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Abstract

This paper presents a multiscale finite element homogenization technique (MFEH) for mod-
elling nonlinear deformation of multi-phase materials. A novel condensation technique to relate
force variations acting on the representative volume element (RVE) –involving antiperiodicity of
traction forces at RVE corners– and displacement variations on boundary-nodes is proposed. The
formulation to accommodate the condensation technique and overall tangent modulus is presented
in detail. In this context, the effective homogenized tangent modulus is computed as a function
of microstructure stiffness matrix which, in turn, depends upon the material properties and, geo-
metrical distribution of the micro-constituents. Numerical tests concerning plastic materials with
different voids distributions are presented to show the robustness of the proposed MFEH.

Keywords: Finite Element Method (FEM), Voids, Plasticity, Multiscale, homogenisation,
condensation technique

1. Introduction

The heterogeneous nature of materials has a significant impact on the observed macroscopic
behaviour of multi-phase materials. Their properties depend upon the size, shape, spatial distribu-
tion and material parameters of micro constituents and their respective interfaces. For instance, in
reinforced composites, stiff and strong phase inclusions of glass, graphite, boron, or aluminium ox-
ide, are added to epoxy resin, steel, titanium, or aluminium matrices to enhance strength, thermal
expansion coefficient and wear resistance of structures.

From an economical point of view, performing straight forward experimental measures on a
number of material samples of different sizes, for various geometrical and physical phase proper-
ties, volume fractions and loading paths is hardly feasible task. Therefore, there is a clear need
for modelling strategies that provide a better understanding of micro-macro structure property
relations in multi-phase heterogeneous materials. The last four decades have seen a development
of improved analytical and numerical models for heterogeneous materials.
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A transition from the microscopic properties to their macroscopic counterparts based on an
averaging principles is termed homogenization. The simplest method leading to homogenized mod-
ulus of heterogeneous material is based on the rule of mixture. This approach takes only one
microstructural characteristic into consideration: the volume ratio of the heterogeneities. A more
sophisticated method is the effective medium approximation, as established by Eshelby [1] and
further developed by Hashin [2], Mori and Tanaka [3] and more recently by Nan and Clarke [4].

Although some work has been done on extension of the self-consistent approach to non-linear
cases, significantly more progress in estimating advanced properties of composites has been achieved
by variational bounding methods (see [5, 6]). The variational bounding methods are based on
suitable variational (minimum energy) principles and provide upper and lower bounds for the overall
properties of the composite. Another approach is based on mathematical Asymptotic Expansion
Homogenization (AEH) theory, [7, 8, 9]. AEH is a perturbation technique based on the asymptotic
series expansion in ε, a scale parameter of a primary variable. The scale parameter is a ratio
between the length scales, represented by the relation between micro heterogeneities size and a
measure of macrostructure. It is represented by a very small positive number ε = l

L
≪ 1, see

[10, 11, 12, 13]. The asymptotic homogenization technique gives effective overall properties plus
local stress and strain values. However, the considerations are restricted to very simple microscopic
geometries and simple material models, mostly at small strains.

The unit cell methods represent another way to approach the analysis of multi-phase materials.
They appeared due to the complexity of microstructural mechanical and physical behaviour along
with the developments of computational techniques. These approaches have been used in a large
number of applications, see [14, 15, 16, 17, 18]. The unit cell methods provide information on the
local microstructural fields and effective material properties. Once the constitutive behaviour be-
comes nonlinear, it is extremely difficult to make assumption on a suitable macroscopic constitutive
format, see [19, 20, 21].

Most of the homogenization techniques aforementioned are not suitable for finite deformations
or complex loading paths, since they do not account for geometrical and physical changes in the
microstructure. In the Finite Element Method (FEM), the use of a single element capturing all
microstructural details in a numerical solution of macroscopic BVP becomes impractical. An alter-
native approach for homogenization of multi-phase heterogeneous materials, known as Multi-Scale

Computational Homogenization or Micro-Macro Modelling has been gaining considerable popular-
ity in the computational mechanics circles. Since the basic principles for the micro-macro modelling
of heterogeneous materials were introduced (see [22, 11, 23, 24, 25]), this technique has proved to
be the most effective way to deal with arbitrary physically non-linear and time dependent mate-
rial behaviour at micro-level. A number of recent works deal with various approaches and tech-
niques for the micro-macro simulation of heterogeneous materials. Among these, the contributions
[26, 27] are highlighted for analysis of polycrystalline materials. The multiscale modelling tech-
niques above do not lead to closed-form overall constitutive equations. However, they compute the
stress-deformation relationship at every macro point of interest by modelling of the microstructure
RVE corresponding to the macroscopic point. The advantages of multiscale techniques are the
following:

• They do not require constitutive assumptions on the macrolevel.
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• They enable the incorporation of finite deformations and rotations at both micro and macro
levels.

• They are suitable for nonlinear material behaviour.

• They provide the possibility to introduce detailed microstructural information, including ge-
ometrical and physical evolution, into the macroscopic analysis.

• Although our study is confined to the finite element method, they allow any modelling tech-
nique on the micro level.

The main disadvantage of multiscale techniques is the high computational cost. This concern
however can be overcome partially by parallel computation, see [28] for further details on this.

Herein, two of the forces in one node representing antiperiodic traction are condensed. This
approach leads to an innovative treatment of the problem. The paper is structured as follows:
Firstly, the necessary background is presented. Secondly, the novel condensation technique, associ-
ated tangent modulus, etc are described and formulation is developed in detail. Finally, numerical
tests are presented and compared with other results from the literature.

2. Macroscale and microscale

A homogenized macro-continuum with locally attached microstructures is considered herein.
The microstructure is denoted by B ⊂ R

3 with overall properties related to the macrocontinuum
B ⊂ R

3.

A point x ∈ B of the homogenized macromedium B ⊂ R
3 is represented as a microstructure

B ⊂ R
3. The tensors σ and σµ denote the macro and micro Cauchy stress tensor at x ∈ B and

y ∈ B, respectively. The Representative Volume Element (RVE) of the microstructure V ⊂ R
3

represents the part of the heterogeneous material consisting of the solid part B and the hole H, i.e.
V = B ∪ H and ∂B = ∂V ∪ ∂H. It is assumed the traction field on the surface of the holes in the
interior of RVE vanishes, i.e.

t(y , t) = 0 at y ∈ ∂H (1)

where t ≡ σµ ·n on ∂B is the traction field vector on the surface with outward normal n at y ∈ ∂B.

A discrete model of the macro and microstructure is considered in Figure 1. The overall macro-
scopic deformation ǫ is prescribed over the discretised RVE. The main idea of this procedure is based
on finite element (F.E.) discretisation. At every integration Gauss point of the macrostructure, a
discrete RVE microstructure is considered as representation of the macro Gauss point. Based on
the Finite Elements discretisation of the microstructure, the goal is to develop a procedure for
computing the overall tangent modulus C and macroscopic average stress σ at each macroscopic
integration point with locally attached microstructure.
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Figure 1: Micro to macro transition

3. Displacement field partition and matrix notation

The displacement field is divided into two parts u = u∗ + ũ where u∗ is the so-called Taylor

displacement which is expressed in its discrete form as,

u∗

j ≡ ǫyj j = 1 · · · n (2)

for the n nodes of the microstructure RVE. The displacement fluctuation ũ is the unknown for
every node of the discretised microstructure unit cell.

Henceforth, standard Finite Element matrix notation will be used, where the tensor entities so
far used, can be identified now in the form

ǫ ≡





ε11
ε22
2 ε12



 and uj ≡

{
u1
u2

}

j

(3)

with ǫ as matrix representation of macrostrain tensor and uj is the displacement field at node j of
the discretised unit cell V. Moreover, the averaged stress field σ and the force vector f j associated
with the microcell node j, are also defined in this notation as follows,

σ ≡





σ11

σ22

σ12



 and f j ≡

{
f1
f2

}

j

(4)
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The Taylor displacement u∗

j of the node j is computed in the following matrix form

u∗

j = D
T
j ǫ , j = 1 · · · n. (5)

where Dj is the coordinate matrix at node j of the microstructure is defined as,

Dj ≡
1

2



2 y1 0
0 2 y2
y2 y1




j

(6)

4. Discretised micro-equilibrium state and solution procedure

A procedure based in a Newton-Raphson scheme is given to find the equilibrium at the mi-
crostructure RVE at time step n + 1 assuming the system is already in equilibrium at time step
n. The general idea consists in taking the microstructure as ’frozen’ with macroscopic strain
ǫ = constant. Therefore, the variation of the Taylor displacement is zero during the iteration
du∗ = 0, because it is applied at the beginning of the process.

Before proceeding with description of the scheme, the incremental displacement field △u =
un+1−un can be additively decomposed thanks to the additive properties of the strain tensor ǫ as
follows,

△u = △u∗ +△ũ = △ǫ y +△ũ (7)

where △u∗ is the incremental Taylor displacement and △ũ is the incremental displacement
fluctuation. The general solution procedure is described as follows:

1. The initial incremental displacement guess △u0 is given as the incremental Taylor displace-
ment,

△u0 = △u∗ = △ǫ y (8)

In other words, the incremental macro strain △ǫ is fully prescribed at the first pseudo step,
so that, the Taylor displacement is fully prescribed as the initial guess. This means that the
initial displacement guess at time step n+ 1, u0

n+1, is given by,

u0
n+1 = un +△u0 (9)

Using the split displacement u = u∗+ ũ at time step n, the initial guess displacement is then
expressed as,

u0
n+1 = u∗

n+1 + ũn (10)

In the above it can be observed that the incremental Taylor displacement △u∗ is prescribed
entirely at the beginning of the procedure. Moreover, the initial displacement fluctuation is
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taken as the converged from the previous time step n. Therefore, ũ0
n+1 = ũn or in another

words the incremental fluctuation is zero during the initial guess △ũ = 0

2. Computation of the internal forces f int. This is computed with the incremental displacement
△u and the set of state variables {En+1,αn+1} at microscopic Gauss point level.

3. Check convergence ‖r‖ < εtolerance. This residual force r depends on the boundary constraint
applied on the RVE.

• IF ‖r‖ < εtolerance. EQUILIBRIUM. The solution is uk
n+1. END OF ITERATION

• ELSE GO TO NEXT STEP

4. Computation of the incremental internal fluctuation. Let assume that the differential fluctu-
ation is divided in two parts,

δũ =

{
δũr

δũd

}
(11)

where δũr are the independent d.o.f. and δũd are the dependent d.o.f. displacements of the
microstructure. Therefore δũd is known once δũr is computed. They are different depending
on the micro boundary constraint ( Linear or Periodic b.c. ). The Newton-Raphson iteration
is defined by,

Kr δũr = −r → δũr = −K−1
r r (12)

where r is the residual force andKr is the reduced matrix of the system. In Sections 6.5 and 7.7
particularisations for Linear and Periodic b.c. are given, respectively.
The updating of the incremental fluctuation is △ũ ←△ũ+ δũ and the incremental displace-
ment △u ←△u+ δũ
GO TO step 2.

Finally, when the microequilibrium is reached, the macro Cauchy stress σn+1 is computed from
the value of the boundary forces. This macro stress is used to compute the internal forces at the
macro level.

5. General average stress and overall tangent modulus computation

5.1. Average stress computation

Assuming no body forces in the expression for the average stress, in the discrete setting, t dA→
f ext
j , that is the infinitesimal force t dA becomes the finite force f ext

j at nodal position yj on the
boundary ∂V. Therefore, the average stress degenerates into the discrete sum

σ =
1

|V|

nb∑

j = 1

sym[f ext
j ⊗ yj] (13)

where nb is the number of nodes on the boundary ∂V. Using matrix representation this expression
becomes
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σ =
1

|V|

nb∑

j = 1

Dj f
ext
j (14)

where Dj is the coordinate matrix (6) evaluated at node j on the boundary of the discretised
microstructure RVE ∂V. The above expression can be rearranged in the following global expression

σ =
1

|V| Db f extb , (15)

where f extb is the external nodal force vector of the boundary nodes, and Db is the boundary coor-

dinate matrix defined by Db ≡
[
D
b
1 D

b
2 . . . D

b
nb

]
.

5.2. Overall tangent modulus computation

In the computational homogenization approach no explicit form of the constitutive behavior on
the macro-level is assumed a priori, so that the tangent modulus has to be determined numerically
by relations between variations of the macroscopic stress and variations of the macroscopic strain at
such integration macro Gauss point. This can be accomplished by numerical differentiation of the
numerical macroscopic stress-strain relation, for instance, by using forward difference approxima-
tions as suggested in [27]. Another approach is to condense the microstructural stiffness matrix to
the macroscopic matrix tangent modulus. This task is achieved by reducing the total RVE system
of equations to the relation between the forces acting on the boundary ∂V and the displacement
on the boundary. The innovative modelling of the anti-symmetry traction vectors at the nodes at
the corners leads to a nonconventional condensation, obtaining a novel effective macroscopic tan-
gent modulus. It is a direct condensation to obtain a relation between the variation of the forces
acting on the boundary (∂V) and the variation of the Taylor displacement on the boundary nodes
(du∗), which depends linearly of the macroscopic strain (dǫ). The total microstructural system of
equations that gives the relation between the iterative nodal displacement du and iterative nodal
external force vectors is

K du = df ext. (16)

With the displacement partition u = u∗ + ũ the system can be rearranged as follows,

K du = df ext ⇒ K du∗ +K dũ = df ext

The boundary constraints are then applied to this system in the following sections to condense the
system. This procedure gives the expression that relates the variation boundary external forces
df extb against the variation of the Taylor displacement du∗.

Finally, the overall tangent modulus C can be computed in its discretised F.E. matrix form,
using previous averaged stress expression (15), in the following way,
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C =
dσ

dǫ
=

1

|V| Db

df extb

dǫ
(17)

Particularisations of the computation of average macrostress and overall tangent modulus are
given for Taylor assumption, Linear b.c. and Periodic b.c. below.

6. Discrete form of the linear displacements boundary condition

In view of the discrete formulation of the boundary conditions outlined, the nodes of the mesh
are partitioned into those on the surface ∂V of RVE and those in the interior of V, see Figure 2.
In this mesh nb boundary nodes and ni internal nodes are distinguished.

Figure 2: Mesh for linear displacement on the boundary

6.1. Partitioning of algebraic equations

Partitioning of the current nodal displacements and nodal forces is given as,

u =

{
ui

ub

}
≡

{
Li u

Lb u

}
and f =

{
fi
fb

}
≡

{
Li f

Lb f

}
(18)

Here Li and Lb are the connectivity matrices, which define the interior contribution and the con-
tributions of the boundary nodes, respectively. These are Boolean matrices, i.e. they consist of
integers 0 and 1. Displacements ui and ub are gathered from u. Using these two vectors, a new u

is obtained as shown in (18).

In line with (18), the tangent stiffness matrix is rearranged as

K =
df int

du
=

[
kii kib

kbi kbb

]
≡

[
Li K L

T
i Li K L

T
b

Lb K L
T
i Lb K L

T
b

]
(19)

comprising contributions associated with internal nodes and nodes on the surface of the RVE.
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6.2. Linear displacement

At each node j of the boundary ∂V condition induces the discrete constraint, ũj = 0 j =
1 · · · nb. These constraints can be represented as a global boundary displacement vector ũb = 0.
Following matrix notation, the global coordinate matrix is defined as follows,

Dglobal,l ≡
[
Di Db,l

]
(20)

where Di and Db,l are the interior coordinate matrix and the boundary coordinate matrix, respec-
tively, given as

Di ≡
[
D
i
1 D

i
2 . . . D

i
ni

]
and Db,l ≡

[
D
b
1 D

b
2 . . . D

b
nb

]
. (21)

The matrices Di and Db,l are defined in terms of node coordinate matrices (6) for the interior and
boundary nodes, respectively. The Taylor displacement u∗ previously defined in u∗ = D

T
global ǫ for

the Taylor assumption, is now represented u∗ = D
T
global,l ǫ where Dglobal,l is the global coordinate

matrix (20) and ǫ is the matrix representation of the prescribed macroscopic strain (3). In this
model the variation of the Taylor displacement vector du∗ is represented as

du∗ = D
T
global,l dǫ (22)

that is, as a function of the variation of the macroscopic average strain vector dǫ.

6.3. Average macro-stress of linear b.c.

For this model the average stress is computed based on the matrix expression for the average
stress (15). Making use of the boundary coordinate matrix Db,l defined in (21) it can be rearranged
in the following global expression

σ =
1

|V| Db,l f
ext
b (23)

where f extb is the external nodal force vector of the boundary nodes defined in the partition (18).

6.4. Overall tangent modulus of linear b.c.

Using partitioning of the algebraic equations (18) and (19), the system (16) can be rewritten

[
kii kib

kbi kbb

]{
dui

dub

}
=

{
df exti

df extb

}
≡ K du = df ext (24)
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for the case when df exti = 0. The general procedure (5.2) is leading to the system (24) which is
rearranged as,

⇒ K dũ = df ext −K du∗ (25)

where Taylor displacement variation du∗ is given by (22) for the linear model. By introducing linear
displacement constraint in discrete form ũb = 0 into system (25), internal nodal displacement
fluctuation vector can be computed as,

dũi = −k−1
ii KI du

∗ (26)

KI ≡
[
kii kib

]
.

From the system (25), the variation of external boundary force vector is calculated

df extb = kbi dũi + KB du∗ (27)

KB ≡
[
kbi kbb

]
.

Inserting (26) into (27), the df extb vector is obtained

df extb = ( KB − kbi k
−1
ii KI ) du

∗ (28)

in terms of the variation of the Taylor displacement du∗. Compacting the right hand side of (28),
the variation of the external boundary force vector is expressed as

df extb = KB
lin du∗ (29)

where the condensed linear stiffness matrix KB
lin is defined as follows,

KB
lin ≡ KB − kbi k

−1
ii KI . (30)

Finally, insertion of the variation of the Taylor displacement (22) for the linear model, into (29)
identifies the boundary force vector

df extb = KB
lin D

T
global,l dǫ (31)
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df extb

dǫ
= KB

lin D
T
global,l (32)

which expresses the variation of the external boundary force vector df extb with respect to the vari-
ation of macroscopic strain dǫ.

The overall tangent modulus Cl for linear b.c., can be computed in its discretised F.E. matrix
form following the general expression given in (17) as

Cl =
dσ

dǫ
=

1

|V| Db,l

df extb

dǫ
. (33)

Substituting (32) into (33), the overall tangent modulus representation Cl is obtained

Cl =
1

|V| Db,l K
B
lin D

T
global,l (34)

Clearly, the overall tangent modulus Cl is given as a function of the boundary coordinate matrix
Db,l defined in (21), the condensed linear stiffness matrix KB

lin (30) and the global coordinate matrix
D
T
global,l outlined in (20).

Note that by using (34) the overall tangent modulus can be computed for heterogeneous material
with different microstructures. When using this overall tangent modulus the quadratic rate of
convergence is attained at macroscopic level.

6.5. Microequilibrium computation for linear b.c.

In Section 4 a general solution scheme for microequilibrium was given. In this section, the
particularisation of the microequilibrium procedure for linear b.c. is given.

The incremental Taylor displacement is given in matrix form as,

△u∗ = D
T
global,l△ǫ. (35)

The residual force r is taken as the difference between the internal and external force vectors for
the interior nodes as r = f inti − f exti . Assuming that in equilibrium f exti = 0 actual residual used for
linear b.c. r = f inti . Therefore, the differential fluctuation is given by the system (12) which now is
taking the following form,

Kii δũi = −f inti → δũi = −K−1
ii f inti (36)

and δũb = 0. The updated incremental fluctuation is then given by
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△ũi ←△ũi + δũi (37)

and △ũb = 0. The incremental displacement used to compute the internal force is updated by

△ui ←△ui + δũi (38)

and △ub does not change.

7. Discrete form of the periodic displacements and antiperiodic traction on the bound-

ary condition

In order to discretise the continuum model of the periodic boundary conditions, the nodes of
the mesh are partitioned in four groups outlined in Figure 3 :

Figure 3: Mesh for periodic displacement and antiperiodic traction on the boundary

1. ni interior nodes are distinguished.
2. np positive boundary nodes which are located at the top and right side of the microstructure

surface ∂V of RVE.

3. np negative boundary nodes which are located at the bottom and left side of the microstructure
surface ∂V of RVE.

4. nc node at the corners.

The number of node pairs (positive and corresponding negative nodes) on the boundary ∂V of RVE
are:

np =
nb
2
− 2 (39)

where nb is the total number of nodes on the boundary of RVE. Also, the number of corner nodes
in a 2D rectangular microstructure is four, i.e.

nc = 4 . (40)
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7.1. Partitioning of algebraic equations

In this case, the partition of the nodal displacements and forces is as follows

u =





ui

up

un

uc




≡





Li u

Lp u

Ln u

Lc u





and f =





fi
fp
fn
fc




≡





Li f

Lp f

Ln f

Lc f





(41)

Here Li, Lp, Ln and Lc are the connectivity matrices which define respectively: (i) the interior
contribution, (ii) the contribution of positive boundary nodes, (iii) the contributions from the
corresponding negative boundary nodes, and finally (iv) the contribution from the nodes at the
corners. In correspondence to (41), the tangent stiffness matrix is partitioned in the following way

K =
df int

du
=




kii kip kin kic

kpi kpp kpn kpc

kni knp knn knc

kci kcp kcn kcc


 ≡




Li K L
T
i Li K L

T
p Li K L

T
n Li K L

T
c

Lp K L
T
i Lp K L

T
p Lp K L

T
n Lp K L

T
c

Ln K L
T
i Ln K L

T
p Ln K L

T
n Ln K L

T
c

Lc K L
T
i Lc K L

T
p Lc K L

T
n Lc K L

T
c


 (42)

7.2. Periodic displacements and antiperiodic tractions

At each node pair j on the boundary ∂V+ ∪ ∂V−, the continuum condition induces the discrete
constraint

ũ+
j = ũ−

j , j = 1 · · · np (43)

The link between constraints for each pair of nodes can be compactly represented in a global form
as

ũp = ũn (44)

The displacement fluctuation at the corners is prescribed to zero to avoid the rigid body motion,

ũci = 0 , i = 1 · · · nc (45)

It can easily be proved that (45) agrees with the periodic continuum condition. The relation (45)
can be represented in a global form

ũc = 0 (46)
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At each node pair j on the boundary ∂V+ ∪ ∂V−, the continuum antiperiodic traction condition is
defined by means of discretisation as,

f(y+
j ) = −f(y−

j ) , f+
j = −f−

j , j = 1 · · · np (47)

Again these constraints can be represented in compressed form as

f extp = −f extn (48)

A very important additional equation to take into consideration is equilibrium condition, i.e.

4∑

i=1

f extci = 0 (49)

This vectorial equation agrees with the continuum antiperiodic traction condition, although, this
is not obvious. The underlying idea relies on the antiperiodicity of force in the corners that come
from the different continuum distributions.

Using the matrix notation introduced in Section 3, the global coordinate matrix for periodic b.c. is
re–defined as,

Dglobal,p ≡
[
Di Db,p

]
(50)

where Di is the interior coordinate matrix defined in (21) and the Db,p is the boundary coordinate

matrix for Periodic b.c. defined as

Db,p =
[
Dp Dn Dc

]
(51)

where Dp ≡
[
D
p
1 D

p
2 . . . D

p
np

]
, Dn ≡

[
D
n
1 D

n
2 . . . D

n
np

]
and Dc ≡

[
D
c
1 D

c
2 D

c
3 D

c
4

]
are

the positive boundary coordinate matrix, negative boundary coordinate matrix and corner coordinate

matrix, respectively.

Then, the Taylor displacement and its variation are given by,

u∗ = D
T
global,p ǫ (52)

du∗ = D
T
global,p dǫ , (53)
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7.3. Average macro-stress of periodic b.c.

Following the general procedure to compute average stress given in Section 5.1, the average
stress is computed, based on the matrix expression for the average stress (14), as follows

σ =
1

|V| [
np∑

j = 1

(D+
j − D

−

j ) f
+ext
j +

4∑

i = 1

Dci f
ext
ci ] (54)

By using the boundary coordinate matrix Db,p defined in (51), the expression for the average stress
(54) is rearranged in a global expression given by

σ =
1

|V| Db,p f extb (55)

where global matrix notation has been used to gain the compact form (55). Note that f extb is the
external boundary force vector which is obtained by gathering operation of the external force vector
to extract the positive f extp , negative f extn and corner f extc counterpart as in the expression

f extb =





f extp

f extn

f extc





7.4. Tangent modulus of periodic b.c.

After gathering and rearranging the displacement nodal vector u, the external nodal force vector
f ext and finally the stiffness matrix K, as defined in (41) and (42), respectively, the general system
(16) that relates the variations du and df ext is rearranged as follows




kii kip kin kic

kpi kpp kpn kpc

kni knp knn knc

kci kcp kcn kcc








dui

dup

dun

duc





=





df exti

df extp

df extn

df extc





≡ K du = df ext (56)

where df exti = 0 in equilibrium. Splitting the displacement vector u = u∗ + ũ and rearranging the
system (56), leads to

K dũ = df ext −K du∗ (57)

where the variation of Taylor displacement du∗ is given by (53). Again the general procedure of
Section 5.2 is followed to rearrange the system in the way described in (5.2). In this system the
displacement fluctuation variation vector dũ is considered as unknown. Applying into the above
split system (57) the following conditions: (i) periodic displacement condition (44), (ii) prescribed
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corners displacement (46), (iii) antiperiodic external force condition (48) leads to the following
system

[
kii kip + kin

kpi + kni kpp + kpn + knp + knn

]{
dũi

dũp

}
= −

[
kii kip kin kic

kpi + kni kpp + knp kpn + knn kpc + knc

]
du∗

which is described in the following compact form

K2

{
dũi

dũp

}
= − KF2 du∗ (58)

where dũi and dũp are the unknowns. Matrices K2 and KF2 are defined by

K2 =

[
kii kip + kin

kpi + kni kpp + kpn + knp + knn

]

KF2 =

[
kii kip kin kic

kpi + kni kpp + knp kpn + knn kpc + knc

]

Displacements dũi and dũp are then obtained by a simple matrix inversion of K2. Thus, they are
obtained in terms of the Taylor displacement variation du∗ as

{
dũi

dũp

}
= − K−1

2 KF2 du∗ (59)

Variation of boundary forces can be computed explicitly in terms of dũi and dũp and the Taylor
displacement variation du∗. Firstly, the external positive nodal force vector is

df extp =
[
kpi kpp + kpn

]{dũi

dũp

}
+

[
kpi kpp kpn kpc

]
du∗ (60)

where using the matrix notation

KP1 =
[
Kpi kpp + kpn

]
, kP2 =

[
kpi kpp kpn kpc

]
,

the following compact expression for df extp is obtained:

df extp = KP1

{
dũi

dũp

}
+KP2 du∗ (61)
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Once the positive nodal force vector variation was computed, the negative nodal force vector vari-
ation df extn is also obtained straight away, since the negative and positive vectors are opposite to
each other (48). Therefore

df extn = −df extp (62)

with df extp previously obtained in (61).

In addition, the external corner node vector variation df extc is computed as

df extc =
[
kci kcp + kcn

]{dũi

dũp

}
+

[
kci kcp kcn kcc

]
du∗ (63)

which can be represented in a compact form as

df extc = KC1

{
dũi

dũp

}
+KC2 du∗ (64)

where

KC1 =
[
kci kcp + kcn

]
KC2 =

[
kci kcp kcn kcc

]

However, in the sum of all corner forces (49) a condition has not been taken into consideration so
far. This condition implies that one of the corner forces is a dependant variable of the other corner
forces. Basically, all corner forces can not be computed at the same time using (64).

Hence, by using (49) df extc1 is computed as,

df extc1 = −(df extc2 + df extc3 + df extc4 ) (65)

The new matrices are defined K̂C1 and K̂C2, respectively. So that, the expression (64) is then
reduced to

df extc = K̂C1

{
dũi

dũp

}
+ K̂C2 du∗ (66)

where K̂C1 and K̂C2 are the direct condensation of matrices. By using (59), the variation exter-
nal boundary force vectors df extp , df extn and df extc can be expressed only in terms of the Taylor
displacement variation du∗

df extp = ( KP2 − KP1 K−1
2 KF2 ) du∗ = KP du∗ (67)
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df extn = − ( KP2 − KP1 K−1
2 KF2 ) du∗ = − KP du∗ (68)

df extc = ( K̂C2 − K̂C1 K−1
2 KF2 ) du∗ = K̂C du∗ (69)

Hence, the boundary force vector variation df extb can now be expressed in terms of the Taylor
displacement variation du∗. By adding (67), (68) and (69) it follows

df extb ≡





df extp

df extn

df extc



 =




KP

−KP

K̂C


 du∗ = KB

per du∗ (70)

This gives the expression

df extb = KB
per D

T
global,p dǫ (71)

where the Taylor displacement variation (53) was inserted into the equation (70). Therefore, the
desired expression is gained as

df extb

dǫ
= KB

per D
T
global,p (72)

which gives the variation of external boundary force vector df extb with respect to the variation of
macroscopic average strain matrix dǫ.

The overall tangent modulus Cp for Periodic b.c., can be computed in its discretised F.E. matrix
form following the general expression given in (17), that is

Cp =
dσ

dǫ
=

1

|V| Db,p

df extb

dǫ
(73)

where Db,p was defined in (51).

Substituting (72) into (73), the overall tangent modulus matrix representation Cp is obtained as

Cp =
1

|V| Db,p KB
per D

T
global,p (74)

Clearly, the modulus Cp is a function of the boundary coordinate matrix Db,p defined in (51), the
condensed periodic stiffness matrix KB

per and the global coordinate matrix Dglobal,p outlined in
(50). Note that with the above (74), the tangent modulus can be computed for heterogeneous ma-
terial with different microstructures RVE gaining the desired quadratic rate of convergence, for the
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Newton-Raphson solution procedure applied to solve the homogenized nonlinear macrostructure,
under periodic deformation and antiperiodic traction on the boundary of RVE model.

7.5. Antiperiodicity of forces at the corners

The antiperiodicity is represented by means of forces at the corners as depicted in Figure 4.
The superscripts indicate the following:

B Bottom (−)

T Top (+)

L Left (−)

R Right (+)

Figure 4: Discrete forces at the corners

The forces at the corners represent the discretization of the traction coming from the surrounding
continuum.

• Corner 1 (C1): fBc1 and fLc1

• Corner 2 (C2): fBc2 and fRc2

• Corner 3 (C3): fRc3 and fTc3

• Corner 4 (C4): fTc4 and fLc4
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There are two forces per corner making a total of 8 at the discretised RVE. These forces must
satisfy antiperiodicity. Therefore, the following 4 equations for antiperiodicity at the corners are
established as,

fBc1 = −fTc4
fBc2 = −fTc3
fLc1 = −fRc2
fLc4 = −fRc3

(75)

The resultant at each corner is also described on the Figure 4. Four additional relations are
obtained as follows,

fBc1 + fLc1 = fc1
fBc2 + fRc2 = fc2
fRc3 + fTc3 = fc3
fLc4 + fTc4 = fc4

(76)

Then, the system formed by the equations (75) and (76) is reduced to have only one force per
corner. This leads to,

fc1 + fc2 + fc3 + fc4 = 0 (77)

Equation (77) is the additional condition to apply to the system in order to compute the
tangent operator. (77) expresses the continuum antiperiodicity traction constraint and makes the
system to be in equilibrium.

7.6. Condensation of the d.o.f. corresponding to fc1

The equilibrium and antiperiodicity equation at the corners of the discretised RVE is given by
(77) which is imposed to compute the overall tangent modulus. The first two rows of KC1 and
KC2 (corresponding to the 2 dofs of fc1) have to be removed and recomputed by adding the other
6 rows (2 by 2) and, then, multiplied by -1. This process is visually described in Figure 5.

7.7. Microequilibrium computation for periodic b.c.

In Section 4 a general solution scheme for microequilibrium was given. In this section, the
particularisation of the microequilibrium procedure for periodic b.c. is given. The incremental
Taylor displacement is given in matrix form as,

△u∗ = D
T
global,p△ǫ (78)

The residual force r is taken as,
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Figure 5: Elimination and recalculation from KC1 and KC2 to K̂C1 and K̂C2

r =

{
f inti

f intp + f intn

}
−

{
f exti

f extp + f extn

}
(79)

Assuming that in equilibrium f exti = 0 and antiperiodicity of the boundary traction in discrete form
f extp + f extn = 0, the residual for periodic b.c. takes the form,

r =

{
f inti

f intp + f intn

}
. (80)

The differential fluctuation is given by the system (12) which takes the following form for
periodic b.c.

K2

{
δũi

δũp

}
= −

{
f inti

f intp + f intn

}
→

{
δũi

δũp

}
= −K−1

2

{
f inti

f intp + f intn

}
(81)

for differential displacement fluctuation for interior and positive nodes. Also taking into consider-
ation (46) and (44), the differential displacement fluctuation for negative and corners is computed
as,

δũn = δũp and δũc = 0 (82)

The updating of the incremental fluctuation is then given by

△ũi ← △ũi + δũi

△ũp ← △ũp + δũp

△ũn ← △ũp

(83)

and △ũc = 0. Finally, the incremental displacement to compute the internal force is updated as
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△ui ← △ui + δũi

△up ← △up + δũp

△un ← △up

(84)

and △uc remains constant.

8. Computation of elastic properties for a composite at small strain

The first numerical test consists of computation of effective elastic material properties. Square
microcells, in which fibres are periodically distributed, are considered composed of epoxy matrix
with Young’s modulus E = 3.13 GPa and Poisson’s ratio ν = 0.34. Glass fibre is embedded in the
matrix with Young’s modulus E = 73 GPa and Poisson’s ratio ν = 0.2.

The test has been carried out under plane strain analysis. In Figure 6 the ratio of effective shear
modulus over the matrix modulus G/Gmatrix is compared with analytically obtained properties
following Nemat-Nasser (Part I, chapter 8) [29].

A very similar response can be observed for less than 20% of the inclusion volume fraction.
Especially, the periodic assumption seems to be very accurate. Note that the Nemat-Nasser’s
analytical model is effective in predicting equivalent material properties for a low volume fraction
of the second phase inclusion. However, Nemat-Nasser’s model [29] does not cope well with large
fibre volumes.
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Nemat-Nasser

Linear

Periodic

Figure 6: Comparison of G

Gmatrix

for analytical solution of Nemat-Nasser and numerically obtained results.

9. Internally pressurised elasto–plastic circular plate at small strain

The second numerical test considered is an analysis of nonlinear material behaviour in small

strain. The test consists of a simulation of the behaviour of an internally pressurised circular metallic
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plate, see Figure 7. The analysis is carried out assuming plane stress conditions. Note that the
equality between the macroscopic strain and the average of the microscopic strain -imposed as an
average on the RVE- is satisfied by means of application of the Hill-Mandel principle or averaging
theorem. The von Mises perfect elastoplastic model is used to perform the simulation.

The properties of the material are as follows:

• Young’s modulus E = 210 GPa.

• Poisson ratio ν = 0.3.

• uniaxial yield stress σy = 0.24 GPa (perfect elastoplastic).

Figure 7: Internally pressurised circular plate. Quarter of circular plate mesh

The mesh for the macrostructure is shown in Figure 7. Due to symmetry only a quarter of the
circular plate is analyzed by employing 20 standard 8-noded quadrilateral elements with reduced
integration.

The pressure, P , prescribed on the inner surface, is increased gradually until collapse (limit)
load is reached. For the present problem (see Figure 8), plastic yielding starts at the inner surface
( with radial coordinate r = a ) and develops gradually, in the form of a circular plastic front (
with radius c ), towards the outer face ( r = b ). Collapse occurs when the plastic front reaches the
outer face ( c = b ) and the entire cylinder can expand indefinitely without further increase in the
applied pressure.

Initially, the pressure is applied during elastic regime until P0 is reached at which plastic yielding
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begins. In this region the radial displacement of the outer surface is a linear function of P , given
by:

ub =
2Pb

E( b
2

a2
− 1)

P < P0 (85)

A closed-form in the plastic region, has been derived by Lubliner [30]. It relates the applied
pressure to the radius c of the plastic front by means of the expression:

P

Y
= ln

(
c

a

)
+

1

2

(
1− c2

b2

)
, (86)

where, for the von Mises model Y = 2σy/
√
3. Plastic yielding begins when c = a, which corresponds

to the yielding pressure:

P0

Y
=

1

2

(
1− a2

b2

)
. (87)

In the plastic regime ( P ≥ P0 ), the radial displacement, ub, is given by

ub =
Y c2

Eb
P < P0 (88)

where c can be evaluated as an implicit function of P through (86).

Figure 8: Internally pressurised circular plate. Partially plastified cross section
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9.1. Internal pressure vs outer surface displacement diagrams

In the following figures, diagrams showing the applied pressure P versus radial displacement at
the outer face of the plate are plotted together with the closed-form solution [30] described above.
The following diagrams are displayed:

• Single scale analysis: Closed form and FEM analysis

• Two multi-scale analyses. RVE: Square microstructure discretized by 8-noded quadrilateral
elements with reduced integration. Every cell has a void in the middle with variable shape
and volume fraction, as follows:

– Microstructure 1: Circular void in the middle of the RVE with 5 % volume fraction.
nelements = 126 , nnodes = 438.

– Microstructure 2: Square void in the middle of the RVE with 5 % volume fraction.
nelements = 128 , nnodes = 448.

nelements = 128 , nnodes = 448.

– Microstructure 3: Circular void in the middle of the RVE with 15 % volume fraction.
nelements = 128 , nnodes = 448.

– Microstructure 4: Square void in the middle of the RVE with 15 % volume fraction.
nelements = 160 , nnodes = 560.

These microstructures are depicted in Figure 9.

In Figures 10, 11 and 12 results are shown for different constraints on the microcell and 5 and
15% void fraction, respectively. Curved denoted Lubliner-1990 represents the closed-form solution
described above and given in [30]. FEM curve shows a single scale analysis of the problem. The
agrement between the closed form and FEM solution is excellent. Furthermore, two scales analysis
curves are depicted for Taylor assumption, linear b.c and periodic b.c. The comments are as follows:

• Taylor assumption gives the stiffest response. Then comes linear b.c. while the softest
response is given by periodic b.c. This was expected from the nature of the constraints.

• Taylor assumption and linear b.c. show insensitivity at macroscopic level for different void
shape. Diagrams for circular and squared void shape are overlapped.

• Periodic b.c. is the only one which shows sensitivity to the void size. It can be observed
that circular void gives slightly stiffer response than the square one, which agrees with the
expected response. Moreover, the difference is bigger when the void size is increased.

The diagrams 10, 11 and 12 show the results depending upon Taylor assumption, linear b.c.,
periodic b.c., and void volume fraction. It can be observed that the material response softens when
the void volume fraction increases. The Taylor assumption gives less sensitive results than linear
b.c. and periodic b.c..
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Figure 9: Microstructures for analysis of internally pressurised circular plate
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Figure 10: Internally pressurised circular plate. Pressure vs displacement (ub) diagram for the Taylor assumption
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Figure 11: Internally pressurised circular plate. Pressure vs displacement (ub) diagram for the linear b.c.
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Figure 12: Internally pressurised circular plate. Pressure vs displacement (ub) diagram for the periodic b.c.

9.2. Effective Plastic Strain Distribution

In this section several figures representing effective plastic strain distribution are depicted for
a quarter of the cylinder with some representative microstructures. The plastic front evolves in
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a circular way which agrees with the symmetry of the problem and the analytical solution given
earlier [30].

In Figure 13 a Microstructure 1 is considered under the Taylor assumption. Two different stages
are depicted at different values of internal pressure P = 140 and P = 175MPa, respectively. The
circular evolution of the plastic front at macroscale level can be observed. For P = 175MPa a slight
distortion of the plastic front is visible as the load approaches the limit value.

In Figures 14(a) and 14(b) the results for the linear b.c. are shown for Microstructure 1 for
values of internal pressure of P = 100 and P = 160MPa, respectively, while Figures 15(a) and 15(b)
give the result for the periodic b.c. for values of internal pressure of P = 95 and P = 150MPa,
respectively. The development of shear bands is observed in these figures.

Figure 13: Effective plastic strain for the Taylor assumption. Microstructure: circular void at 5% volume fraction

(a) P = 100 MPa (b) P = 160 MPa

Figure 14: Effective plastic strain distribution for the linear b.c. Microstructure 1: circular void at 5% volume fraction
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(a) P = 95 MPa (b) P = 150 MPa

Figure 15: Effective plastic strain distribution for the periodic b.c. Microstructure 1: circular void at 5% volume
fraction

In Figure 16 the Microstructure 2 is considered under the Taylor assumption. Again two different
stages are depicted for different values of internal pressure P = 140 and P = 175MPa, respectively.
For P = 175MPa a slight distortion of the plastic front is visible as the load approaches the limit
value.

In Figures 17(a) and 17(b) the results for the linear b.c. are shown for Microstructure 2 for
values of internal pressure of P = 100 and P = 160MPa, respectively, while Figures 18(a) and 18(b)
give the result for the periodic b.c. for values of internal pressure of P = 95 and P = 150MPa,
respectively. The development of shear bands is observed in these figures.

Figure 16: Effective plastic strain for the Taylor assumption. Microstructure: squared void at 5% volume fraction

In Figure 19 the Microstructure 3 is considered under the Taylor assumption. Two different
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(a) P = 100 MPa (b) P = 160 MPa

Figure 17: Effective plastic strain distribution for the linear b.c. Microstructure 2: square void at 5% volume fraction

stages are depicted for different values of internal pressure P = 115 and P = 160MPa, respectively.
The circular evolution of the plastic front at macroscale level is shown. Again, for P = 160MPa a
slight distortion of the plastic front is visible as the load approaches to the limit value.

In Figures 20(a) and 20(b) the results for the linear b.c. are shown for Microstructure 3 for
values of internal pressure of P = 100 and P = 130MPa, respectively, while Figures 21(a) and 21(b)
give the result for the periodic b.c. for values of internal pressure of P = 100 and P = 120MPa,
respectively. The development of shear bands is observed in these figures.

In Figure 22 a Microstructure 4 is considered under the Taylor assumption. Two different stages
are depicted for different values of internal pressure P = 115 and P = 160MPa, respectively. For
P = 160MPa a slight distortion of the plastic front is visible as the load approaches the limit value.

In Figures 23(a) and 23(b) the results for the linear b.c. are shown for Microstructure 1 for
values of internal pressure of P = 90 and P = 130MPa, respectively, while Figures 24(a) and 24(b)
give the result for the periodic b.c. for values of internal pressure of P = 75 and P = 115MPa,
respectively. The development of shear bands is observed in these figures.

9.3. Residuals evolution per iteration in macro and micro levels

In this section tables with the Euclidean norm RM of the residual are reported associated with
the Newton iterations of the macro- and micro-equilibrium. The residual norm evolution is shown
for the microstructure that corresponds to the macro Gauss point in the bottom right corner.

In the following tables the Euclidean norm RM of the residual is reported associated with the
Newton iterations of the macro-equilibrium. The macro-residual is normalised and calculated as
RM = 100 × ‖Fint − Fext‖/‖Fext‖. The micro residual is computed in different ways depending
on the constraint. Obviously in Taylor assumption there is no micro BVP so the residuals are not
shown.
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(a) P = 75 MPa (b) P = 145 MPa

Figure 18: Effective plastic strain distribution for the periodic b.c. Microstructure 2: square void at 5% volume
fraction

Figure 19: Effective plastic strain for the Taylor assumption. Microstructure: circular void at 15% volume fraction

The residual for linear b.c. is evaluated as Rµ = 100 × ‖r‖/‖f int‖ where r is given as r = f inti .
The residual for periodic b.c. is evaluated as Rµ = 100 × ‖r‖/‖f int‖ where r was given in (80).

Clearly, the quadratic rate of asymptotic convergence can be observed in the macro and microscale
for both Linear and Periodic b.c.’s. Also the Taylor assumption shows quatratic rate of convergence
in macroequilibrium.

Note that the microstructure in Figures 14 to 24 is rotated in order to keep axisymmetric
conditions as much as possible. The RVEs are not arbitrarily rotated. They are rotated in such an
angle that they have imposed the same relative macroscopic deformation of another RVEs placed
at the same distance from the centre of the cylinder. The symmetry is not possible to keep it 100%.
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(a) P = 100 MPa (b) P = 130 MPa

Figure 20: Effective plastic strain distribution for the linear b.c. Microstructure 3: circular void at 15% volume
fraction

Macro-step RM

1 2.049263×10−02

2 1.340442×10−06

3 1.676496×10−13

Table 1: Evolution of Residual norm at the Macroscale (RM) for Taylor constraint assuming Microstructure 3 (15%
circular void). Increment of internal pressure P = 115-116 MPa

In Taylor it is more obvious since it is presented at larger pressure.

10. Conclusion

The proposed numerical multiscale homogenization approach MFEH is a versatile tool to es-
tablish micro-macro property structure relations in materials where the collective behaviour of
multi-phases is not possible to predict by any other method. The main novelty of MFEH lies in the
way that boundary-node forces at the corners are condensed in order to achieve a macro-consistent
tangent operator: anti-periodic boundary conditions in terms of traction vectors at the corners
of the RVE leading to quadratic rate of convergence in the Macrostructure. The new effective
macroscopic tangent modulus is consistent with the boundary conditions. The results on nonlin-
ear materials –with voids in the microstructure– proved the robustness and effectiveness of the
proposed MFEH.
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(a) P = 100 MPa (b) P = 120 MPa

Figure 21: Effective plastic strain distribution for the periodic b.c. Microstructure 3: circular void at 15% volume
fraction

Figure 22: Effective plastic strain for the Taylor assumption. Microstructure: squared void at 15% volume fraction

33



(a) P = 90 MPa (b) P = 130 MPa

Figure 23: Effective plastic strain distribution for the linear b.c. Microstructure 4: square void at 15% volume fraction

(a) P = 75 MPa (b) P = 115 MPa

Figure 24: Effective plastic strain distribution for the periodic b.c. Microstructure 2: square void at 5% volume
fraction
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micro Rµ Macro RM

1 2.947000×10−00

2 7.483573×10−01

3 4.572174×10−02

4 1.965543×10−04

5 1.635712×10−09 1 3.569328×10−02

1 2.985146×10−00

2 1.255292×10−00

3 8.916588×10−02

4 6.666795×10−04

5 7.972844×10−09 2 4.463401×10−06

1 2.985146×10−00

2 1.255292×10−00

3 8.916583×10−02

4 6.666805×10−04

5 7.972878×10−09 3 4.152282×10−12

micro Rµ Macro RM

1 7.570612×10−00

2 2.273063×10+01

3 1.220398×10−00

4 1.857460×10−01

5 4.258028×10−03

6 9.028518×10−07

7 5.974417×10−12 1 6.801729×10−02

1 7.685538×10−00

2 2.287550×10+01

3 1.240264×10−00

4 1.914852×10−01

5 1.531063×10−02

6 3.075176×10−06

7 1.719892×10−11 2 6.902391×10−04

1 7.685065×10−00

2 2.287559×10+01

3 1.240250×10−00

4 1.914694×10−01

5 1.530919×10−02

6 3.074341×10−06

7 1.719583×10−11 3 3.157912×10−09

1 7.685065×10−00

2 2.287559×10+01

3 1.240250×10−00

4 1.914694×10−01

5 1.530919×10−02

6 3.074341×10−06

7 1.718875×10−11 4 1.687747×10−13

aLinear b.c. bPeriodic b.c.

Table 2: Evolution of Residual norm at micro (Rµ) and Macroscale (RM) for Linear b.c. and Periodicb.c. assuming
Microstructure 3 (15% circular void). Increment of internal pressure P = 101.3-101.8 MPa and P = 111.01- 111.51
MPa, respectively.
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