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Abstract Bubbling (ebullition) of greenhouse gases, particularly methane, from peatlands has been
attributed to environmental forcings, such as changes in atmospheric pressure. However, observations
from peat soils suggest that ebullition and environmental forcing may not always be correlated and that
interactions between bubbles and the peat structure may be the cause of such decoupling. To investigate
this possibility, we used a simple computer model (Model of Ebullition and Gas storAge) to simulate methane
ebullition from a model peat. We found that lower porosity peat can store methane bubbles for lengthy
periods of time, effectively buffering or moderating ebullition so that it no longer reflects bubble production
signals. Our results suggest that peat structure may act as a “signal shredder” and needs to be taken into
account when measuring and modeling ebullition.

1. Introduction

Methane (CH4) is a greenhouse gas with a global warming potential much greater than carbon dioxide
[Myhre et al., 2013], and a major source of naturally occurring CH4 is peatlands [Blodau, 2002]. Ebullition in
peat refers to the transport (to the ground surface) of CH4 bubbles that form in peat pore water. As
bubbles travel upward through a peat column, they can accumulate behind-existing bubbles lodged in
pore necks [Baird and Waldron, 2003; Strack et al., 2005; Kellner et al., 2006] or underneath woody layers or
well-decomposed layers of peat [Rosenberry et al., 2003; Glaser et al., 2004]. Where gas bubbles are not
trapped and the bubbles are emitted steadily, most of the CH4 in them will be readily consumed above
the water table within the oxic layer if the water table is not at or above the peatland surface [Rosenberry
et al., 2006]. However, if bubbles accumulate and are released episodically, the CH4 reaching the water
table may advect rather than diffuse through the oxic zone and bypass methanotrophic consumption
[Coulthard et al., 2009]. As such, these episodic ebullition events can become major sources of CH4

emissions from peat to the atmosphere and could be larger than emissions produced by diffusive and
plant-mediated transport [Baird et al., 2004; Glaser et al., 2004; Comas et al., 2011]. Recent developments in
field methods [Burrows et al., 2005; Comas and Wright, 2012] have made it possible to record CH4 ebullition
from boreal and subtropical peatlands at high temporal resolution. These advances have allowed researchers
to investigate linkages between ebullition and a range of environmental factors or forcings that affect CH4

production, consumption, and transport. For example, Goodrich et al. [2011] found cyclical—diurnal and
seasonal—variations in ebullition. However, they were unable to isolate the environmental variable(s)
responsible for diurnal cycles, although seasonal cycles were probably related to overall CH4 production as
mediated by peat temperature and the production of labile substrates. Ebullition may also be
characterized by noncyclical “spikes” in flux (episodic ebullition) that have been linked to processes that
alter bubble volume and mobility such as short-term (hourly) changes in atmospheric pressure [Tokida
et al., 2007, 2009; Comas et al., 2011] or longer-term (days to weeks) variations in water table position
[Glaser et al., 2004; Bon et al., 2014].

Studies have also shown that ebullition can occur in the apparent absence of environmental forcing and that
relationships between ebullition and environmental factors are not always clear-cut. For example,
Waddington et al. [2009] monitored the ebullition flux of CH4 from laboratory-incubated samples of peat
for 178 days. They recorded 339 pressure periods (periods during which atmospheric pressure was
consistently increasing or decreasing), but only in 28% of these periods did episodes of ebullition occur. In
addition, and contrary to Tokida et al. [2007] who found that falling atmospheric pressure was a trigger,
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increases in pressure can also cause ebullition [Comas and Wright, 2012, 2014; Klapstein et al., 2014]. It is also
possible that ebullition from peat may be similar to ebullition from lakes [Wik et al., 2013], where changes in
atmospheric pressure trigger large degassing events that exhaust the available store of gas. When this occurs,
ebullition from proximate changes in atmospheric pressure will be minimal.

Some of the differences between the studies cited above may be explained by differences in the
measurement and data analysis methods used by their authors. However, notwithstanding this note of
caution, a common theme of these studies is that ebullition data are often “noisy” with different
environmental forcings identified in different studies, which suggests that other controls on the system
need to be considered, with an obvious candidate being the structure of the peat [Comas et al., 2014;
Chen and Slater, 2015]. The structure of the peat and its down-profile variation will affect bubble storage
and movement and therefore how production and consumption influence fluxes from the peatland
surface. Structural effects are clear at large scales (e.g., tens of meters across peatlands and through the
whole peat profile), where layers of woody peat may act as barriers to upward bubble migration. Bubbles
accumulate below these barriers until the increase in buoyancy causes the barrier to rupture; the bubbles
are then released, after which the barrier reseals [Rosenberry et al., 2003; Glaser et al., 2004]. At smaller
scales (e.g., the upper ~30 cm of peat profile) and in peat in which woody layers are absent, Panikov et al.
[2007] observed episodic ebullition from peat cores in which there were clear diurnal oscillations in CH4

production at depths down to 20 cm. Although no mechanism was identified to explain why ebullition
could not be linked to the forcing, Panikov et al. [2007] suggested that the capacity of peat to store gas
and release it at a later time provided a possible explanation. In sediment systems, Jerolmack and Paola
[2010] observed similar behavior where even in simple physical models, a one-to-one correlation could
not be made between forcing and system response. They suggested that internal or autogenic processes
were responsible for “shredding” any discernible response to certain-sized external forcings [Jerolmack and
Paola, 2010].

The evidence from the peatland studies cited above suggests that the peat profile cannot be considered a
simple entity that responds linearly to CH4 production and consumption or to the processes that affect
production and consumption. It is difficult to examine the role of peat structure experimentally because of
problems imaging bubbles within peat over short time periods [Kettridge et al., 2011; Chen and Slater,
2015] and because of the difficulty in controlling the production signal within the peat profile. As an
alternative approach, we explored the effects of peat structure using a computer model that provides a
plausible representation of bubble dynamics in porous media [Ramirez et al., 2015]. Although not a
substitute for investigating real peat profiles, our model results suggest that peat structure does, indeed,
determine the degree to which CH4 production signals affect ebullition flux at the peatland surface and
helps identify ways storage effects may be investigated experimentally and thus incorporated into existing
wetland methane models.

2. Method

The cellular automaton Model of Ebullition and Gas storAge (MEGA) [Ramirez et al., 2015] was used. It was
chosen because (1) it is capable of simulating bubble storage and movement within porous media at large
spatiotemporal scales (>1m and >1month), (2) it can explicitly represent the spatial heterogeneity of
porous media, and (3) it produces magnitude and frequency distributions of ebullition similar to those
obtained from peat [Kellner et al., 2006; Goodrich et al., 2011; Stamp et al., 2013; Yu et al., 2014] (see
supporting information for details about model tests). The model conceptualizes peat as a two-
dimensional cellular grid. Peat solids, and therefore the pore structure, are represented as “shelves,” and
the number and size of these can be set according to the physical characteristics of the peat; highly
porous peat requires fewer shelves than denser, lower-porosity, peat (Figures 1a and 1b). The spaces
between the shelves may be occupied by free-phase gas or by water. The movement of gas bubbles
within the peat is governed by a simple rule set adopted from an avalanche model [Bak et al., 1987]. In
MEGA, gas accumulates under shelves in a manner akin to an inverted pile of idealized sand grains, and
the steepness of the pile determines if gas will “avalanche” upward to shallower shelves or whether it
remains stationary and accumulates. The avalanching process encapsulates the opposing forces of
buoyancy and surface tension that act upon free-phase gas within porous media [Corapcioglu et al., 2004;
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Ramirez et al., 2015]. Unlike the avalanche model of Bak et al. [1987], MEGA comprises collections of bubbles
under multiple shelves that may release their bubbles at different times. As bubbles are released from one
shelf, they may travel directly to the water table or become trapped under another shelf; therefore, in the
model, there is interaction between shelves (see supporting information for details about MEGA).

To test the idea that peat structure can shred environmental signals in ebullition, we used a series of model
scenarios to represent peats of varying pore structure and introduced a range of gas production signals into
the peat profiles at different depths. These production signals were chosen to represent different known
environmental forcings on methane/bubble production in peat. If evidence of the production signal
pattern is not present in the ebullition at the peat surface, our model peat has shredded the production
signal, thus severing any link between bubble production and release.

Our modeled peat profiles represent an area 1.5m wide and 1m deep (thick), with a grid cell size of
1mm×1mm which resulted in a model domain of 1,500,000 cells (Figure 1a). Published measurements of
Sphagnum branches (average shelf length = 5.7mm, standard deviation = 0.8mm) within a poorly
decomposed peat [Kettridge and Binley, 2008] were used to set the length of the shelves. The peat profile
was partitioned into two layers of equal depth/thickness to reflect the spatial variation in decomposition
often found in peats [Clymo, 1984]. The shallower layer represented less decomposed peat of greater
porosity, while the deeper layer was less porous to represent peat undergoing compression and more
advanced decomposition [Quinton et al., 2000, 2008]. Values of porosity used in the model were within
measured ranges from shallow peats (91–98%) [Kettridge and Binley, 2008, 2011; Parsekian et al., 2012].
Three model peat profiles were created, all with a shallow layer porosity of 95% and with a deeper layer
porosity of 95%, 93%, or 92%. In each layer, the shelves were positioned randomly.

Bubble production in MEGA was based on data from Stamp et al. [2013], who reported maximum, seasonally
averaged bubble fluxes of 709mLm�2 d�1 from Sphagnum lawns in a Welsh raised bog. Converting the field
measurements into model, CH4 production rates took into account that the modeled peat represents a two-
dimensional cross section rather than a three-dimensional volume. The smallest bubble within MEGA is 1mm2,
and this bubble size was selected to be similar in size to bubbles measured within peat (0.074–2.25 mm2)
[Kettridge and Binley, 2008]. We drove the model with four production signals based on the patterns
observed by Panikov et al. [2007], each comprising three different subsignals, as shown in Figure 2. These
subsignals represented diurnal bubble production, steady production, and spikes of production that were
each added to the modeled peat profile at three depth zones to reflect the spatial variability in CH4

production [Sundh et al., 1994; Frenzel and Karofeld, 2000; Strack and Waddington, 2008]. The diurnal signal

Figure 1. (a) Shelves randomly arranged to represent peat profile (1.5m wide, 1m deep) with higher porosity at shallower
depths (0.0–0.5m) and lower porosity at deeper depths (0.5–1.0m). (b) Inset of peat with shelves (in white) saturated with
water (in black).
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will be related to temperature changes in the peat profile affecting CH4 production and variations in root
exudation from vascular plants (exudates being a substrate for methanogens). The spikes of bubble
production are related to sudden reductions in atmospheric pressure or increases in temperature that
cause bubbles to come out of solution. Of the four main signals, one was strongly diurnal (SD), one weakly
diurnal (WD), one had large spikes concurrent with a strongly diurnal signal (LS), and one had small spikes
concurrent with a strongly diurnal signal (SS). Jerolmack and Paola [2010] showed that shredding is
sensitive to signal frequency. Given our focus on peatlands, we fixed the frequency, and varied the
amplitude of CH4 production signals to match those known to be realistic for peat; hence, we did not
consider a wider range (of possibly speculative) frequencies.

A simulation was run for every peat profile and production signal combination. With three peat profiles (low,
medium, and high porosity) and four production signals (SD, WD, LS, and SS), this resulted in a total of 12
simulations. During every model hour, a quantity of bubbles corresponding to the production subsignals
was added to the peat profile within the specified depth zone at random locations. To avoid edge effects,
bubbles were not added within 0.25m of the left- and right-hand edges of the profile. Using theoretical
relationships between bubble size and rise velocity within a porous medium [Corapcioglu et al., 2004], it
was estimated from median bubble size, calculated from a preliminary simulation, that bubble velocity
would be a constant 6mms�1. Ebullition flux was recorded at the top of the peat profile, which was also
the position of the model water table, at hourly intervals. As no peat in our model setups existed above
the water table, we did not simulate the consumption of CH4 by methanotrophic bacteria. Each peat
profile was driven by its production signal until the 10 day average ebullition flux stabilized, and output
data after this time period were analyzed.

For each simulation, 15,000 model hours of flux output were analyzed for evidence of periodicity by
estimating power spectra using a multitaper method [Thomson, 1982]. This method was chosen because it
performs a harmonic F variance-ratio test (F test) for each frequency and can be used to distinguish
between noise and significant peaks in spectra. Due to the large number of flux records, it is possible that
random fluctuations in flux can periodically occur and produce inflated F values. To account for this
artifact, Thomson [1990] suggests that significance levels for nonrandomness are set at 1–1/N, where N is
the number of flux samples. Using this recommendation, peaks in spectra were significant at the 99.99%

Figure 2. Methane production subsignals that are (1) weakly diurnal, (2) strongly diurnal, and (3) steady. (a) Strong diurnal
(SD) CH4 production signal decomposed into subsignals 1, 2, and 3, consisting of 50%, 25%, and 25% of the daily CH4
production, respectively. (b) Weak diurnal (WD) CH4 production consisting of 50% of SD subsignals. (c) Large spike (LS)
signal consisting of SD plus 200% increases in steady production occurring every 10 h. (d) Small spike signal (SS) with 100%
increases in steady production.
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level. Dominant peaks in spectra were located at frequencies corresponding to the production cycles every
24 h and spikes occurring every 10 h, and peaks in spectra ±1 h from those locations were also inspected
to account for any lag effects in flux.

3. Results

Gas storage measured at the conclusion of the three SD simulations clearly shows that decreasing peat
porosity increases gas storage (Figures 3a–3c); for peat of high, medium, and low porosity, the percentage
of the profile consisting of stored gas was, respectively, 19, 25, and 35. The effect of the additional gas
storage is evident in the magnitude and frequency of hourly ebullition fluxes that are strongly right
skewed (Figure 3d). Although the difference in total and mean fluxes between the three simulations is
minimal (<1%), which is to be expected (because, over time, model input (CH4 production) is equivalent
to model output (ebullition)), the lower-porosity peat is able to store more gas and produce extreme gas
flux events that rarely, or never, occur in peat of medium or high porosity. This result demonstrates that
structurally different peats can generate the same amount of ebullition but different kinds of ebullition. In
our model, lower-porosity peats produced more erratic ebullition, while higher-porosity peats generated
steadier ebullition.

Four out of the six diurnal simulations did not shred the diurnal production signal as can be seen in Figure 4,
where the highlighted spectrum peaks signify the occurrence of diurnal ebullition. Figures 4a–4c clearly show
that SD production signals are always measurable in gas flux at the peat surface (frequency~0.04, which is
nearly a 24 h cycle). For WD production, a signal was detectable in high-porosity peat (Figure 4d), but no
significant peaks in spectra were found for peat of medium and low porosity (Figures 4e and 4f).

Figure 3. Gas accumulation after simulating strong diurnal (SD) CH4 production in peat with a deep peat layer of (a) high,
(b) medium, and (c) low porosity. (d) Frequency plots of corresponding hourly ebullition flux. Bin sizes are 50 bubbles.
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Only two of the simulations with spiked signals produced ebullition with spiked fluctuations occurring every
10 h (frequency~0.1). This signal was noticeable from high-porosity peats (Figures 5a and 5d), but no
evidence of spikiness was noticeable in flux from medium- and low-porosity peats (Figures 5b, 5c, 5e, and
5f). Moreover, diurnal signals were detected in all spiked signal simulations except for the lowest-porosity
peat with the weaker spiked signal (Figure 5f).

4. Analysis and Conclusions

This study suggests that the link between environmental forcing and CH4 ebullition flux is dependant on peat
pore-scale structure. If structure had no or little impact, the bubble flux at the surface would mirror the
integrated production signals. Model peat with high porosity stores less gas, and fluctuations in gas
production or bubble mobility at depth translate into losses at the peat surface with minimal time delay.
Thus, the openness of the peat structure imparts minimal interference on the original bubble production
signal, and traces of this signal exist in the flux. In contrast, lower-porosity peat can entirely decouple
environmental forcing and flux response. The mechanism responsible for this decoupling is pore-scale gas
accumulation, storage, and release. In lower-porosity peat, large amounts of gas are stored within the peat
matrix and released at times unrelated to the original production fluctuation. This decoupling occurs in
simulations with weaker signals and medium- to low-porosity peats. A secondary effect of lower porosity
and greater bubble storage is the possibility of producing unsteady bubble flux containing more moderate
to large bubbling events (Figure 3d). The overall effect of these events is to produce background noise
within the bubble flux that further masks the presence of the bubble production signals.

Importantly, the porosity of the deep peat layers does not change dramatically (92–95%), but the resulting
signal shredding is very different. For example, a 2% difference in porosity can affect whether a diurnal
(Figures 4d and 4e) or spiky (Figures 5a and 5b) production signal is no longer present in the bubble flux.
In the model, this difference in peat porosity contributes to greater amounts of gas storage and more

Figure 4. Spectrum of CH4 flux resulting from (a–c) strong (SD) and (d–f ) weak (WD) diurnal production signals for peat with high, medium, and low porosity. The
triangles indicate significant spectrum peaks (frequency~0.04) that represent periodic flux response to diurnal input signal.
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signal shredding. Although no study to date has explicitly investigated if signal shredding occurs in peats, it
has been observed that small differences between measured peat porosities (1–4%) can double the amount
of gas stored [Strack and Mierau, 2010] and affect ebullition [Strack et al., 2006]. With gas storage in peats
being sensitive to small structural differences, it is likely that signal shredding will vary greatly over a
peatland, and this may explain the difficulty in correlating ebullition to environmental forcings. Lastly, we
find that, regardless of peat porosity, bubble flux from strong bubble signals, occurring diurnally or as
spikes, can be correlated to the environmental forcing causing the change in bubble production. Given
that peat structure imparts a strong influence on the timing and size of ebullition events, we suggest that
peat structure should always be quantified, and in locations where peat porosity is low or relatively low,
caution is taken when attempting to link ebullition to environmental forcings. We recommend that
additional experimental work on peat mesocosms be performed to better understand the effects of peat
structure on ebullition and environmental forcings. Evidence from our study also highlights the
importance of spatially representing peat pore structure and gas storage processes in wetland CH4

models. We suggest the inclusion of these processes in models to reduce uncertainty in CH4

emission predictions.
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