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An alternative power spectrum of the resonance fluorescence of atomic systems

Adam Stokes and Almut Beige
The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: January 13, 2015)

We adopt an open systems perspective to calculate the power spectrum associated with the electric
field generated by an atomic dipole moment undergoing resonant laser-driving. This spectrum has
a similar triplet shape to the Mollow spectrum and contains a similar amount of information.
This is surprising, since the Mollow triplet derives from the Glauber two-time correlation function,
which represents the average energy-intensity of a superposition of waves taken at different times. In
contrast, our spectrum derives from a correlation function defined in terms of single-time expectation
values of the electric source-field. Although they are derived from very different correlation functions,
both spectra reflect the quantum-mechanical level-structure of the atomic source.

PACS numbers: 42.50.Ct, 03.65.Yz, 31.30.J-

I. INTRODUCTION

Recent years have seen a wide range of high-precision
experiments, which study the light-matter interactions
of trapped ions [1], single quantum dots [2], colour cen-
tres [3], and molecules on surfaces [4]. What all of these
systems have in common is that an external laser ex-
cites a strongly-confined ground state electron into an
excited state, which results in the spontaneous emission
of photons. Different from real atoms, so-called artifi-
cial atoms, like quantum dots and colour centres, often
have much stronger spontaneous decay rates Γ and sig-
nificantly smaller transition frequencies ω0. As a result,
they provide a new testing ground for standard quantum
optical models. This includes models that take into ac-
count the decoherence of the atom-field system due to
the presence of an external environment.
In this paper, we adopt an open systems perspective

to calculate the power spectrum associated with the total
electric field generated by a laser-driven atomic system
capable of spontaneously emitting photons. Our motiva-
tion in this paper is two-fold. On the one hand we wish
to investigate the effect that a decohering environment
has on the electric field generated by an atom. This is
interesting, because it is the electric field rather than the
light intensity, that determines the force that a charge
exerts on another charge. The effect that a decohering
environment has on such forces has hardly been investi-
gated. On the other hand we wish to demonstrate that
the electric field itself, and not just the light intensity, is
correlated with the atomic energy-level structure. This
is a nontrivial observation, because as we explain below
the quantum-mechanical nature of the electric field can
be quite different to that of the light intensity.
As in classical physics, we define the power spectrum

in terms of a correlation function. However, our quantum
correlation function reflects a much richer inner dynamics
of the quantum system. This is because quantum mea-
surements strongly effect the state of the quantum system
being measured. Measurement outcomes can therefore be
highly correlated with previous measurement outcomes.
As we shall see below, our correlation function is different

to the usual Glauber correlation function

GGlau(τ) = 〈E(−)(t) ·E(+)(t+ τ)〉ss (1)

taken in the stationary state of the atomic source. Here
the E(±)(t) are the electric field operators in the Heisen-
berg picture associated with positive or negative frequen-
cies, respectively. In terms of GGlau(τ) one defines the
Mollow spectrum of resonance fluorescence by

SMol(ω) =

∫

dτ e−iωτ GGlau(τ) , (2)

which is the spectrum usually used to characterise the
resonance fluorescence of a driven atomic source. There
are however, many other ways of defining light spectra,
which are relevent to various problems [5]. Since the
Mollow spectrum for τ = 0 is a measure for the normal-
ordered energy-intensity of the emitted light from the
stationary source Iss, we have GGlau(0) = Iss which im-
plies

Iss =

∫

dω SMol(ω) . (3)

This means, the Mollow spectrum SMol tells us how
the various frequencies contribute to the total energy-
intensity of the emitted light. The conservation of (free)
energy implies that the shape of SMol reflects the energy-
level structure of the driven atom. This is verified within
the dressed-atom approach, which explains the appear-
ance of a triplet of peaks corresponding to dressed energy
levels for sufficiently strong driving [6].

As well as in the treatment of resonance fluores-
cence, the function GGlau(0) is also used to explain the
quintessentially quantum double-slit interference effect,
whereby the total electric field is taken as a superposition
of two fields E1(t,x1) and E2(t,x2) corresponding to the
two slits, and the function GGlau(0) develops a sinusoidal
dependence on the relative position x1−x2 [7, 8]. As Eq.
(1) shows, the Glauber function GGlau(τ) is a product of
electric field operators, and in fact, it is impossible to un-
derstand the appearance of interference fringes as arising
from the interference of two mean fields 〈E1〉 and 〈E2〉 [8].
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The spectrum SMol(ω) can be given a clear operational
meaning (see for example [7] and the comments above).
On the other hand the correlation function GGlau(τ) is
obtained by simply adopting quantum analogues of ex-
pressions from classical signal analysis, rather than by
envisioning a definite operational procedure. As a result
for τ 6= 0 the operational meaning of GGlau(τ) is less
clear. In this paper we derive an alternative fluorescence
spectrum using a correlation function that only depends
on single time averages of the electric field and which
can therefore be given a clear operational meaning. This
makes our correlation function fundamentally different
to GGlau(τ) which constitutes the starting point in most
quantum treatments of light spectra [5]. Although our
spectrum is in some ways different to SMol, it does, like
SMol, reflect the level structure of the dressed atomic
source.

As usual when considering a quantum optical system
with spontaneous photon emission, we assume in the fol-
lowing that the atom-field system is surrounded by a
photon-absorbing environment, which acts as a decoher-
ence mechanism [9]. The environment monitors the ra-
diation field on a coarse grained time scale ∆t, meaning
that at each ∆t time step it performs a photon-number
resolving measurement [10, 11], and subsequently resets
the field into its vacuum state |0〉. We call the parameter
∆t that determines the frequency of these measurements
the typical environmental response time [11–16]. More-
over, following Zurek [17], the field vacuum |0〉 can be
termed the einselected state of the radiation field. In
the absence of a photon source, but in the presence of
a photon-absorbing environment, the vacuum is the only
state that does not evolve in time. This makes it the pre-
ferred state into which the radiation field rapidly relaxes
once a photon has been emitted by an atom.

The continuous environmental resetting is assumed to
happen over a relatively short time scale which comprises
an extremely strong physical constraint to be imposed
on the atom-field system. We therefore expect it to have
non-trivial consequences for the coarse-grained dynamics
of observables pertaining to the radiation field. This is
true in particular for the power spectrum associated with
the electric field generated by the laser-driven atomic
source. Moreover, following on from the results of our
previous paper [15], we assume that an un-driven atomic
system in its ground state should not emit photons. This
is only the case, if the atom-field interaction is described
by the so-called rotating-wave Hamiltonian, which con-
tains no counter-rotating terms [15].

Before continuing we note that the electric field pro-
duced by a microscopic atomic source may be difficult to
accurately measure in practice. Such a field is only likely
to induce a very small electromotive force on a chosen
test charge. The field is also expected to drop-off rapidly
with increasing distance from the source. However, re-
cent technological advances [18] have paved the way for
observing extremely small forces. For example, Usenko
et al. [19] recently demonstrated the detection of sub-

attonewton forces at milliKelvin temperatures by using
a superconducting quantum interference device. Other
authors employ quantum point contacts as sensitive dis-
placement detectors in high precision experiments which
aim at quantum limited displacement detection [20–22].
Moreover, the technology which is needed to combine a
single quantum dot and an atomic force microscope can-
tilever in a single experimental setup has already become
available [23].
There are five sections in this paper. In Section II,

we summarise the theoretical background of this paper,
we provide a definition of the power spectrum of a clas-
sical signal, identify the electric field observable E(x)
which corresponds to the above mentioned rotating wave
Hamiltonian, and discuss the validity of the two-level ap-
proximations and the use of a master equation. In Sec-
tion III, we derive the power spectrum associated with
the electric field observable E(x) of a laser-driven atomic
two-level system with spontaneous photon emission and
show that this spectrum has a central peak at the atomic
transition frequency ω0. Section IV compares this spec-
trum with the usual Mollow spectrum [24]. Finally, we
summarise our findings in Section V.

II. THEORETICAL BACKGROUND

A. Classical correlation functions and spectra

In classical physics, the power spectrum S(ω) of a sig-
nal f(t) equals the modulus squared of its Fourier trans-

form f̃(ω). To prevent S(ω) from tending to infinity for
a wide range of signals, one defines

S(ω) ≡ |f̃(ω)|2 (4)

with the truncated and time averaged Fourier transform
f̃(ω) given by

f̃(ω) = lim
T→∞

1√
2T

∫ T

−T

dt e−iωtf(t) . (5)

For a real signal f(t), this definition implies

S(ω) = lim
T→∞

1

2T

∫ T

−T

dt

∫ T

−T

dt′ e−iω(t−t′)f(t)f(t′) , (6)

where the limits on the right hand side are assumed to
exist. After making the substitution τ = t − t′, we find
that the power spectrum of a signal equals the Fourier
transform of its two-time correlation function G(τ),

S(ω) =

∫ ∞

−∞

dτ e−iωτ G(τ) (7)

with G(τ) defined by

G(τ) = lim
T→∞

1

2T

∫ T

−T

dt f(t) f(t+ τ) . (8)
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We are interested in the total electric field generated by
the atom, so for a detector located at position x, we
consider the signal

fE(t,x) =〈E(x)〉t . (9)

In what follows we analyse the power spectrum associated
with fE(t,x).

B. The signal in the presence of a

photon-absorbing environment

We assume in the following that a wire at a position x

and time t, performs a direct measurement of the electric
field generated by the atomic system. In this section we
identify the atomic operator that represents this electric
field, under the assumption of continuous environmental
resetting of the radiation field onto its vacuum state. To
begin with, we consider an atomic dipole with canonical
operators r and p satisfying

[ri, pj ] = i~δij . (10)

The dipole interacts with a transverse electromagnetic
field with canonical field operators AT and ΠT satisfying

[Ai(x),Πj(x
′)] = i~ δTij (x− x′) , (11)

where δT denotes the transverse delta function. These
fields support the following mode expansions

A(x) =

∫

d3k
∑

λ

√

~

2ǫ0ωk(2π)3
ekλ aλ(k) e

ik·x +H.c. ,

Π(x) =− i

∫

d3k
∑

λ

√

~ǫ0ωk

2(2π)3
ekλ aλ(k) e

ik·x +H.c. ,

(12)

where the aλ(k) and a†λ(k) are photon annihilation and
creation operators satisfying the bosonic commutation
relation

[aλ(k), a
†
λ′(k

′)] = δλλ′δ(k− k′) . (13)

Each vector ekλ with λ = 1, 2 in Eq. (12) is a unit vector
orthogonal to k. Moreover, ωk ≡ c|k|.

Let us consider the negative transverse displacement
field defined by −DT = −ǫ0ET − PT. In the Coulomb
gauge the canonical momentum ΠT represents the nega-
tive of the transverse electric field −ǫ0ET. The field PT

meanwhile is the transverse multipolar polarisation field
defined by

PT,i(x) ≡ −e

∫ 1

0

dλ rjδ
T
ij(x− λr) . (14)

For a neutral system of charges such as the atomic sys-
tem we are considering, the displacement field is entirely

transverse; D = DT. In addition, in the electric dipole
approximation (EDA), which we will employ throughout
this paper, the atomic system is taken as coupling to the
field at the atomic centre-of-mass position, which we can
take as the origin with coordinates 0. In the EDA, the
electric polarisation fieldP(x) associated with the atomic
dipole −er is given by −er δ(x), which is clearly localised
at the origin. As such, for x 6= 0 we have in the EDA
that

ǫ0ET(x) +PT(x) ≡ DT(x) ≡ D(x) ≡ ǫ0E(x). (15)

Next we determine the appropriate operator with which
we must represent this observable.
Here we are assuming that the radiation field is con-

tinuously reset onto the field vacuum associated with the
rotating-wave Hamiltonian. In order to determine the ef-
fect this assumption has on the dynamics of the electric
field, we must identify within the rotating-wave repre-
sentation, the operator that represents the physical field
ǫ0ET +PT. The rotating-wave representation is related
to the Coulomb gauge representation via a unitary trans-
formation R which in the EDA is given by [15, 25, 26]

R{αk} ≡ exp

(

ie

~
Aαk

(0) · r
)

(16)

where

Aαk
(0) ≡

∫

d3k
∑

λ

√

~

2ǫ0ωk(2π)3
αk ekλ akλ +H.c.

(17)

and

αk ≡ ω0

ω0 + ωk
. (18)

The quantity ~ω0 is a positive constant that will be iden-
tified as the energy between the ground and excited states
of the atom, once the two-level approximation has been
made. If we denote the Coulomb gauge Hamiltonian by
H, then within the two-level approximation and with the
above choice for the parameter αk, the Hamiltonian

Hrot ≡ R{αk}HR−1
{αk}

(19)

possesses no counter-rotating terms in its interaction
component.
In order to identify the operator representing the total

electric field in the rotating-wave representation we note
that in the Coulomb gauge −ǫ0ET = ΠT and in the EDA

PT(x) = − e

(2π)3

∫

d3k
∑

λ

eλ(k)(eλ(k) · r)eik·x. (20)

Thus, noting that R{αk} commutes with PT, the total
electric field at x 6= 0 is given in the rotating-wave rep-
resentation by

ǫ0E(x) =−RΠT(x)R
−1 +PT(x) . (21)
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Hence, for x 6= 0

ǫ0E(x) =−ΠT(x)−
e

(2π)3

∫

d3k

×
∑

λ

(1− αk)eλ(k)(eλ(k) · r)eik·x . (22)

The photon-absorbing environment that we assume is
present acts as a monitor, which at each ∆t time step
performs a photon number measurement on the radia-
tion field [10, 11]. For sufficiently small ∆t there can
be at most one-photon within the radiation field at any
given instant t = n∆t [11–15]. The state after an en-
vironmental measurement is therefore either the vacuum
or a one-photon state. In the latter case the environment
immediatey resets the field into the vacuum. This model
of environmental decoherence allows us to assume for the
purposes of calculating expectation values, that the den-
sity matrix of the atom-field system in the Schrödinger
picture at time t = n∆t, is given by

ρ(t) = ρA(t)⊗ ρF(t) (23)

where ρF(t) denotes a (suitably normalised) classical mix-
ture of the vacuum and one-photon states;

ρF(t) = p0(t) |0〉 〈0|+
∑

kλ

pkλ(t) |1kλ〉 〈1kλ| . (24)

Since with ρF(t) defined above TrF(ρF(t)ΠT(x)) = 0,
the only nonzero contribution from E(x) in Eq. (21) to
the signal fE(t,x) = 〈E(x)〉t comes from the generalised
polarisation term

wij(x)rj ≡
1

(2π)3

∫

d3k
∑

λ

(1− αk)e
i
λ(k)e

j
λ(k)rje

ik·x

(25)

in which the repeated roman index is to be summed, and
where the wij are functions of the classical variable x

denoting the detector position. The functions wij can
be reduced by performing the angular integration and
polarisation summation in Eq. (25), which gives

wij(x) =
1

2π2
(−δij∂

2 + ∂i∂j)

∫ ∞

0

dωk
sin(ωk|x|/c)
(ω0 + ωk)|x|

.

(26)

For ω0 6= 0 the integral over frequency can only be ex-
pressed in terms of special functions. However, setting
ω0 ≡ 0 the frequency integration in Eq. (26) evaluates
to π/2|x|. Eq. (25) then gives −1/e times PEDA

T,i (x),
which is the usual multipolar polarisation field in the
EDA. Performing the differentiations one then obtains a
sum of three terms which vary as |x|−1, |x|−2 and |x|−3

respectively [27]. A similar |x| dependence is expected
when ω0 6= 0.
The wij are c-number functions. On the other hand

r denotes the atomic operator whose expectation value
must be calculated in order to evaluate the signal

〈Ei(x)〉t = −ewij(x)〈rj〉t . (27)

This will be done in what follows using the two-level ap-
proximation and the standard Born-Markov quantum op-
tical master equation.

C. Two-level approximation and the effective signal

We restrict our attention now to two atomic levels |0〉
and |1〉. The operators σ+ = |1〉 〈0| and σ− = |0〉 〈1| raise
and lower these atomic levels respectively. The atomic
dipole moment −er can be written as

−er = dσx, d = −e 〈0| r |1〉 (28)

where we have assumed for simplicity that d is real, and
σx ≡ σ+ + σ−. Within the two-level approximation we
find that the Schrödinger picture signal in Eq. (27) be-
comes

〈Ei(x)〉t = wij(x)dj〈σx〉t (29)

Thus, up to the additional factors wij(x)dj , which do
not depend on the atomic dynamics, the signal we are
interested in is

fE(t) = 〈σx〉t. (30)

As we shall see below, the power spectrum S(ω) associ-
ated with the signal in Eq. (30) is a direct measure for
the coherence of the atomic source and not a measure of
its intensity.

D. Atomic master equations

With the aim of calculating 〈σx〉t, we solve in the fol-
lowing the standard Born-Markov quantum optical mas-
ter equation of a resonantly driven atomic two-level sys-
tem with spontaneous decay rate Γ;

ρ̇A(t) = − i

~
[~ω0 σ

+σ− +HL(t), ρA(t)]

+Γσ− ρA(t)σ
+ − 1

2
Γ
{

σ+σ−, ρA(t)
}

,

HL(t) =
1

2
~Ωσ+ eiω0t +H.c. (31)

Here ~ω0 denotes the energy difference between the
atomic levels, and Ω is a real laser Rabi frequency. Mov-
ing into the interaction picture with respect to

H0 = ~ω0 σ
+σ− , (32)

the above master equation becomes time-independent
and can be solved analytically. We denote the stationary
solution ρss, and use the notation ρij ≡ 〈i|ρAI|j〉 for the
elements of the interaction picture density matrix ρAI.
Due to the relations ρ10 = ρ∗01 and ρ11 = 1 − ρ00 with
ρ00 real, the master equation has only three independent
real solutions.
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We proceed now in solving the interaction picture
atomic dynamics relative to the stationary state. This
gives

Re ρ01(t+ τ) = e−Γτ/2 Re ρ01(t), (33)

and
(

ρ00(t+ τ)
Im ρ01(t+ τ)

)

=A(τ)

(

ρ00(t)− ρss00
Im ρ01(t)− Im ρss01

)

+

(

ρss00
Im ρss01

)

(34)

where

A(τ) ≡
[

I cosµτ − 1

4µ

(

Γ 4Ω
−4Ω −Γ

)

sinµτ

]

e−3Γτ/4

(35)

in which I is the 2× 2 identity matrix, and

µ ≡ 1

4

√

16Ω2 − Γ2. (36)

The stationary state matrix elements appearing in Eq.
(34) are given by

ρss00 =
Γ2 +Ω2

Γ2 + 2Ω2
, Im ρss01 =

ΓΩ

Γ2 + 2Ω2
, Re ρss01 = 0.

(37)

The atomic system under consideration possesses a sta-
tionary state only in the interaction picture. In the
Schrödinger picture, the off-diagonal matrix elements of
this state become time-dependent. As a result we choose
to remain in the interaction picture wherein the observ-
able of interest σx becomes time-dependent.

III. THE POWER SPECTRUM OF THE

ELECTRIC FIELD

A. Relevant interaction picture observables and

states

In this section we look more closely at the power spec-
trum associated with the signal fE(t) in Eq. (30). To cal-
culate G(τ) we exploit the fact that the system possesses
a stationary state in the interaction picture. Within the
interaction picture the operator σx becomes

σx(t) = σ+ e−iω0t + σ− eiω0t . (38)

The eigenvectors of this operator are

|λ0,1(t)〉 =
1√
2

(

|0〉 ± eiω0t |1〉
)

, (39)

which clearly oscillate in time. We denote the projection
operator onto the time-dependent state |λi(t)〉

IPi(t) = |λi(t)〉〈λi(t)| . (40)

The eigenvalues of σx remain unchanged by the (unitary)
transformation defining the interaction picture, so the
eigenvalues of σx(t) are simply

λ0,1 = ±1 . (41)

In terms of the λi and IPi(t), the operator σx(t) affords
the spectral representation

σx(t) =
∑

i=0,1

λiIPi(t). (42)

B. The quantum correlation function

In order to calculate the correlation function G(τ) in
Eq. (8) we wish to interpret it in a way that is consistent
with the probabilistic nature of quantum theory rather
than classical theory. The product f(t)f(t + τ) in Eq.
(8) corresponds to two consecutive measurements — one
made at time t, and then another made at time t + τ .
The signal in which we are interested is fE(t) = 〈σx〉t
given in Eq. (30). In the following we envisage a specific
operational procedure, whose aim is to determine cor-
relations in the signal fE(t) between two different times.
With regard to this procedure the product fE(t)fE(t+τ)
is not interpreted as the product 〈σx〉t〈σx〉t+τ . We use
the notation 〈O; ρ〉 to denote the expectation value of the
operator O taken in the state ρ.

Let us consider first measurements of σx(t) made at
time t on an ensemble of identical atomic systems de-
scribed by the density matrix ρAI(t). The average value
of the observable σx(t) obtained via repeated measure-
ments over the entire ensemble would be

〈σx(t); ρAI(t)〉t =
∑

i=0,1

〈λi(t)| ρAI(t) |λi(t)〉λi (43)

where Eq. (42) has been used. The summand in the
above expression is the product of two numbers. The
first

ρAI,i(t) ≡ 〈λi(t)| ρAI(t) |λi(t)〉 (44)

represents the relative size of the subensemble of systems
for which λi was the measurement’s outcome. The out-
come λi, satisfies

λi = 〈σx(t); IPi(t)〉t , (45)

which simply states that the average value of measure-
ments made at time t, taken over the subensemble for
which λi was the outcome measured, is λi itself.

Let us now consider measurements made at time t+ τ .
The subensemble of systems for which the outcome λi

was obtained for the measurements made at t, is de-
scribed by the density matrix ρAI(t) = IPi(t). The same
subensemble at time t+ τ is therefore described by

ρAI(t+ τ) = Tτ (IPi(t)) (46)
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where the superoperator Tτ summarises the atomic time
evolution in Eqs. (33) and (34). For this subensemble the
average value obtained from measurements made at time
t+ τ is

〈σx(t+ τ); Tτ (IPi(t))〉t+τ =
∑

j=0,1

λjTr [IPj(t+ τ)Tτ (IPi(t))] ,

(47)

Using Eqs. (43) and (45), the product of the average
value measured at time t with that measured at time
t + τ , taken over the subensemble of systems for which
λi was the outcome measured at time t, is the product

Gi(t, τ) ≡ 〈σx(t); IPi(t)〉t〈σx(t+ τ); Tτ (IPi(t))〉t+τ . (48)

In the following, we interpret the product fE(t+ τ)fE(t)
as a sum of the Gi in Eq. (48), with each Gi weighted ac-
cording to the relative size of the subensemble for which
the outcome λi was found in the measurement at time
t. The appropriate weighting factors are nothing but the
ρAI,i(t) defined in Eq. (44). More succinctly, we assume
that

fE(t+ τ)fE(t) =
∑

i=0,1

ρAI,i(t)〈σx(t); IPi(t)〉t〈σx(t+ τ); Tτ (IPi(t))〉t+τ .

(49)

The above expression provides a measure of correlations
between measurements made at two different times t and
t+ τ . It is based on nothing but conditional expectation
values, with the averages calculated at time t+ τ condi-
tioned upon the outcomes of the measurements made at
the earlier time t. This constitutes one possible quantum
mechanical extension of the classical correlation function
fE(t+ τ)fE(t).
Using Eqs. (44), (45) and (47) we can now write

Eq. (49) as

fE(t+ τ)fE(t) =
∑

i,j=0,1

λiλjTr [ IPj(t+ τ) Tτ (IPi(t)ρAI(t)IPi(t)) ] .

(50)

The correlation function we are interested in is defined
classically in Eq. (8), but it can now be given in the
quantum setting using Eq. (50) as

G(τ) = lim
T→∞

1

2T

∫ T

−T

dt
∑

i,j=0,1

λiλj

×Tr [ IPj(t+ τ) Tτ (IPi(t)ρAI(t)IPi(t)) ] . (51)

Now we have all the equations we need to calculate the
power spectrum of the electric field.

C. Discussion

The method usually used to derive the Mollow spec-
trum is quite different to the procedure we have used
above in obtaining Eq. (51). Within the usual approach
one initially views the atom-field system as being closed.
This entails solving the Heisenberg equations for the pos-
itive and negative frequency components of the electric
displacement field in the multipolar gauge and EDA to
obtain an expression in terms of atomic operators for
the Glauber correlation function GGlau(τ) in Eq. (1).
One then invokes a rotating-wave approximation in or-
der to elicit normal-ordering of the atomic operators in
the final expression for GGlau(τ) [28]. The Mollow spec-
trum within the rotating-wave approximation is therefore
given by

GMol(τ) = 〈σ+(t+ τ)σ−(t)〉ss = 〈σ+(τ)σ−(0)〉ss (52)

with the last equality following from the homogeneity in
time of stationary correlation functions. Upon arriving
at Eq. (52) for the Mollow spectrum one typically uses
the Born-Markov master equation to calculate the expec-
tation value in Eq. (52) itself.
If the rotating-wave approximation, which identifies

the positive frequency component of the electric field with
the lowering operator σ− is avoided, the correlation func-
tion GMol(τ) is given instead by

GMol(τ) = 〈σx(t+ τ)σx(t)〉ss
= Tr[σx(t+ τ)Tτ (σx(t)ρAI(t))] . (53)

Since the expectation value above is stationary it is in-
dependent of t, so time-averaging the right-hand-side of
Eq. (53) leaves it invariant. Using Eq. (42), GMol(τ) in
Eq. (53) can therefore be written

GMol(τ) = lim
T→∞

1

2T

∫ T

−T

dt
∑

i,j=0,1

λiλj

× Tr [ IPj(t+ τ) Tτ (IPi(t)ρAI(t)) ] . (54)

Apart from the absence of an additional projection op-
erator IPi(t) within the argument of the superoperator
Tτ , this expression is the same as the right-hand-side of
Eq. (51). The two expressions are equal if the density
matrix ρAI(t) is diagonal in the {|λi(t)〉} basis. This how-
ever, is not the case for the stationary state ρss given in
Eq. (37). Despite the similarity between Eqs. (51) and
(54), in general, one cannot write GMol(τ) as a sum of
conditional products of expectation values as in Eq. (49).
It is important to recognise that the correlation function
in Eq. (51) that we employ is fundamentally different to
the correlation function GMol(τ). As a result there is no
reason for us to expect it to produce a similar spectrum.
As we will see in section IIID however, this does turn
out to be the case.

The operational meaning of an expression of the form
〈f(t+ τ)f(t)〉 is less forthcoming than that of a correla-
tion function of the form given in Eq. (51). The most ob-
vious interpretation requires that within the experiment
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itself, the signal f is physically split and one branch is
delayed by a time τ before the branches are recombined.
We show in section IIID that the spectrum in Eq. (51)
also yields a triplet spectrum. Thus, the single time aver-
age values of the electric field generated by the atom are
also correlated with the atomic level structure, despite
the fact that they cannot exhibit quantum interference.
The use of GGlau (or GMol) is therefore not absolutely
necessary.
In contrast to approaches that concentrate on calculat-

ing GMol(τ), we have assumed that the entire atom-field
system is open from the outset, and that it loses (free)
energy due to the presence of the photon-absorbing envi-
ronment. We have adopted this viewpoint at all levels of
our calculation, in the sense that it is this viewpoint that
leads us not only to Eq. (51), but that also underlies our
derivation of the Born-Markov master equation in Sec-
tion IID [15]. Furthermore, the correlation function that
we calculate does not require the use of more elaborate
experimental setups, which involve delaying part of the
signal being measured.

D. The power spectrum of the electric field

As we have seen in Section II, the density matrix of the
atom rapidly reaches a stationary state ρss. The time
averaging T → ∞ in Eq. (51) implies that the general
state ρAI(t) with which the quantity in Eq. (51) is to be
calculated, can be taken as ρss, since this is the state of
the atomic system at almost all times. Evaluating the
integrand in Eq. (51) with the help of Eqs. (33)–(37),
yields

G(τ) = lim
T→∞

1

2T

∫ T

−T

dt
[

cosω0t cosω0(t+ τ)e−Γτ/2

+ sinω0t sinω0(t+ τ)
(

A11(τ) + 2Im ρss01

× {A10(τ) [1− 2ρss00] + 2Im ρss01 [1−A11(τ)]}
)]

. (55)

It is straightforward to carry out the time average in Eq.
(55), which using the equalities

cosω0τ = lim
T→∞

1

T

∫ T

−T

dt cosω0t cosω0(t+ τ)

= lim
T→∞

1

T

∫ T

−T

dt sinω0t sinω0(t+ τ) (56)

gives

G(τ) =
1

2
cosω0τ

[

e−Γτ/2 +A11(τ) + 2Im ρss01

× (A10(τ)[1− 2ρss00] + 2Im ρss01[1−A11(τ)])
]

. (57)

Finally, using Eqs. (35) and (37) the above expression
can be written

G(τ) =
1

2

[

e−Γτ/2 +
(

β+ eiµτ + β− e−iµτ
)

e−3Γτ/4

+
4Γ2Ω2

(Γ2 + 2Ω2)2

]

cosω0τ (58)

where µ is defined in Eq. (36), and the coefficients β±

are given by

β± ≡ Γ4 + 4Ω4

2(Γ2 + 2Ω2)2
∓ iΓ

8µ

[

1− 12Γ2Ω2

(Γ2 + 2Ω2)2

]

. (59)

Substituting this result into Eq. (7) and neglecting a
sharp δ-peak due to the last term in Eq. (58), we finally
obtain the power spectrum S(ω) of the electric field gen-
erated by a resonantly-driven atomic system,

S(ω) =
2Γ

Γ2 + 4δ2
+ 2Re

(

3Γ− 4i(δ + µ)

9Γ2 + 16(δ + µ)2
β+

)

+2Re

(

3Γ− 4i(δ − µ)

9Γ2 + 16(δ − µ)2
β−

)

, (60)

where

δ ≡ ω − ω0 . (61)

As we shall see in the next section, this spectrum is dif-
ferent to the Mollow spectrum.

IV. COMPARISON WITH THE MOLLOW

SPECTRUM

A. The Mollow spectrum

As an alternative to the power spectrum considered
here, laser-driven atomic two-level systems are often
characterised by the so-called Mollow triplet of reso-
nance fluorescence [8, 10]. Since the spectrum we con-
sider has many similarities with Mollow’s spectrum, we
briefly summarise the main characteristics of the latter.
It is defined as the Fourier transform of the stationary
state correlation function in Eq. (52). Calculating the
expectation value in Eq. (52) with the help of the master
equations presented in the previous section yields [10]

SMol(ω) =
2Ω2

Γ2 + 2Ω2

[

4Γ

Γ2 + 4δ2

+4Re

(

3Γ− 4i(δ + µ)

9Γ2 + 16(δ + µ)2
β+
Mol

)

+4Re

(

3Γ− 4i(δ − µ)

9Γ2 + 16(δ − µ)2
β−
Mol

)]

(62)

with the frequencies µ and δ defined in Eqs. (36) and (61)
respectively, and with

β±
Mol ≡ − Γ2 − 2Ω2

4(Γ2 + 2Ω2)
∓ iΓ

16µ

[

1− 12Ω2

Γ2 + 2Ω2

]

. (63)

This spectrum has its maximum at the atomic transition
frequency ω0.
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(ω − ω0)/Γ

S(ω)
S(ω0)

SMol(ω)
SMol(ω0)

FIG. 1: The normalised power spectrum S(ω)/S(ω0) and the
normalised Mollow triplet SMol(ω)/SMol(ω0) in Eqs. (58)–(63)
as a function of ω for Γ = 108 Hz, ω0 = 1015 Hz, and Ω = 4Γ.

B. Comparison of both spectra

Comparing the equations above with the equations in
Section IIID, we immediately see several similarities be-
tween the power spectrum S(ω) associated with the elec-
tric field and the Mollow spectrum SMol(ω). Both spec-
tra exhibit three peaks with the central peak located at
ω = ω0. In the case of sufficiently strong driving, two
sidebands of equal height appear at ω = ω0 − µ and
ω = ω0 + µ. For weak driving, the sidebands vanish and
there is only a single peak. The main difference is a sig-
nificant reduction of the relative height of the sidebands
and a different dependence of the overall amplitude on
the laser Rabi frequency Ω. This is illustrated in Figs. 1
and 2 which show the ω-dependence of S(ω) (solid lines)
and SMol(ω) (dashed lines) for two different values of the
laser Rabi frequency Ω. In both figures the heights of the
central peaks have been normalised to unity. When Ω is
relatively small there is only a single central peak, but
for sufficiently strong laser driving, both spectra have
a three peak structure. This indicates that they both
contain similar information about the atomic dynamics.
In the case of the Mollow spectrum the appearance of
sidebands for sufficiently strong laser driving can be un-
derstood in terms of the nonlinear response of the atom,
which is due to the modulation of the dipole moment by
frequency Ω Rabi oscillations [7]. Fig. 1 shows that a
similar effect occurs for the electric field spectrum.

Another difference between S(ω) and SMol(ω) is illus-
trated in Fig. 3. This figure shows the dependence of
the height of the central peaks of both spectra on the
laser Rabi frequency Ω. The Mollow triplet is normalised
such that

∫

dω SMol(ω) equals the stationary state pho-
ton emission rate Iss of the laser-driven atomic system
[10, 29]. This means, its amplitude tends to zero, when

0

1

−4 −2 0 2 4

(ω − ω0)/Γ

S(ω)
S(ω0)

SMol(ω)
SMol(ω0)

FIG. 2: The normalised power spectrum S(ω)/S(ω0) and the
normalised Mollow triplet SMol(ω)/SMol(ω0) as a function of
ω for the same Γ and ω0 as in Fig. 1 but for Ω = 0.5Γ.

0

1

2

3

0 1 2

u
n
it
s
of

1/
Γ

Ω/Γ

S(ω0)

SMol(ω0)

FIG. 3: Comparison of the unnormalised heights of the
maximum peaks of S(ω) and SMol(ω) for Γ = 108 Hz and
ω0 = 1015 Hz.

Ω tends to zero. In contrast to this, S(ω) assumes its
maximum when Ω tends to 0. This means the spectrum
S(ω) is not a measure of the photon emission intensity
of the atomic source. A closer look at Eqs. (39) and (41)
shows that 〈E(x)〉t is non-zero, even when the atomic
system is in its ground state. When brought sufficiently
close, the atomic dipole moment is expected to exert a
force on a test charge. When this force is measured, the
atomic state changes accordingly either into |λ0(t)〉 or
into |λ1(t)〉. A measurement of the electric field spec-
trum would serve as a test of the environment-induced
decoherence model we have employed. It could therefore
show how environmental decoherence effects the electric
field generated by a driven atom.
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V. CONCLUSIONS

This paper calculates the power spectrum S(ω) associ-
ated with the electric field E(x) generated by a laser-
driven atomic two-level system. As a result of envi-
ronment induced decoherence the radiation field which
surrounds the atomic system is always in a mixed state
of the vacuum and one-photon states, at least, over a
coarse-grained time scale [11–14]. As a result, the only
non-zero contribution to the electric field signal 〈E(x)〉t
comes from the atomic dipole moment −er. In order to
detect the electric field signal the detector at the position
x should be placed a very small distance away from the
atomic source at 0. This is in principle feasible experi-
mentally using currently available technology [19–23, 30].

The derived expression for S(ω) in Eq. (60) has some
similarities with Mollow’s resonance fluorescence spec-
trum [8, 10, 29], but there are also several differences.
For sufficiently strong laser driving there is a central peak
as well as two sidebands. The relative height of the side-
bands is significantly reduced in the case of the electric
field spectrum (cf. Figs. 1 and 2). Moreover, the am-

plitude of this spectrum has a different dependence on
the laser Rabi frequency Ω (cf. Fig. 3). It assumes its
maximum when Ω tends to zero.
The correlation function G(τ) from which we have de-

rived the power spectrum depends on single-time field
averages 〈E(x)〉t only. We have demonstrated that quan-
tum effects can be understood in terms of these averages
despite the fact that they cannot exhibit quantum inter-
ference. The predicted spectrum S(ω) contains a similar
amount of information about the atomic system dynam-
ics as Mollow’s spectrum, but it relies on an altogether
different notion of quantum correlation function. Our
calculation therefore provides new insight into the dy-
namics of spontaneously emitting quantum optical sys-
tems in the presence of decohering environments. The
present discussion can be extended relatively easily to
more complex systems and alternative measurement sig-
nals f(t).
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