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ABSTRACT

In this article we present an angle of arrival (AoA) multi-robot

system for rescue purposes which takes advantage of robots’

mobility to improve the position estimate of an unknown tar-

get. The robots move according to a certain trajectory (a se-

quence of stopping points) designed to minimize the variance

of the AoA estimation. We present two different techniques to

generate these optimal trajectories, with each technique hav-

ing its own advantage.

Index Terms— AoA estimation, multi-robot, trajectory

planning.

1. INTRODUCTION

Recently the application of a robot’s mobility to combat fad-

ing in a wireless channel has been studied [5]-[10]. In addi-

tion, there has also been an increasing interest in rescue robots

[1]-[4]. Here we combine both of the above aspects and show

that a robot’s mobility can also be beneficial in the AoA esti-

mation problem when applied to rescue robots.

The scenario we are considering here is the following. An

individual may be lost due to an accident or a natural disas-

ter. The objective is to locate his/her position so that a rescue

team can find him/her. We will assume that the lost individual

possesses an UWB emergency transmitter (ET) that emits pe-

riodically an S.O.S. r.f. signal which is known by the rescue

team. To locate the position of the ET, teams composed of

M multi-rotor aerial [11] robots are deployed in the area of

interest. Each robotic team (which we will assume knows its

own location via some method) performs an estimation of the

AoA of the received r.f. wave radiated by the ET using the

difference time of arrival (DToA) between all the members of

the team (e.g., in [15] the authors also used the DToA princi-

ple to estimate the AoA for a radar application using a fixed

antenna array).

As the robots’ mobility will be a factor in minimising the

variance of the AoA estimation, so an appropriate optimal

trajectory must be designed. Finally, the robotic teams will

∗The author acknowledge the funding of CONACYT (México).

combine their individual AoA estimates to obtain the ET’s

location. In this article we will only focus on the design of

the trajectory for the AoA estimation (i.e., as opposed to how

triangularisation is implemented across many robotic teams)

and so we need only consider the performance of just one

single team of robots. To the authors’ knowledge this is the

first time that devising an optimal trajectory has been used to

reduce the variance of an AoA estimate in any application.

So, in section 2 we describe the system model as well as

the principle used to estimate the AoA. In section 3 we show

how to derive the optimal trajectories. In section 4 we explain

how the DToA is obtained. Then, section 5 gives simulation

results and finally conclusions are presented in section 6.

2. SYSTEM MODEL

The composition and the physical configuration of the robotic

team is presented in the first subsection and in the second

subsection we explain how the AoA is estimated using the

DToA. For mathematical simplicity we will focus only on the

azimuthal component of the AoA and restrict the movement

of the robots to a horizontal plane (see justification later).
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Fig. 1. Geometry of double robot formation.

2.1. Robotic Team Configuration

The robotic team is composed of two types of robots: (i)

the central robot (CR) which remains stationary during the

AoA estimation process, provides a temporal reference for the

DToA estimation, calculates the DToA estimate (see section

4) and orders the explorer robots (ERs) to move; (ii) any ER

searches the space around the CR in order to gather DToA



measurents at different stopping points in order to estimate

the AoA (see section 3). We assume that all the robots are

multi-rotor aerial robots [11]. The difference between the CR

and the ER is just their role in the team, i.e., both types of

robots are physically identical (i.e., the same model of robot).

Each robot posses a transceiver with a single antenna located

at its geometrical center and we consider that all the robots

have a localization system that allows each robot to know its

own absolute location. In this paper we will consider only

two sizes of robotic teams: (i) a robotic team with two robots

(one CR and one ER) and (ii) a robotic team with three robots

(one CR and two ERs). This is because obtaining the optimal

trajectory for more than three robots is still an open problem.

The CR’s location is denoted by qC ∈ R
2 and the lo-

cation of the mth ER at the kth iteration of the AoA esti-

mation algorithm is given by qEm
(k) ∈ R

2. We also de-

fine the following variables Lm(k) = ‖qEm
(k) − qC‖2 and

θm(k) = ∡ (qEm
(k)− qC) , m = 1, 2, · · · ,M − 1. Here,

M is the number of robots in the team (CR plus ER). In Fig.1

we can see the geometry of the double robot formation (DRF).

2.2. Angle of Arrival Model

We assume that there is a line of sight (LoS) between the

ET and the robotic team1 so that even if there are multi-path

components the AoA of the first wavefront that arrives comes

from the direction where the ET is located. We also assume

that the ET is sufficiently distant from the robotic team so that

the incident wavefront is planar and the AoA (φ0) to the an-

tenna of every robot in the team is identical. Taking these

assumptions into account the DToA between the mth ER and

the CR (i.e., the difference between the instants at which the

r.f. wave radiated by the ET first arrives at the antenna of the

mth ER and the instant at which it first arrives at the antenna

of the CR) is:

τm(θm(k), Lm(k)) =
(

Lm(k)
c

)

cos(θm(k)− φ0) cos(ω)

m = 1, 2, · · · ,M − 1
(1)

where ω is the elevation angle2 and c is the speed of light.

Therefore, by determining τm(θm(k), Lm(k)) at different

formation angles (θm(k)) the robots can estimate (φ̂0) the

AoA. In the following section, we will present two tech-

niques to perform this estimation while taking advantage of

the ER’s mobility.

3. MULTI-ROBOT AOA ESTIMATION

In general the multi-robot AoA estimation usesM robots (one

CR and (M -1) ERs) and each ER produces DToA measure-

1Since the robots are aerial robots and they are flying it is very likely that

this assumptions holds if the terrain is relatively smooth.
2If the altitude of the robotic team is small compared to the distance be-

tween the robotic team and the ET then we will have ω ≈ 0 and consequently

cos(ω) ≈ 1. We will adopt this simplification throughout the article.

ments at K different positions or stopping points. Then the

CR uses all the DToA measurements to estimate the AoA. In

this section we explain how to obtain the optimal3 trajectory

(i.e., the sequence of stopping points) for teams of M=2 and

M=3 robots.

The first technique, see subsection 3.1, requires only two

robots but as the trajectory cannot be obtained analytically

it needs significant computation. The second technique, see

subsection 3.2, can only be implemented with a triple robotic

team. But, in contrast to the first approach, it is possible to

obtain analytically the optimum trajectory.

So, the normalized DToA estimate at iteration k, between

the CR and the mth ER, is given by:

τ̂m(θm(k), Lm(k)) =
c

Lm(0)
(τm(θm(k), Lm(k)) + nτm(k))

(2)

where nτm(k) ∼ N (0, σ2
n). Note that in [14] and [16] it was

shown from experimental results that the error term for ToA

and DToA estimation for UWB wireless channels similar to

ours is Gaussian distributed. Thus this assumption for nτm(k)
is realistic here.

3.1. Double Robot AoA Estimation

In this subsection we explain how to obtain the optimum tra-

jectory with K stopping points when we use only two robots.

As already explained the trajectory is optimum in the sense

that it minimizes the variance of the AoA maximum likeli-

hood estimate (MLE) which is given by:

φ̂0(Θ
(2),L(2)) =

argmin
φ

K
∑

k=1

(

τ̂1(Θ
(2)
k ,L

(2)
k )−

(

L
(2)
k

L
(2)
1

)

cos(Θ
(2)
k − φ)

)2

(3)

where4 Θ(2) = [θ1(0) θ1(1) · · · θ1(K − 1)]T , L(2) =

[L1(0) L1(1) · · · L1(K − 1)]T , Θ
(2)
k is the kth element

of Θ(2) and L
(2)
k is the kth element of L(2). Before ex-

plaining how to optimize the trajectory we add the following

restriction to the ER movement5:

qE1
(k + 1) = qE1

(k) + du
(

−ψ1(k) +
π
2 + θ1(k)

)

k = 0, 1, · · · ,K − 2
(4)

where u (·) = [cos (·) sin (·)]T and ψ1(k) ∈ [−π
2 ,+

π
2 ] is the

direction in which the robot performs this movement6. With-

3The trajectory is optimal in the sense that it minimizes the variance of

the AoA maximum likelihood estimate (MLE).
4The superscript “(2)” refers to M = 2 robots.
5This restriction forces the ER to move a fixed distance d in any direction

that is always clockwise with respect to the CR. This is to reduce the overall

size of the search space and eliminate duplicate optimal trajectories.
6The angle ψ1(k) is defined as the angle formed between the vector

[qE1
(k + 1) − qE1

(k)] and the tangent at the point qE1
(k) on the cir-

cle with center qC and radius L1(k), (see Fig.1). In addition, we calculate

ψ1(k) in the OP-1 problem.



out loss of generality we consider θ1(0) = 0. Given this re-

striction on the ER movement, the optimum trajectory is ob-

tained by solving the following optimization problem, OP-1.

OP− 1

Ψopt = argmin
Ψ

var
[

φ̂0(Θ
(2),L(2))

]

s.t.

qE1
(k + 1) = qE1

(k) + du
(

−ψ1(k) +
π
2 +Θ

(2)
k+1

)

qE1
(0) = [L

(2)
1 0]T

(5)

where Ψ = [ψ1(0) ψ1(1) · · · ψ1(K − 2)]. An analyti-

cal expression for var
[

φ̂0(Θ
(2),L(2))

]

is not available and

so we must calculate it by simulation in order to solve OP-

1. The numerical evaluation of var
[

φ̂0(Θ
(2),L(2))

]

causes

a big problem from a practical point of view since it sig-

nificantly increases the computation needed to solve OP-1.

Therefore, in order to reduce this computation we impose the

following restriction (see Fig.1): ψ1(0)=ψ1(1)=· · ·=ψ1(K −
2)=ψ. This will decrease the dimensionality of the search

space from K-1 to 1. Of course, the drawback with this re-

duction in dimensionality is that the solution will now exhibit

a sub-optimal performance. Finally, we will use a hill climb-

ing search [17] approach to solve OP-1. And as a last remark,

it is not difficult to show that the solution for OP-1 does not

depend on d and L1(0) but only on the quotient d
L1(0)

.

3.2. Triple Robot AoA Estimation with Quadrature For-

mation

The approach of the previous subsection was computationally

complex, as there was no analytical solution. In this subsec-

tion we will now show how to reduce the computation re-

quired by means of an analytic solution using three robots

(one CR and two ERs). During the simulations in section

5, we will also see that the estimation performance has im-

proved. In addition, the restriction given in (4) will also apply

to both ERs. First we need to calculate the optimal initial an-

gular difference (ξopt) between the two ERs. To do this we

will force both ERs to lie at the same radius7 from the CR

(i.e., L1(0) = L2(0)) and solve the following optimization

for one initial (i.e., K = 1) stopping point8.

OP− 2

ξopt = argmin
ξ

var
[

φ̂0(Θ
(3),L(3))

]

s.t.

L
(3)
1 = L

(3)
0

Θ
(3)
1 = Θ

(3)
0 + ξ

(6)

where φ̂0(Θ
(3),L(3)) is given by (3) but where “(2)” is

replaced by “(3)”, Θ(3) = {θ1(0), θ2(0)} and L(3) =

7This is done so that τ̂1(θ1(k), L1(k)) and τ̂2(θ2(k), L2(k)) will both

have the same variance.
8Note that the superscript “(3)” refers to M = 3 robots.

{L1(0), L2(0)}. Again, using a hill climbing search we

obtain ξopt = ±π
2 . So the optimal initial robotic formation

(i.e., the formation at k = 0) is the quadrature formation

(i.e., the ERs and the CR form a right-angled triangle). And

because it will simplify the AoA estimation (as will be shown

later in this subsection) we constrain the angle between the

CR and the two ERs to remain at 90o and on the same circle

for k ≥ 1 (with center qC and radius L1(k)). Thus we will

impose the following restrictions on the two ERs:

θ2(k) = θ1(k)− π/2,
L2(k) = L1(k).

(7)

Now we will explain how to estimate the AoA and obtain the

optimum trajectory. The DToAs between the two ERs and the

CR are:

τ1(θ1(k), L1(k)) =
(

L1(k)
c

)

cos(θ1(k)− φ0),

τ2(θ1(k), L1(k)) =
(

L1(k)
c

)

sin(θ1(k)− φ0)
(8)

since cos(θ2(k)) = sin(θ1(k)). We will also define the fol-

lowing complex variable z(θ1(k), L1(k)) = τ1(θ1(k), L1(k))
+jτ2(θ1(k), L1(k)) as it will now allow us to estimate the

AoA in a simplified manner. The estimate of z(θ1(k), L1(k))
(i.e., ẑ(θ1(k), L1(k))=τ̂1(θ1(k), L1(k))+jτ̂2(θ1(k), L1(k)))
can be written as:

ẑ(θ1(k), L1(k)) =
(

L1(k)
c

)

exp (j (θ1(k)− φ0)) + nz(k)

(9)

where nz(k) = n1(k) + jn2(k). The estimation of A0 =
exp (−jφ0) is a linear estimation problem and the best linear

unbiased estimate (BLUE) of A0 is given by9:

Â0 =
c
∑

K−1

k=0
ẑ(θ1(k),L1(k))·L1(k)·exp(−j·θ1(k))

∑
K−1

k=0
L2

1
(k)

(10)

where var
[

Â0

]

= 2c2σ2
n

(

∑K−1
k=0 L2

1(k)
)

−1

. In order to

minimize this variance we need to maximize the denomina-

tor which is maximized when (see Fig.1):ψ1(k) =
π
2 ∀k. In

other words, for the quadrature formation the optimal trajec-

tory for any ER is to move at each iteration a step d (design

parameter) along the radial direction on the line joining the

CR to the ER.

4. DTOA ESTIMATION

As stated in the previous section the robots need to estimate

τm(θm(k), Lm(k)). Here we explain how this is achieved.

First, as mentioned earlier, the ET will transmit periodically

an UWB pulse s(t) which is known by all the robots10. In

9The estimate φ̂0 is the angle of the phasor Â0.
10This assumption is realistic in a rescue scenario since the signal s(t)

would be standard, i.e., known by everyone, and it would be sent periodically

to allow the localization of the transmitter.



order to measure τm(θm(k), Lm(k)) the robots must be time

synchronized and this can done (for example) by using the

protocol in [18].

So we can now say that τm(θm(k), Lm(k)) = TEm
(k)−

TC(k), where TEm
(k) is the time of arrival (ToA) of the LoS

component of the pulse s(t) to the mth ER’s antenna during

the kth iteration and TC(k) is the ToA of the LoS component

of the pulse s(t) to the CR’s antenna during the kth iteration.

Each robot estimates its corresponding ToA. This can be done

by detecting the first r.f. LoS component as was described

in [14], [16], [19] and [20]. Once the robots have estimated

the ToAs, the ERs send their estimates to the CR and then it

calculates the normalized estimate of τm(θm(k), Lm(k)) as:

τ̂m(θm(k), Lm(k)) = c
(

T̂Em
(k)− T̂C(k)

)

L−1
1 (0).

5. SIMULATIONS

We first show the advantage of using the optimized trajectory.

In order to consider realistic values we use the experimental

results reported on [16]. So, if we assume a bandwidth of

500MHz then we get cσn = 53.8cm.

First we will consider arbitrarily11 the DRF with L1(0) =
10.7m and d = 10.7m. We compare two cases: (i) in the first

case we will always select ψ = 0 (see subsection 3.1) for any

number of stopping points K, (i.e., we do not optimize ψ).

This will be used as a reference or benchmark; (ii) in the sec-

ond case we will always select the optimal value ψ = ψopt

(see OP-1). Both cases consume the same amount of re-

sources (bandwidth, distance travelled) and have the same

initial configuration but the optimized version has a signifi-

cantly lower variance12 (see Fig.2). Note that in Fig.2, ψopt

(for any K) is the value of ψ corresponding to the minimum

of each curve. So, in general (see Fig.2) if we do not optimize

ψ we may get a much lower performance (yet still consum-

ing the same ressources). We now compare the performance
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Fig. 2. DRF results with cσn = 53.8cm.

of the triple robot formation (TRF). To do a fair comparison

we compare the TRF with p stopping points to the DRF with

2p stopping points. The reason for this is that the triple for-

mation has two ERs and so for the same number of stopping

points it has double the number of measurements. In addition,

for both formations we use L1(0) = 10.7m, d = 10.7m and

11This is because d and L1(0) are design parameters.
12All the angles in this section are expressed in degrees.

cσn = 53.8cm. As we can see in Fig.3(a) the performance of

the TRF is significantly better than the DRF. This means that

the advantage of the TRF is not only its mathematical and

computational simplicity for the design of the optimal trajec-

tory but also its performance. So, if we want to maximize

performance we should use the TRF, but if we want to mini-

mize the number of robots in the team we should use the DRF.
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Fig. 3. (a) DRF and TRF comparison; (b) DRF results with

cσn = 107.6cm and K stopping points.

Finally, we will now examine how our proposed algorithm

copes with increased DToA estimation error (σ2
n) in (2). In

Fig.2 we set cσn = 53.8cm but in Fig.3(b) we will choose

cσn = 107.6cm twice as large (e.g., it might be because the

ET is further away and so the received signal is weaker). Also,

as in Fig.2 we choose L1(0) = 10.7m and d = 10.7m. Let

us assume that we want an AoA estimate variance that is less

than 1. From Fig.2, we can select K = 7 to satisfy this re-

quirement, but from Fig.3(b) we needK = 9 stopping points.

Note that for AoA estimation methods which must use

non-mobile fixed antenna arrays, then the performance de-

pends on the number of elements of the array. And the num-

ber of antennas cannot be changed once the system is de-

ployed. But with multi-robot systems the performance de-

pends on the number of stopping points (K) which can be se-

lected online according to each scenario (as illustrated in this

example). Therefore the multi-robot system has the advan-

tage of adaptability due to the robot’s mobility. We can also

obtain a large separation between the robots’ antenna (which

improves the performance) without any problem. Also, this

kind of system is easy to deploy and transport. All these ad-

vantages are not present on fixed antenna array systems.

6. CONCLUSIONS

In this article we have proposed a multi-robot system (using

either two or three robots) for rescue operations which can

estimate the direction of the rescue target. The main contri-

bution of this article is to show that the controlled mobility of

the robots is beneficial to the AoA estimation process based

on DToA measurements. We also have showed that there is

an optimum trajectory and indicated how to derive it. This is

the first time that controlled mobility has been used in such a

scenario.
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