

This is a repository copy of Open-source bandstructure and transport models of semiconductor nanostructures for the Quantum Wells, Wires and Dots (QWWAD) simulation suite.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/88251/</u>

Version: Accepted Version

Conference or Workshop Item:

Valavanis, A, Grier, A, Cooper, JD et al. (2 more authors) (2015) Open-source bandstructure and transport models of semiconductor nanostructures for the Quantum Wells, Wires and Dots (QWWAD) simulation suite. In: UK Semiconductors 2015, 01-02 Jul 2015, Sheffield Hallam University, UK.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Open-source bandstructure and transport models of semiconductor nanostructures for the Quantum Wells, Wires and Dots (QWWAD) simulation suite

<u>Alexander Valavanis</u>^{1,*} Andrew Grier¹, Jonathan D. Cooper¹, Craig A. Evans¹, and Paul Harrison²

¹ School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.
² Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, U.K.
*Contact Email: a.valavanis@leeds.ac.uk

A wide range of high-quality software is available for simulating the band-structure, charge transport and optoelectronic properties of semiconductor nanostructures (e.g., [1]). However, the vast majority is supplied under a proprietary license and its source code cannot be studied, modified or redistributed by its users. The recently created open-source project, *Quantum Wells, Wires and Dots* (QWWAD) [2] is intended as a free, non-commercial community-driven resource, which accompanies the new 4th edition of the eponymous textbook [3]. We describe the new tools for bandstructure and transport modelling that have been included in the latest release (v1.3) in addition to new software infrastructure to enable robust community-led development.

Fig. 1: (a) Self-consistent Poisson–Schrödinger solution for a single module of a THz QCL using a tight-binding boundary conditions. (b) Lowest conduction and highest valence band states computed using an empirical pseudopotential model for a periodic array of Ge quantum dots in a Si host crystal. (c) Impurity scattering rates as a function of subband separation in infinite quantum wells of varying width.

New functionality includes efficient numerical solvers for the Schrodinger/Poisson equations, enabling self-consistent computation of the bandstructure in generic 1D potentials [e.g., Fig. 1(a)], impurity and excitonic states and annealed systems. Bandstructure in quantum wires and dots can be found using quasi-analytical models or empirical pseudopotential calculations [Fig. 1(b)]. New carrier-scattering functionality is provided, including interactions with impurities [Fig. 1(c)], acoustic/LO phonons, interface roughness, alloy disorder and carrier–carrier processes. A one-dimensional thermal model enables the temperature profile to be computed for arbitrary multi-layered structures, in response to pulsed or continuous power sources.

Infrastructure has been put in place for community-driven development, coordinated through a project on the Launchpad website [3]. A three-tiered hierarchical software architecture has been developed, allowing considerable flexibility in its usage, including an Application Programmers Interface (API) in C++, a set of ready-made "building-block" programs for running elemental, common modelling tasks and a set of example UNIX scripts suitable for non-expert users.

- [1] Nextnano, <u>http://www.nextnano.de</u>
- [2] Quantum wells, wires and dots (QWWAD), http://launchpad.net/qwwad
- [3] P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, 4th Ed. Wiley, Chichester (2015).