative to the activity of the strain harbouring plasmid pLAW2 encoding wild-type a (100%¼ 2300 Miller units) and are averages of at
least three independent experiments. Grey bars indicate positions when alanine occurs naturally. Black bars correspond to the residues in which
alanine substitution causes a decrease in activity of �20% compared to wild-type a. (B) Structure of aCTD, showing in black the residues that are
important for CI-dependent activation of pM. Residue K271 is highlighted in grey for reference.
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in the absence of CI, cleavages occur in clusters separated
by 10–11 bp, with the strongest signals occurring near
position �44 relative to the transcription start site
(Figure 3). This is consistent with the fact that pM serves

as a weak promoter in the absence of CI (66). The pattern
of cleavages is similar to that found at other promoters
that are active in the absence of transcription activators,
such as rrnB P1 or CC(�61.5)-p12T (59), and suggests
that one of the two a subunits binds to the first available
minor groove upstream of the �35 region while the second
aCTD binds to successive minor grooves (i.e. �54, �65
and �75, with �54 being the most favoured position)
(Figure 3). This is in accordance with previously published
results, which suggested that the a subunit contacts
sequences upstream of pM in a sequence non-specific
manner (67). In the presence of CI, the strongest signals
were observed near position �54, which is located in the
minor groove between two CI dimers bound to major
grooves within OR2 (�34 to �50) and OR1 (�58 to �74)
(68) (Figure 3). Therefore, binding of CI results in
re-positioning of aCTD at the pM promoter.

DISCUSSION

The location of the stimulatory CI-binding site (OR2) at
pM (see Figure 3B) suggests that CI activates this
promoter by a Class II-type mechanism (22,24,69).
Consistent with this, it has been shown that a negatively
charged patch on the surface of the CI DNA-binding
domain, located in helix 1 of the HTH motif, stimulates
transcription from pM through making contact with a
positively charged patch on s4 (23). In this report, we
have demonstrated that determinants on aCTD also
contribute to CI-dependent activation of pM. Alanine
scanning analysis indicated that some of the surface-
exposed residues on aCTD which are required for efficient
CI-dependent activation are located within or near the
previously identified 261 determinant (i.e. R255, P256,
D258, E261 and K271) and the 287 determinant (V287).
These determinants are located on opposite sides of aCTD
and have been shown to play roles in activator-dependent
transcription at other promoters. It is intriguing that the
261 determinant is implicated in CI-dependent activation,
as it has previously been shown to play a role only at
Class I CRP-dependent promoters and at some UP
element-dependent promoters, where it interacts with s4

(34–36). At other Class II promoters, where aCTD is not
in a position to interact with s70, the 261 determinant does
not play a role in transcription activation (37). Our results
with Fe�BABE-derivatized RNAP show that, in the
presence of CI, aCTD is located close to position �54 at
pM, i.e. between OR1 and OR2, and therefore is also not in
a position to contact s. Therefore, the simplest explana-
tion for our observations is that the 261 determinant is
involved in contacts with CI.

The 287 determinant has been shown to interact with
CRP at Class I and Class II CRP-dependent promoters
and there is evidence that it interacts with MelR at the
pmelAB promoter (34,37,38). Our results suggest that CI
is another activator that utilizes this determinant.
The involvement of residues on opposite sides of aCTD
in CI-dependent activation could occur if aCTD is
sandwiched between the two CI dimers, as demonstrated
by the Fe�BABE analysis, with each determinant
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Figure 2. Identification of aCTD residues important for activation of
pM by CI in vitro. (A) The efficiency of transcription from pM in the
presence of reconstituted mutant RNAPs is shown in a typical
transcription gel. Single-round in vitro transcription experiments were
performed using linear template DNA containing pM or specifying
RNA-I, together with CI and RNAP reconstituted with hexahistidine-
tagged a derivatives containing alanine substitutions at the positions
indicated. The activities of purified RNAPs were normalized at the
RNA-I promoter. The pM-dserived cI run-off transcript is 141 nt in
length and RNA-I is 108 nt. (B) The efficiency of CI-dependent
transcription from pM in the presence of each reconstituted mutant
RNAP. The results are from three independent experiments. Values
(with standard deviation) are expressed as percentages of the transcript
yield obtained with wild-type RNAP.

Table 1. Effect of different chromosomal rpoA alleles on CI-dependent

activation of pM and on l prophage stability

Chromosomal rpoA
allele (a subunit)

Activation
of pM by CIa

Relative frequency of
prophage inductionb

rpoAþ (a wild-type) 4.9 1
rpoA341 (a K271E) 2.7 4.9
rpoA271 (a K271A) 2.7 4.7
rpoA261 (a E261A) 2.9 2.7
rpoA269 (a C269A) 2.2 7.9
rpoA287 (a V287A) 3.0 5.5

ab-galactosidase activities were measured in cells harbouring pAHA1
and pGW857 at 438C (basal pM activity) and 1 h after IPTG addition
(to 0.05mM) and simultaneous shift to 308C (CI-stimulated pM
activity), and calculated per single copy of pAHA1 per cell. The
values presented in the table represent the induction ratios and were
calculated by dividing the value for the stimulated pM activity by the
value for the basal activity. bFrequency of spontaneous induction of
lcI857S7 prophage was estimated. Value¼ 1 corresponds to a yield of
1.25� 10�5 phages (PFU) per cell. Presented values in both columns
are mean results of three experiments. In all cases the standard
deviation was below 15%.
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interacting with a different CI dimer. This is analogous to
the situation at the artificial Class II promoter,
ML(�74.5), which contains tandem CRP sites centred
at �41.5 and �74.5. At ML(�74.5), one aCTD is
recruited to the DNA between the two CRP-binding
sites, whereas the other aCTD binds to DNA upstream of
the CRP dimer bound at �74.5 (70). Furthermore, the 261
and 287 determinants of the aCTD sandwiched between
the CRP dimers are likely to be aligned along the axis of
the DNA, with the 287 determinant interacting with AR1
of the promoter-proximal CRP, as shown for the simple
Class II CRP-dependent promoter CC(�41.5) (37,59).
Although the location of the second aCTD at pM was not
addressed in this investigation, one intriguing possibility is
that, in a situation where OL (the CI operator overlapping
the pL promoter) is also present, the second aCTD binds
OL between the pair of CI dimers bound to the OL1 and
OL2 sites.

Our results also revealed that alanine substitution of
amino acids S266, N268, C269, L270 and S299 impaired
CI-dependent activation. These residues are located within
or near the DNA-binding surface of aCTD (33,71)
(although L270 does not participate directly in DNA
binding, the side chain is buried within the structure of
aCTD and therefore substitution by alanine may cause
a conformational change in the DNA-binding region).

The DNA-binding determinant plays a role in UP
element-dependent transcription initiation and at many
activator-dependent promoters (24,30,34,37,53). Its invol-
vement in CI-dependent transcription activation suggests
that an interaction between aCTD and the promoter is
important for CI-dependent activation. The results of
the Fe.BABE analysis suggest that the important
aCTD–DNA interaction is likely to be due to the aCTD
positioned near �54. It is noteworthy that the side chain
of R265, which plays an important role in DNA binding
at many promoters, does not appear to be required for
efficient CI-dependent activation. However, it has been
shown previously that the contribution of this residue to
DNA binding at some activator-dependent promoters is
minimal (34). On the other hand, the broader Fe.BABE
cleavage pattern that occurs at �54 in the presence of
bound CI, in comparison to the more focussed cleavage at
�44 in the absence of CI, may indicate that aCTD is not
in intimate contact with the DNA when CI is present (i.e.
aCTD may be interacting with CI ‘off the DNA’) or that
the interaction of the DNA-binding determinant with the
promoter is different to that which occurs at many other
promoters. One possible reason for this is that, for steric
reasons, aCTD may not be able to readily access the �54
region on the same side of the DNA as CI (Figure 4).
Firstly, the diameter of aCTD (measured from the 261

Figure 3. Location of aCTD–DNA interactions at the pM promoter. (A) An autoradiogram of a polyacrylamide sequencing gel showing DNA
cleavage resulting from attack triggered by RNAP reconstituted with Fe�BABE-derivatized a subunits. pM promoter DNA was end-labelled on the
template strand and incubated with or without CI and RNAP reconstituted with a derivatized with Fe�BABE at position 273. (B) DNA sequence of
the divergently arranged pM and pR promoters, showing Fe�BABE-induced cleavage positions in the presence or absence of CI protein indicated by
black or grey stars, respectively. Transcription startpoints (þ1 position) are indicated by bent arrows. The �35 and �10 hexamer sequences of the pM
and pR promoters are shown in boxes. Base pair co-ordinates in A and B are numbered with respect to the pM transcription startpoint.
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determinant to the 287 determinant) is �25 Å. Although
the distance between the two operators, OR1 and OR2, is
�24 Å (based on a rise of a 3.4 Å per bp), the separation
between the two CI dimers is likely to be less than this.
This is due to the fact that the adenine tract between the
two operator sites contains a static bend of the order of
188, which becomes further bent by 15–188 upon binding
CI, in a large part due to untwisting of the DNA
(13,72–74). Access to the DNA between OR1 and OR2
may be further restricted by the cooperative interactions
which occur between the C-terminal oligomerization
domains of CI (12,13,73).
The other important observation from this investigation

is that the location of aCTD at pM is different in the
presence and absence of CI. In the absence of CI, one
aCTD is located adjacent to s70 at a site that overlaps
OR2. In the presence of CI, OR2 is occupied by CI and
aCTD is relocated to a DNA site located between OR1
and OR2 (Figure 4). This observation, together with the
analysis of a mutants, is consistent with a model in which
activation of RNAP at pM is mainly the result of the
interaction between CI bound at OR2 and s70, as
previously proposed (19–22). The role of the aCTD–CI
interaction may be to stabilize the interaction of aCTD
with DNA upstream of OR2, facilitating CI-dependent
stimulation of the kf step.
CI is not the only Class II transcription activator to

make contact with aCTD in addition to s4. Both MelR

and CRP (at the galP1 promoter) also make a specific
contact with aCTD, and this interaction contributes to the
overall stimulatory activity of the regulatory protein
(24,38,75,76). Other examples of so-called ‘ambidextrous’
activators include LuxR and the phage Mu Mor protein
(76–79). In such cases, aCTD binds to the first available
minor groove upstream of the activator binding site, with
a preference for binding to the same face of the DNA as
RNAP (38,53). In the case of pM, the first available minor
groove is located between the two CI dimers bound at OR1
and OR2.
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