
This is a repository copy of Full Implementation of an Estimation of Distribution Algorithm 
on a GPU.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/88233/

Version: Submitted Version

Conference or Workshop Item:
Poulding, Simon Marcus, Staunton, Jan Peter and Burles, Nathan John orcid.org/0000-
0003-3030-1675 (2011) Full Implementation of an Estimation of Distribution Algorithm on a
GPU. In: GECCO 2011, GPUs for Genetic and Evolutionary Computation Competition, 12-
16 Jul 2011. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Implementation of an Estimation of Distribution
Algorithm on a GPU

CIGPU GPU Competition Entry

Simon Poulding
Department of Computer

Science
University of York

Heslington, York, UK

smp@cs.york.ac.uk

Jan Staunton
Department of Computer

Science
University of York

Heslington, York, UK

jps@cs.york.ac.uk

Nathan Burles
Department of Computer

Science
University of York

Heslington, York, UK

nburles@cs.york.ac.uk

1. INTRODUCTION
We submit an implementation of an Estimation of Dis-

tribution Algorithm – specifically a variant of the Bayesian
Optimisation Algorithm (BOA) – using GPGPU. Every as-
pect of the algorithm is executed on the device, and it makes
effective of use multiple GPU devices in a single machine.
As for other EDAs, our implementation is generic in that it
may be applied to any problem for which solutions may be
represented as binary strings. For the purpose of this paper,
we apply it to a particular problem known to be difficult for
metaheuristic algorithms due to high interdependency be-
tween variables: finding the lowest energy state of an Ising
Spin Glass. We show that our GPU implementation demon-
strates a speedup in excess of 80x compared with an equiv-
alent CPU implementation. To our knowledge, this is the
first EDA to be implemented fully on the GPU.

2. BACKGROUND AND PREVIOUS WORK

2.1 Estimation of Distribution Algorithms
Estimation of Distribution Algorithms (EDAs) are population-

based probabilistic search techniques that search solution
spaces by learning and sampling probabilistic models [4].
EDAs iterate over successive populations of candidate solu-
tions to a problem. Each population is sometimes referred to
as a generation. To construct a successor population, EDAs
build a probabilistic model of promising solutions from the
current population and then sample that model to generate
new individuals. The newly generated individuals replace
individuals in the current population to create the new pop-
ulation.

Algorithm 1 Pseudocode for basic EDA

P = InitialPopulation();
while not(termination criterion) do

evaluate(P);
S = SelectPromisingSolutions(P);
M = UpdateModelUsingSolutions(S);
N = SampleFromModel(M);
P = ReplaceIndividuals(N);

end while

The pseudocode of a basic EDA algorithm is shown in Al-
gorithm 1. Readers who are familiar with Genetic Algorithm
(GA) literature can view EDAs as similar to a GA with the

crossover and mutation operators replaced with the model
building and sampling steps. EDAs can be seen as strate-
gically sampling the solution space in an attempt to find a
“good” solution whilst learning a model of “good” solutions
along the way. EDAs are sometimes referred to as Prob-
abilistic Model-Building Genetic Algorithms (PMBGAs), a
full overview of which can be found in [4].

For this entry, we have implemented a variant of the Bayesian
Optimisation Algorithm (BOA) [3] on the GPU. BOA uses
Bayesian networks to model the relationship between values
in binary string solutions. In order to construct the Bayesian
network given a set of desirable binary strings, a greedy net-
work construction algorithm is used that adds edges between
parents and child nodes (where each node represents a single
binary value). Our implementation makes use of K2 metric
[1] to determine the next edge to add in order to derive a
model that best represents the “good” solutions in the cur-
rent population.

Restricted Tournament Replacement (RTR) is employed
as part of our implementation to encourage diversity in the
population during the course of any given search. To replace
a solution with a new solution i in a population P during
the replacement phase of our EDA, RTR chooses a random
subset S from P , then finds the “most similar” solution j

to i in S, where similarity is determined by the Hamming
distance of the binary string representations. If i is better
than j, then replace j with i in P .

2.2 Parallelisation of EDAs
Existing work that parallelises EDA model building across

CPUs makes use of an ancestral node ordering to allow
the model to be built independently for each node in the
Bayesian network [2]. The ordering is generated randomly
at each iteration and specifies which nodes can be parents
of a given child node, and thus avoid cycles in the network
when the model is constructed in a distributed manner. We
make use of this ancestral node ordering in our implemen-
tation.

2.3 Ising Spin Glasses
Our chosen example problem are Ising Spin Glasses (ISG),

which are often used as benchmark problems for sophisti-
cated EDAs such as BOA [5]. ISGs are a mathematical
model used in statistical physics. A number of particles ex-
ist in a spin-up (Si = +1) or spin-down (Si = −1) state. The
particles are typically arranged in a lattice: our implemen-



tation considers toroidal 2D and 3D lattices. Each particle
is coupled with its immediate neighbours in the lattice ac-
cording to coupling constants, J , which also take values of
−1 or +1. The free energy, E, of the particles is derived
using the equation:

E = −

∑

i,j

JijSiSj (1)

where sum occurs over all neighbouring particles Si and Sj .
The objective is to find the lowest energy configuration

of particle spins given a set of coupling constants (which in
our case are randomly assigned). This problem is particu-
larly difficult for many optimisation techniques owing to the
high interdependency of particle spins, and thus the non-
decomposability of the problem.

3. IMPLEMENTATION
The EDA algorithm is implemented entirely on the GPU

device under the control of a CPU process. The chosen fit-
ness function for our chosen example of Ising Spin Glasses is
also implemented on the GPU, with all processing occurring
on the GPU under the control of a CPU process. The algo-
rithm is implemented using the CUDA 4.0 SDK, and makes
use of the Thrust library for standard operations such as
sorting.

The model building phase of the algorithm is by far most
computationally intensive step for large problem sizes. It is
this step that can be distributed to multiple GPUs, allowing
for near linear speed up over a single GPU card implemen-
tation. The work is distributed proportionally according to
the computational power of the GPGPU capable cards, so
as to avoid a slow card limiting overall performance.

This step takes advantage of the ancestral node ordering
described in section 2.2 to enable the model to be built in-
dependently for each node in the Bayesian network. In the
GPU implementation, each CUDA block is assigned to the
model building for one node, resulting in significant paral-
lelisation of this step and thereby effective utilisation of the
GPU.

As well as scaling to use multiple GPU devices, we also
believe the implementation scales to different cards architec-
tures since parameters, such as grid and block topologies, are
derived based on queried device properties.

4. EVALUATION
In order to show the scaling properties of the GPU imple-

mentation, we compare to an equivalent CPU implementa-
tion. The problem used is the 3D Ising Spin Glass problem
described in section 2.3. We performed experiments on two
parameters, the problem size and the population size. The
results are shown in the tables below, and are calculated
from an average of 10 trials (runs) for each parameter combi-
nation. The CPU implementation used 4 threads, whilst the
GPU implementation used 4 Tesla cards. Any results with a
* next to them are the result of one experiment since it was
impractical to run these lengthy trials multiple times. The
pertinent parameters are as follows unless specified in the
tables: Spin Glass Size: 16x16x16, Population Size: 1024,
Maximum Parents: 4, Iterations: 20, Best Population Size:
1

8
Population, Number Replaced: 1

4
Population, RTR Tour-

nament Size: 16.

Table 1: Problem Size Results
Problem Size Results

Problem Size 8 12 16 24
GPU 0.3s 1.08s 4.45s 41.14s
CPU 2.37s 23.46s 217.22s* 3391.25s*

Speed up 7.9x 21.72x 48.81x 81.82x

Table 2: Population Size Results

Population Size Results
Max Parents 512 1024 2048 4096
GPU 2.75s 4.55s 4.98s 9.98s
CPU 77.16s 208.56s 307.64s -

Speed up 28.05x 45.84x 61.78x -

As can be seen, the speedup provided by GPU implemen-
tation increases from 8x to more than 80x as the problem
size increases to spin glasses of size 24x24x24. Similarly, the
GPU speedup increases with population size.

5. CONCLUSION
To conclude, we have implemented an EDA fully on the

GPU. We have shown that the GPU implementation can be
up to 80 times faster in some cases, and scales well with
respect to the problem size and population size. The imple-
mentation can use multiple cards on a single host and uses
preprocessing in order to make the GPU implementation
more efficient. To our knowledge, this is the first sophisti-
cated BOA-like EDA to be fully-implemented on the GPU.
Please find more details in the help files of the implemen-
tation package submitted with this report. Our future aims
are to use this implementation in order to perform research
into larger practical problems.

6. REFERENCES
[1] C. Borgelt and R. Kruse. An empirical investigation of

the K2 metric. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, volume
2143 of Lecture Notes in Computer Science, pages
240–251. 2001.

[2] J. Očenášek and J. Schwarz. The distributed bayesian
optimization algorithm for combinatorial optimization.
In Proc. EUROGEN 2001, Evolutionary Methods for
Design, Optimisation and Control with Applications to
Industrial Problems, pages 115–120, 2001.

[3] M. Pelikan, D. Goldberg, and E. Cantu-Paz. BOA: The
Bayesian optimization algorithm. In Proceedings of the
Genetic and Evolutionary Computation Conference
GECCO-99, volume 1, pages 525–532, 1999.

[4] M. Pelikan, D. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational optimization and applications,
21(1):5–20, 2002.

[5] M. Pelikan, M. Pelikan, D. E. Goldberg, and D. E.
Goldberg. Hierarchical boa solves ising spin glasses and
maxsat. In In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO 2003), number 2724
in LNCS, pages 1271–1282. Springer, 2003.


