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Abstract. This paper describes an improvement to the Cellular Asso-
ciative Neural Network, an architecture based on the distributed model
of a cellular automaton, allowing it to perform scale invariant pattern
matching. The use of tensor products and superposition of patterns al-
lows the system to recall patterns at multiple resolutions simultaneously.
Our experimental results show that the architecture is capable of scale
invariant pattern matching, but that further investigation is needed to
reduce the distortion introduced by image scaling.
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1 Introduction

Cellular automata are formed by connecting simple processing units, known as
cells, into a grid or array. Although each individual cell may be simple, exchang-
ing information with their neighbours to update their state can lead to complex
or emergent behaviour from the cellular automata. Due to this ability, they are
well suited to use for parallel and distributed processing [1].

Architectures based on cellular automata have been used successfully to solve
low and medium level problems in computer vision [2]. They have also been ex-
tended to incorporate features from neural networks, with similar applications,
using weight matrices and continuous time dynamics to replace the simple au-
tomaton rules [3]. Orovas introduced an alternative architecture which uses sim-
ple correlation matrix memories in each cell, in order to provide fast and efficient
processing. The Cellular Associative Neural Network (CANN) was shown to be
capable of distributed symbolic processing and pattern recognition with position
invariance, but without scale invariance [4].

Apart from the most basic brute force technique—trying to match a pattern
at numerous different scales—there are various ways in which scale invariance has
been achieved in pattern recognition, using the detection of edges and interest
points. These include the Generalised Hough Transform [5], graph matching [6],
geometric hashing [7], or curvature scale space [8]. These use a range of analytical
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techniques, such as statistical and probabilistic models, and Gaussian filtering.
None of these methods are suitable, however, for the distributed network of the
CANN. Instead we will introduce a novel adaptation of the brute force technique,
designed to minimise the performance penalty usually associated with it.

1.1 Correlation Matrix Memories (CMMs)

CMDMs are simple, fully connected, associative neural networks consisting of a
single layer of weights. Despite this simplicity they are still an active area of re-
search and have been incorporated in a number of complex architectures, includ-
ing the Associative Rule Chaining Architecture [9] and the Cellular Associative
Neural Network. In this work we use binary CMMs, a sub-class of CMMs where
the inputs, outputs, and weights are restricted to binary values [10].

Binary CMMs use simple Hebbian learning [11]. Associating pairs of binary
vectors, and storing these associations within a CMM, is thus an efficient oper-
ation that requires only local updates to the CMM. Equation 1 formalises this
learning, where M is the resulting CMM (or matrix of binary weights), x is the
set of input vectors, y is the set of output vectors, n is the number of training
pairs, and V indicates the logical OR of binary vectors.

M = V?:l XiYiT (1)

To retrieve information from a CMM, a recall operation is performed as shown
in Equation 2. A matrix multiplication between the transposed input vector x”
and the CMM M results in a non-binary output vector. A threshold function f
must then be applied to this, in order to produce the final binary output vector.

y = f(x"M) (2)

There are a number of functions which may be used as the threshold during
a recall, although the choice of function may be limited by the application and
the data representation used. In this application we use Willshaw’s method of
thresholding. We know the number of bits set to one in the input vectors dur-
ing training. On recall, any output element with a value at least this large is
set to one. Other output elements are set to zero [10]. This threshold function
allows CMMs to operate correctly when superimposed vectors are presented for
recall. Relaxation and partial matching is also simple to achieve, by reducing
the threshold value.

2 The Cellular Associative Neural Network (CANN)

The CANN is an array of cells—known as associative processors—each of which
contains a number of modules. The modules use CMMs to store rules that sym-
bolically describe an object. Each module contains one or more CMMs, config-
ured as an arity network,! in order that the number of antecedents to a rule can
be variable [12].

1 Arity networks use a number of CMMs, one for each possible arity, to store rules in
order that a recall can be performed without unwanted partial matching
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Fig.1. (a) The “Corner Turning 2” CANN module configuration, where S is the cell
state (the output of the combiner module) after each iteration and (b) information flow
of this configuration over two iterations [13].

Learning and recognition of an object’s structure uses a hierarchical ap-
proach, and cells exchange symbolic information with their four direct neigh-
bours during each iteration. This means that after n iterations, each cell is made
aware of the state of all cells up to a Manhattan distance of n from it. Vari-
ous module configurations for the 2D CANN have been investigated, in order to
optimise this message passing.

Brewer [13] showed that the “Corner Turning 2” configuration shown in
Figure la provides the best performance of those tested—allowing information
to travel between any two cells, while requiring fewer total rules than alternative
suitable configurations. The data flow of this configuration is shown in Figure 1b,
where the black cell is the origin of a piece of information, grey cells are those
to which the information has been passed, and white cells are those which are
not yet aware of the information.

2.1 Learning

Before learning an object’s structure, a number of “primitives” are first recog-
nised in the image—vertical and horizontal lines, and the four types of corner: |,
—, T, L, 4. Each of these primitives is then represented by a vector, and forms
the initial input to each cell. During an iteration, information is received from
each of a cell’s neighbours’ passer modules to form the antecedents of a rule. For
each module, an input vector is created by appending the information received
from neighbouring cells to the cells’ input, according to the module configura-
tion. This vector is then used to recall a new cell state from the combiner module,
or a new information vector from a passer module. The module configuration
determines the position that a vector is appended within the input, allowing a
cell to distinguish between information received from different neighbours.
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If a recall does not result in any output then this combination of antecedents
has not been seen previously. In this case a new vector—a “transition symbol”—
is generated to form the consequent of a rule, and associated with the antecedents
into the relevant module. This transition symbol—whether it has been recalled
or newly generated—is used either as the cell’s output state or to form the new
information to be passed to the cell’s neighbours, depending on the module.
When a transition symbol is generated, the new rule must be communicated to
all other cells. This ensures that all cells contain the same information which
allows the CANN to be translation invariant.

Finally, when every cell that initially contained a primitive has been assigned
a unique state, the termination condition for learning an object is reached. At
this point each of these cells generates a final rule to be stored in the combiner
module. As with all other iterations the superimposed inputs are used as the
antecedents, however the consequent in this case is a user provided symbol which
denotes the learnt object.

Appending vectors in order to create a module input, rather than superim-
posing them, is suitable because each module has a fixed number of inputs n;.
This means that the module has a fixed input length of n; x I, where [ is the
vector length used in the system. If one of the cell’s neighbours does not have
any information to pass, then an empty vector will be transferred and hence
included in the input to one or more modules, leading to the requirement of an
arity network. For example, in Figure la, the “combiner” module has a total of
5 inputs—all four neighbours, and the state of the cell itself (the output of the
combiner module). If a vector weight of 4 is chosen, then when all the inputs
contain information the total weight is 5 x 4 = 20—this is used as the value for
Willshaw’s threshold. If one of the cell’s neighbours does not pass any informa-
tion, however, then the total weight will only be 4 x 4 = 16. If this were to be
recalled from a CMM with a threshold value of 20, then it could never result in
an output. As such, it is stored in a separate CMM with a threshold value of 16.
A recall operation can then present the input vector to the correct CMM in this
arity network, using the relevant threshold value.

2.2 Recall

When a pattern is presented for recall, the operation of the CANN is similar
to that of a cellular automaton. The rules which govern state transitions are
stored in the various modules—with each cell containing exactly the same rules,
to allow a pattern to be recognised by any group of cells. To begin a recall, the
primitives are extracted from the pattern and used as the input to each cell.
As with the learning process, a recall happens iteratively; during each iteration
information is received from each of a cell’s neighbours and appended to its
input, before recall from each of the modules.

If the pattern is recognisable, then after a number of iterations it is labelled
with a symbol representing the object. It is unrealistic to expect a perfect recall
to happen in every case, however, due to factors such as noisy inputs, distortion,
and occlusion. In these cases, the system is able to generalise by taking advantage



Incorporating Scale Invariance into the Cellular Associative Neural Network 5

of a CMM'’s ability to perform partial matching. If, at any stage, a consequent is
not successfully recalled from a module, then relaxation can be employed—that
is to say that the threshold value will be reduced in order that an incomplete
match may be attempted. This also allows the CANN to recognise inputs which
are similar to patterns which have been previously trained [13].

3 Incorporating Scale Invariance

There are two obvious but impractical methods which may be used in order to
incorporate scale invariance into the CANN in a neural and distributed manner,
both a variant of the brute force method. The first requires training the CANN
on multiple versions of the same pattern, presented at numerous different scales
(within a predetermined range). This will increase the time required to initially
train the network, but allow a recall to be performed quickly. Notably, however, it
will significantly increase the number of rules generated—and hence the memory
required to store these rules.

The second method trains only a single version of a pattern, presented at its
original scale. A pattern must now be presented for recall at numerous different
scales (within a predetermined range), in order that the CANN may find a match
with the originally trained pattern. This minimises the number of rules generated
and the memory required, however potentially imposes a great penalty on every
recall performed.

We propose a novel third method which requires only a single version of
each pattern to be trained, while minimising the performance penalty imposed
by individually recalling a pattern at numerous different scales. Smolensky in-
troduced the concept of a tensor product as a structure which stores bindings
between variables and their values [14], and they have been widely investigated,
e.g. [15]. Previously we showed that tensor products formed between input data
and unique, randomly-generated, binary vectors may be superimposed and suc-
cessfully recalled from a CMM [16]. Using this technique, we can improve upon
the second method by presenting a pattern for recall at numerous different scales
simultaneously.

When recalling a pattern, the whole image is first scaled to each of the desired
sizes—each of these images is assigned a unique binding vector. Primitives are
extracted from each of the images in turn, and a tensor product is formed for
each cell by binding this primitive to the image’s binding vector. All the tensor
products for a given cell are then superimposed, and recall continues in the
original fashion—in this case recalling each column of the tensor product in
turn. If a pattern is recognised, it is possible to determine the scale at which
it was found. Vectors remain in a tensor product throughout the operation of
the system, which means that any assigned object labels are also in a tensor
product. If this final tensor product is treated as a CMM, and the object label
is presented as an input, then the output vector is the binding vector that was
originally assigned to the scaled input pattern.
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Fig. 2. The 8 patterns trained into the scale invariant CANN [13]
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Fig. 3. (a) Cellular grid used when extracting primitives from Shape C and (b) the
input image closest to 100% of the original size of Shape C, for each resized version
from C25 to C200.

3.1 Results

In order to test the recall success of the scale invariant CANN we trained the 8
patterns used in Brewer’s previous work [13], shown in Figure 2, into a CANN
using the original method. Each pattern was symbolically encoded by overlaying
a grid, as shown for Shape C in Figure 3a, and extracting the primitive features
to be used as the input for each cell.

Each of the symbolically encoded shapes was then presented for recall at a
range of different sizes—every 25% between 25% and 200% of the original size.
We then selected a range of scales to use when recalling, such that the scale
invariant mechanism would not simply return the images to the original size and
result in a perfect recall. Each input shape (e.g. C25) was scaled to a range of
sizes—every 50% between 50% and 400% of its new size (e.g. C75 would have
been rescaled such that the superimposed recall input ranged from 37.5% to
300% of the original size of Shape C, in steps of 37.5%). As the shapes were
already in symbolic form before resizing, the primitive features are immediately
available to be bound to their respective binding vectors.

Figure 3b shows the input image closest to 100% of the original size of
Shape C, for each resized version from C25 to C200. Resizing the shapes when
in symbolic form, rather than as images, has introduced significant variation and
distortion. In future work using the scale invariant CANN, in order to achieve
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Shape Scale of image presented for recall

25% 50% 75% 100% 125% 150% 175% | 200%
A |A 0.00|A 0.00f A 0.00|{A 0.00f A 0.00/ A 0.00/A 0.00/A 0.00
B |B 6.38|B 0.00{AB 44.83|B 0.00|AB 43.55|AB 27.78| B 0.00|B 0.00
C |[(C 0.00/C 7.69| C 43.33|/C 0.00 100.00| C 10.53|C 0.00|C 0.00
D |D 0.00D 0.00f D 0.00/D 0.00] D 0.00) D 0.00/D 0.00/D 0.00
E E 345|E 0.00] E 61.11|E 0.00) E 43.59| E 22.73|E 3.57|E 0.00
F |F 0.00/F 0.00/AF 62.86|F 0.00|AF 60.81| F 13.64|F 0.00/F 0.00
G |G 0.00|A 80.00f A 80.95|G 0.00] A 82.61| G 0.00/G 12.50|G 0.00
H |H 0.00|H 0.00[/AH 52.38|H 0.00|]AH 56.52| H 0.00/H 6.25/H 0.00

Table 1. Error rates of the scale invariant CANN, when recalling Shapes A—H pre-
sented at scales ranging from 25% to 200%. Each result consists of the label(s) applied
to the shape after recall, as well as the percentage of incorrectly labelled symbols.

the best results, images should be scaled before the primitive features are ex-
tracted. For this work, however, the variation serves as an important test of the
CANN'’s ability to recognise distorted shapes.

Table 1 shows the results obtained when presenting the eight shapes for recall
at each of the eight scales. Each result shows firstly the label or labels applied
to the shape after recall, and then the percentage of the input shape which was
incorrectly labelled. In the majority of cases, the shape was correctly labelled,
however there are a number of errors that warrant further examination.

A number of recalled shapes, namely various scales of B, F, and H, were
labelled as both A and the correct label. Similarly, three of the scales of Shape G
were incorrectly labelled as Shape A. Given the similarities between these shapes,
and the relaxation ability of the CANN, this is to be expected. This relaxation
allows the CANN to recognise distorted and similar shapes, but can lead to
incorrect recognition if two similar shapes are both initially trained into the
CANN.

Presenting Shape C at a scale of 125% failed to result in any labels being
applied. As can be seen in Figure 3b, the C125 shape is the most distorted—
being larger than at any other scale, as well as having different length arms.
As mentioned earlier, this distortion could be reduced by scaling images before
extracting the primitives.

4 Conclusions and Further Work

This paper has described an improvement to the CANN, to allow it to perform
scale invariant pattern matching. Experimental results have shown that the ar-
chitecture is capable of performing this task effectively, but that further work is
needed to reduce the effect of the distortion introduced by image scaling.

The choice of which resolutions to use during a recall is very important, as
this will affect how close to the original size a pattern may be scaled. The number
of resolutions used may be increased, as the recall process happens simultane-
ously, however this may not be necessary if the distortion can be reduced by
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scaling images before extracting primitives. Further work is therefore required
to determine the effect of this scaling, before attempting to determine whether
there is an optimal set of resolutions to use (within a given range).

Finally, the CANN has largely been applied to synthetic patterns, although
it has been shown to be able to operate successfully on simple photographic
images [13]. Future work will further examine the application of the CANN to
real objects in images.
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