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Influence of flow containment and substrate entrainment 

upon sandy hybrid event beds containing a co-genetic mud-

clast-rich division 

S. J. Southern a1 *, M. Patacci a2, F. Felletti b3, W. D. McCaffrey a4 

a Turbidites Research Group, School of Earth & Environment, University of Leeds, Leeds, 

LS2 9JT, United Kingdom 

b Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34, 

20034 5 Milano, Italy 

Abstract 

Individual sandstone beds containing a co-genetic mud-clast-rich (MCR) division 

are being increasingly described from the distal reaches of many deep-water fan 

systems. These deposits, termed hybrid event beds, are considered to record a 

flow whose composition and rheology changed significantly to become 

increasingly more argillaceous (clay-rich), MCR and turbulence-suppressed during 

the deposition of a single event bed. Studies of confined systems, in which gravity 

flows were affected by confining sea-floor topography, have documented similar 

deposits recording turbulence suppression in proximity to confining sea-floor 

topography (e.g., basin margins). In new research from a confined, contained 

system from the Castagnola Basin of NW Italy, lateral transects of individual 

sandstone beds 5 km in extent show that individual sandstones beds contain a co-

genetic MCR division which is often; 1) extensive across the basin rather than 

localised adjacent to confining topography; 2) exhibits rapid, significant and 

repeated variation in depositional character over short length scales (tens to 

hundreds of metres), specifically in terms of the thickness of co-genetic MCR 
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divisions and the size and abundance of clasts contained within them; and 3) 

exhibits variation in depositional character over larger length scales (>1 km) which 

is non-systematic in relation to palaeoflow direction or increasing proximity towards 

the counter slope of the downstream confining northern basin margin. A suite of 

factors within the Castagnola Basin is thought to have resulted in the deposition of 

these co-genetic MCR divisions whose thickness and distribution are less 

predictable in relation to confining sea-floor topography than those described from 

other confined uncontained settings. Specific factors include; 1) recent and 

voluminous entrainment of muddy substrate at seemingly random locations across 

the basin floor and their support and transport within a high sediment concentration 

gravity flow; and 2) containment (ponding) of gravity flows within a confined basin, 

which is thought to have established extensive and complex three dimensional flow 

dynamics across the basin following flow interaction with multiple basin margins. 

This research highlights the role of entrainment of muddy substrate and 

subsequent transport processes of muddy substrate for developing co-genetic 

MCR divisions, as well as the importance of understanding the degree of 

containment depositional systems experienced when considering the spatial 

distribution of depositional facies, and thus reservoir quality, in topographically 

complex settings. 

Key words: hybrid event bed; ponded flow; mud-clast-rich deposits; onlap facies; 

turbidite; flow confinement  

1. Introduction 

Hybrid event beds (HEB) are now recognised as a significant component of deep-

water systems from a variety of settings (e.g., Haughton et al., 2003, 2009; Talling 

et al., 2004, 2012a; Amy and Talling, 2006; Davis et al., 2009; Hodgson, 2009; 

Muzzi Magalhaes and Tinterri, 2010; Patacci et al., 2014).  Frequently these 

deposits comprise a mud-clast-rich (MCR) argillaceous (clay-rich) sandstone 
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which directly overlies unstratified to stratified relatively cleaner (clay-poor) 

sandstones; both facies are co-genetic, having been emplaced during a single 

gravity-driven current event (Haughton et al., 2003, 2009; Talling et al., 2004; 

Talling, 2013). HEBs are considered to reflect deposition beneath a passing flow 

event which evolved significantly in terms of composition and rheology (e.g., 

becoming increasingly argillaceous, MCR and turbulence- suppressed (Haughton 

et al., 2009)).  Such flow evolution has been attributed to distal or lateral flow 

transformations, following significant entrainment of a muddy substrate, and or 

declining turbulence energy (e.g., Ricci Lucchi and Valmori, 1980; Haughton et al., 

2003, 2009; Amy and Talling, 2006; Barker et al., 2008; Hodgson, 2009; Muzzi 

Magalhaes and Tinterri, 2010; Patacci et al., 2014).  HEBs are of great significance 

as they are characterised by marked heterogeneity in depositional character, and 

thus reservoir quality, on an intra-bed scale (e.g., Sylvester and Lowe, 2004) and 

can be an indicator of cleaner, better reservoir quality sandstone farther upstream 

(e.g., Haughton et al., 2003; Hodgson, 2009). 

Typically HEBs have been described from the distal parts of unconfined 

systems with relatively subdued sea-floor topography (e.g., Haughton et al., 2003, 

Amy and Talling, 2006; Hodgson, 2009); however HEBs and other deposits 

interpreted to record increasingly argillaceous, MCR and turbulence suppressed 

deposition during a single flow event have been recognized in more 

topographically complex settings (e.g., Barker et al., 2008; Patacci et al., 2014). In 

such settings sea-floor topography can modify gravity current transport direction, 

velocity and deposition (e.g., Kneller et al., 1991; Kneller and McCaffrey, 1999; 

Jackson and Johnson, 2009; Athmer and Luthi, 2011; Gamberi and Rovere, 2011); 

herein termed flow confinement. Additionally the term flow containment can be 

applied where sea-floor topography encircles and retains a flow within a 

depositional low (e.g., a ponded mini-basin), and the size or thickness of the flow 
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is sufficient such that it feels the effects of this containment (Van Andel and Komar, 

1969; Pantin and Leeder, 1987).  Thus depositional systems in this study are 

classified as either unconfined and uncontained (UU), confined and uncontained 

(CU), or confined and contained (CC; Fig. 1). Contained systems are always 

associated with flow confinement processes due to the presence of encircling 

confining sea-floor topography in such settings. From a CU setting Barker et al. 

(2008) document the increasing thickness of argillaceous sandstone at the 

expense of underlying co-genetic relatively clean sandstone within the same bed 

towards a laterally confining basin margin; they interpret such a depositional trend 

to record increasing turbulence suppression due to flow thinning with distance 

towards the lateral basin margin. Lateral variation in the depositional character of 

individual beds towards their onlap onto a confining basin margin has also been 

documented in the outcrop from a CU system (Annot Sandstone, SE France; 

Patacci et al. 2014). Patacci et al. (2014) describe the systematic development and 

thickening of a co-genetic MCR division, and the development of a HEB, at the 

expense of mud-clast-poorer, cleaner sandstone within the same bed locally (<1 

km) towards the confining basin margin. They interpreted such a depositional trend 

to result from the localized confining effects of the basin margin. Observations from 

such studies suggest that forced flow transformation adjacent to confining 

topography can result in development of a predictable deposit character and 

depositional trends towards such topography; such onlapping deposits are of great 

importance where they form stratigraphic traps in hydrocarbon reservoirs. This 

study presents examples of HEB depositional character and distribution within a 

CC setting and demonstrates that their distribution may not be predictable where 

flow containment occurs in addition to flow confinement. Our observations highlight 

the role of muddy substrate entrainment and the combined effects of flow 

confinement and containment upon gravity flow dynamics and deposit character, 
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and thus reservoir quality distribution, and how these might vary in topographically 

complex settings with differing degrees of flow containment. 

2. Geological Setting 

The Tertiary Piedmont Basin of NW Italy was an episutural basin formed during 

late Cretaceous to late Eocene Meso-Alpine collision of the European plate and 

Adria micro-plate (Ricci Lucchi, 1986; Biella et al., 1992; Maino et al., 2013) (Fig. 

2a-c). The eastern Tertiary Piedmont Basin contains a late Eocene to early 

Miocene deep-water turbiditic succession (c. 3000 m thick, Fig. 2a) with several 

major unconformities, most common earlier in the succession, recording regional 

tectonic events that caused important changes in basin physiography (Cavanna et 

al., 1989; Di Giulio and Galbiati, 1993). Transpressive motion along the E-W 

trending Villalvernia-Varzi line in the easternmost Tertiary Piedmont Basin during 

the Chattian-Aquitanian folded Oligocene strata to form the asymmetric, ENE-WSE 

trending Castagnola sub-basin (Ibbeken, 1978; Andreoni et al., 1981; Cavanna et 

al., 1989; Di Giulio and Galbiati, 1993) (Fig. 2b, c) 

Sediment gravity currents entered the Castagnola Basin from the SW 

(Stocchi et al., 1992) and emplaced the c. 800 m thick Castagnola Formation which 

onlapped the underlying Rigoroso Formation (Cavanna et al., 1989; Andreoni et 

al., 1981; Di Giulio and Galbiati, 1993) (Fig. 2a-c). During emplacement of the 

Costa Grande Member, termination of activity on the Villalvernia-Varzi line around 

the Chattian-Aquitanian boundary forced a change from deposition of laterally 

offset, stacked sand bodies, to simple sheet-like deposits (e.g., sub-units A-H and 

sub-unit I, respectively, of Felletti, 2002, 2004b); the latter style of deposition 

persisted throughout the remainder of the Costa Grande Member (Stocchi et al., 

1992; Baruffini et al., 1994). Outcrop upstream (south) of the basin is sparse, and 

thus little is known of the shelf and feeder system to the Castagnola Basin.  

Estimates of the basin width (c. 11 km) and basin length downstream (c. 5 km) are 
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constrained by the extent of Costa Grande Member deposits. However, this basin 

area would have necessarily increased during progressive infill of a basin with 

inclined (i.e., non-vertical) basin margin slopes. Gravity currents emplacing the 

Costa Grande member were contained (ponded) within the basin, resulting in the 

development of thick mud caps between beds (Stocchi et al., 1992; Baruffini et al., 

1994), palaeocurrent indicators of flow reflection and deflection at the downstream 

counter slope of the northern basin margin, and a lack of comparable correlative 

strata beyond the basin (Stocchi et al., 1992; Felletti, 2002)( Fig. 2c). Dips on the 

northern basin margin at the time of deposition are estimated to be on the order of 

10° (Baruffini et al., 1994; Felletti, 2002, 2004a). 

3. Methods 

A well exposed interval (c. 250 m stratigraphic thickness) within the turbiditic Costa 

Grande Member was logged using a Jacob staff at eight separate locations across 

the Castagnola sub-basin (Figs. 1d, 2c). Together these logs form a 4.9 km-long 

transect orientated slightly oblique (030/045-210/225°) to the palaeoflow direction 

of gravity currents entering the basin (SW-NE), and highly oblique to the E-W 

striking confining northern basin margin and palaeoflow direction of deflected 

gravity currents here (~W-E). High-confidence correlation of individual beds was 

aided by good exposure, the presence of several distinct thick marker beds, and 

the tabular nature of the interval at this level within the Costa Grande Member (Fig. 

2d). These correlations confirm those of Stocchi et al. (1992) and Felletti (2002) 

and provided the framework for assessing bed characteristics spatially 

(palaeogeographically and stratigraphically) in relation to the confining counter-

slope at the northern basin margin. Where outcrop permitted, transects of key beds 

were made at specific locations, over distances of up to 100 m, in order to capture 

bed character at shorter length scales; such transects have a similar orientation to 
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the larger basin scale transect and are thus slightly oblique to the palaeoflow of 

gravity currents entering the basin (SW-NE). 

4. Results 

4.1 Bed types of the Costa Grande Member 

The Castagnola Basin infill has a simple, tabular sheet-like architecture with 

thinning of the succession towards the basin margins (Fig. 2d). Thinning towards 

the southern basin margin occurs less abruptly, suggesting that the feeder slope 

was inclined at a relatively low angle compared to the steeper northern basin 

margin. Four common bed types were defined in the study interval using a 

descriptive basis of facies type (sediment texture, composition and structures) and 

facies arrangement within individual beds, upon which processes associated with 

sediment transport and deposition were then inferred (Fig. 3). 

4.1.1 Type A – Very-thick, stratified mega-beds 

 Type A beds typically comprise unstratified sandstone, i.e., lacking sedimentary 

structures, overlain by variably arranged laminated sandstone facies types (e.g., 

crude wide spaced [<1 cm] planar lamination (sensu Talling et al., 2012b)), sub- 

and super-critical climbing ripple laminations, and less common sinusoidal and 

current ripple lamination). Inverse and normal grading can be present in a single 

bed with the former being most common lower within the bed where thin traction 

carpets (e.g., S2 of Lowe, 1982) and dewatering pipes can also be present. Sole 

structures (groove casts and prod marks) on the bed base record palaeoflow 

towards the north-north-east and east whilst ripple lamination within the bed can 

record more complex and opposing current directions. Erosion at the bed base is 

common and does not appear to vary significantly across the basin (e.g., Marker 

Bed 3; Fig. 2d). Mud clasts can be present at the bed base (Clast style 1, Fig. 5) 

and occur as thin horizons or isolated clasts (Clast style 2, Fig. 5) however MCR 

divisions (Clast Style 3, Fig. 5) are lacking. Type A beds retain their character and 
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do not pass laterally into other bed types across the study interval (Fig. 2d). Two 

Type A beds bound the study interval, with several present throughout the Costa 

Grande Member; they are relatively outsized in terms of their bed thickness 

compared to other bed types in the study interval (Fig. 4). 

Type A beds are interpreted to record deposition from flow which was 

initially of high concentration with a high rate of sediment fall-out, both of which 

declined during deposition of the bed (e.g., to produce unstratified sand dominantly 

overlain by planar and/or climbing ripple lamination; Lowe, 1988; Jobe et al., 2012). 

The significant thickness of Type A beds may reflect a relatively greater flow 

duration and/or volume of emplaced sediment, compared to flows depositing other 

bed types. Sole structures record palaeoflow similar to that found on other bed 

types and suggest flows entered the basin from a similar direction. Palaeoflow 

indicators recording complex (multiple direction) flow record the effects of flow 

confinement during deposition within the Castagnola Basin (e.g., Pickering and 

Hiscott, 1985; McCaffrey and Kneller, 2001). 

4.1.2 Type B – Thick to very-thick, stratified mud-clast-poor beds 

Type B beds comprise thick- to very thick-bedded, fine- to medium-grained 

deposits which typically commence with unstratified sandstone overlain by a range 

of laminated sandstone facies (Fig. 3). Beds exhibit weak normal grading, (with 

grading being most pronounced in the upper part of the bed), dewatering structures 

and convoluted lamination. Sole structures on the bed base record flow towards 

the north-northeast and east whilst ripple lamination higher within the same bed 

records more disperse palaeoflow directions often at high angles away from the 

northern basin margin (Fig. 6). Bed bases can be sharp, planar and apparently 

non-erosive or erosive at multiple points across the basin with mud clasts 

concentrated at bed bases (Clast style 1, Fig. 5), some of which are only partially 

detached from the underlying mudstone. Mud clasts can also occur as distinct 
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horizons, often at the junction between unstratified and stratified sandstone (Clast 

style 2). Compared to Type C beds, which are also mud-clast-rich, Type B beds 

have a lower total abundance of mud-clasts with examples of mud clasts still 

partially attached to the substrate being more common.. Type B beds retain their 

depositional character laterally (Fig. 8, Bed 215; Fig. 9, Bed 214) but on rare 

occasions can change laterally and abruptly (<15 m) into Type C bed character 

(Fig. 10). 

Type B beds are interpreted to be the depositional products of aggradation 

beneath an initial high density turbulent flow sensu Lowe (1982) which 

progressively became less concentrated with time. High rates of suspension fall-

out dominated during deposition of the bed (e.g., sinusoidal lamination sensu Jobe 

et al. [2012], dewatered convoluted lamination). Flows were often erosive and, 

locally, entrained mud clasts from the basin floor however, such entrainment 

appears to have been less efficient compared to that of Type C beds.. Palaeoflow 

indicators recording multiple flow directions during deposition of a single bed 

record the effect of flow confinement during deposition (e.g., Pickering and Hiscott, 

1985; McCaffrey and Kneller, 2001). 

4.1.3 Type C – Thick to very-thick, variably stratified beds with a co-genetic 

mud-clast-rich division 

At the base of Type C beds unstratified sandstone and or crude widely spaced 

planar laminated sandstone (sensu Talling et al., 2012b), sometimes containing 

dewatering pipes, pass up into an overlying MCR division (Clast Style 3; Fig. 5) 

which is in turn overlain by plane parallel and current ripple laminated sandstone 

at the bed top. The thickness and grain size of Type C beds are comparable to 

those of the upper range of Type B beds (Fig. 4) and exhibit overall normal grading 

which is most pronounced in the bed top.  Type C bed bases are frequently erosive 

at multiple sites across the basin floor (Fig. 9; Beds 208, 210) which can include 
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the entrainment of relatively large mud clasts, some of which are still partially 

attached to the underlying substrate. Sole structures record initial palaeoflow 

towards the north-northeast and east whilst current ripple lamination, deposited 

higher (later) within the same bed, records change to more dispersed palaeoflow 

often at high angles away from the northern confining basin margin (Fig. 6). Mud 

clasts within the MCR division can sometime develop long axis imbrication 

consistent with emplacement to the north-east. 

Within the MCR division the supporting sandstone matrix can sometimes be 

subtly more argillaceous (clay-rich) compared to mud-clast-poorer sandstone 

beneath this MCR division. Individual Type C beds can vary laterally in their 

depositional character (Fig. 9, Beds 208, 210; Fig. 11, Bed 200) depending upon 

the thickness of the MCR division or the abundance and size of mud clasts they 

contain. Thus Type C beds are subdivided into those which contain 1) abundant 

mud clasts (1 - >100 cm in length) supported within a sandy matrix (Type C1); 2) 

a higher abundance of similar sized mud clasts supported in a lower volume of 

sandstone matrix (Type C2); and 3) predominantly significantly large mud clasts, 

apparently over several metres in length, which can contain sand laminae (Type 

C3).  The size of mud clasts within Type C3 beds can result in very thin sandstones 

being preserved at their bases and tops, such that the bed can easily be mistaken 

for a succession of thin-bedded strata (e.g., Bed 200, Fig. 11). Laterally, Type C3 

beds can pass into other sub-Type C beds across the basin (e.g., C2, Fig 11, Bed 

200) as well as over relatively short length scales (tens of m) in a given outcrop; 

similar scaled transitions have been documented by Hodgson (2009). Within MCR 

divisions the sandstone matrix supporting clasts can be irregular in shape, with 

angular boundaries, and is of comparable grain size to overlying and underlying 

mud-clast-poorer sandstone in the same bed. The capping laminated sandstone 

which overlies the MCR division can have undulating lower contacts, being most 
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pronounced in Type C2 beds, and display growth lamination recording syn-

depositional loading processes (Fig. 12). Laterally the character (Type C1 to C3) 

and thickness of MCR divisions can vary significantly (0-140 cm thick) and 

repeatedly, both on the scale of an individual outcrop (tens to hundreds of m length, 

Fig. 12) and at the scale of the basin infill and extent of the study interval (>km-

scale, Fig. 9). Although uncommon, lateral transition into Type B beds was 

observed (Fig. 10) whilst transition into Type A and D beds was not observed. 

Vertical grain size grading and the repeated association of a relatively mud-

clast-poor sandstone, a MCR division and overlying, often loaded, laminated 

sandstone record the co-genetic association of these facies which were emplaced 

during a single flow event. Initial deposition of Type C beds was characterised by 

high rates of sediment fall out from a high concentration flow (e.g., producing 

unstratified and weakly stratified sandstone at the base of the bed). Late-stage 

deposition of finer grained well stratified sandstone records a change to deposition 

beneath relatively lower concentration dilute turbulent flow (e.g., low-density 

turbidity current sensu Lowe, 1982). Palaeoflow indicators recording multiple flow 

directions during the deposition of a single bed record the effect of flow 

confinement during deposition. During the change from deposition beneath high to 

lower concentration flow (i.e., to produce basal unstratified sandstone and capping 

stratified sandstone, respectively) a co-genetic MCR division was emplaced under 

flow conditions in which fluid turbulence and bed form generation remained 

suppressed, presumably by a high concentration of sediment and mud clasts. This 

distinct, often thick (<140 cm) co-genetic MCR division is somewhat comparable 

to that found in HEBs described from the distal settings of deep-water systems in 

relatively less topographically complex settings (e.g., Haughton et al., 2003, 2009; 

Hodgson, 2009; Talling, 2013), albeit that the former are less argillaceous. Further 
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discussion on the significance and origin of co-genetic MCR divisions follows in 

section 5.2. 

4.1.4 Type D – Very thin to thick well stratified beds 

Type D beds are normally graded and are dominated by well stratified sandstones, 

with planar, sinusoidal, climbing and current ripple laminations (Fig. 3). Dewatering 

and convolution are easily recognised within these well stratified beds. 

Occasionally, Type D beds can exhibit complex lamination, with internal 

truncations, or an unstratified sandstone perched higher within the bed that is not 

notably coarser grained (Fig. 7). These are the thinnest (<50 cm) and finest grained 

bed type. Bed bases are rarely erosional and mud clasts are rare and small (<1 

cm).  Current ripple lamination records dispersed (wide-spreading) palaeoflow 

directions, often at high angles away from the northern confining basin margin. 

Type D beds retain their stratified character across the basin and do not transition 

into other bed types across the study interval. 

Type D beds are interpreted to record aggradation beneath low-density 

turbulent flows (e.g., Bouma, 1962; Lowe, 1982) with lower sediment 

concentrations compared to those emplacing other bed types. However sinusoidal 

and climbing ripple lamination indicate that rates of suspension fall-out were still 

relatively high (e.g., Jobe et al., 2012). Beds containing perched unstratified 

sandstones have been described adjacent to confining topography in the confined 

Sorbas Basin, and were interpreted to record reflection of the flow head away from 

the confining basin margin and subsequent deposition above stratified sandstone 

recently deposited from the flow body (Haughton, 1994). The origin of this facies 

arrangement and development of internally truncated lamination sometimes 

observed in Type D beds is discussed further in sections 5.1 and 5.3, respectively. 
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4.2 Evolution of palaeoflow in association with a confining basin 

margin 

Flute and prod marks (n=35), current ripple lamination (n=36) and groove casts 

(n=149) were measured from beds within the study interval.  Sole structures (e.g., 

flutes, grooves and prod marks) indicate that flows entered the basin from the SSW 

and travelled NNE-ward (Fig. 13, Loc. VII-V) towards the confining counter slope 

of the northern basin margin where they were deflected (Fig. 13, Loc. IV-I); such 

change in flow direction can be observed along individual beds (Fig. 9; Beds 208, 

210). Current ripple lamination, which can be present higher within the same bed, 

records palaeoflows that are more variable in direction, either parallel to or more 

commonly at a high angle away from the strike of the northern basin margin (Fig. 

6). Similar observations for different types of palaeoflow indicators have been 

made in previous studies of the Castagnola Basin (Baruffini et al. 1994; Felletti, 

2002) and in a number of confined systems (Kneller et al., 1991; Haughton, 1994; 

Kneller and McCaffrey, 1999; McCaffrey and Kneller, 2001; Bersezio et al., 2009; 

Felletti and Bersezio, 2010) and experiments (Kneller et al., 1991). These 

characteristics are considered to represent contrasting responses of higher and 

lower concentration portions of the flow (e.g., deflection and reflection, 

respectively) to confining topography (e.g., Kneller and McCaffrey, 1999). Of the 

12 directional sole structures (e.g., flute casts and prod marks) which document a 

deflected flow direction at the northern basin margin, all record flow deflection to 

the east. This trend is interpreted to record oblique incidence between flows 

travelling north-north-east and the east-west strike of the local northern basin 

margin. 

Sole structures recording deflected palaeoflows near the northern basin 

margin are common in the lower half of the study interval (e.g., below bed 212, Fig. 

2d; Package A of Fig. 11) but are not identified stratigraphically higher in the study 

interval (e.g., above bed 212, Fig. 2d; Package B of Fig. 11). The vertical loss of 
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deflected sole structures is not considered to represent a change from confined to 

unconfined flow or a different entry point of flows into the basin, because; 1) ripple 

lamination continues to record wide spread palaeoflow away from the basin margin 

(Fig. 2d); 2) sole structures indicate that flows still entered the basin from the SSW; 

and 3) the vertical loss of deflected sole structures does not coincide with a 

decrease in bed thickness, which might otherwise indicate a change to unconfined 

settings over a larger depositional area. This vertical change is instead interpreted 

to represent the effects of basin floor aggradation in a basin with inclined margins, 

with subsequent migration of the point of onlap both towards and up the basin 

margins (sensu Kneller and McCaffrey, 1999).  Thus in a one-dimensional section 

successive beds record depositional sites which became increasingly farther from 

the basin margin and sole structure orientation records a change from flow that 

was deflected to flow that was not yet  deflected by the confining topography 

(Kneller and McCaffrey, 1999). Such migration in the point of basin margin onlap 

is thought to result in the stratigraphic change in sole structure orientation with 

deflected sole structures inferred to be located farther north of the outcrop window 

(e.g., north of Location II).  The rapidity with which this change occurs suggests 

there may have been a terrace or reduction of gradient on the confining slope 

resulting in a sudden shift in the region of onlap to the north; an uneven gradient 

was documented on the confining basin margin below the study interval by Felletti 

(2002). Considering the confinement of gravity currents within the contained 

Castagnola Basin and previous research on depositional trends adjacent to 

confining topography (e.g., Barker et al., 2008; Patacci et al., 2014) this study aims 

to assess how the depositional character of beds containing a co-genetic MCR 

division varies across the basin and in relation to the downstream confining slope 

at the northern basin margin. 
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4.3 Spatial variation of depositional character with respect to a 

downstream confining basin margin 

Correlation of logged sections across the basin allowed the construction of 

individual bed transects which are orientated approximately NE-SW slightly 

oblique to the palaeoflow of gravity currents entering the basin (NNE) and highly 

oblique to both the strike of the northern basin margin (E-W) and flow which was 

locally deflected towards the east at this location (Fig. 9). The scale of bed 

transects is largely comparable to the downstream length of the basin (~5 km) at 

the level of the study interval, as suggested by the overall thinning of the 

succession at either end of the study interval. Across the basin, maximum grain 

size remains fairly constant within individual beds with only minor reductions at 

Location 1 close to the northern basin margin (Beds 208, 210). Bed thickness 

across the basin typically remains constant (Beds 210, 214) or thickens (Beds 204, 

208) prior to eventual thinning and onlap onto the northern basin margin (Beds 

204–214); thickness trends show no apparent relation to bed type. A similar 

increase in bed thickness and sand to mud ratio prior to eventual onlap onto 

confining topography has been documented in other basins (e.g., Haughton, 1994, 

2001; Kneller and McCaffrey, 1999) and in older strata of the Costa Grande 

Member (Felletti, 2002, 2004a); such characteristics have been attributed to the 

forced flow deceleration, loss of energy and subsequent sediment deposition on 

approach to the basin margin. 

Beds containing a co-genetic MCR division (Type C) can be present 

anywhere within the basin with MCR divisions found at least 3.1 km upstream of 

the northern basin margin (e.g., Fig. 2d; Bed 208, Fig. 9). A MCR division can be 

present within an individual bed regardless of the change in palaeoflow direction 

(e.g., incoming or deflected) recorded at the base of the bed (e.g., Beds 208, 210, 

Fig. 9), with the thickness of this division exhibiting no trend in relation to 

palaeoflow direction. Laterally the thickness of this division is highly variable (~10-
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140 cm) in a non-systematic manner with repeated thickening and thinning 

occurring both on a basin scale (Fig. 9) as well as on an individual outcrop scale 

(tens to hundreds of m distance, Fig. 12).  Nor does the division in Type C beds 

exhibit systematic trends in mud clast abundance, as inferred from the dominant 

bed sub-type at each section, or maximum size with respect to palaeoflow direction 

or proximity towards the downstream confining counter slope at the northern basin 

margin. Large mud clasts (>40 cm in length) are found both adjacent to and away 

from the northern basin margin (e.g., Bed 208, Location II and VII, Fig. 9). Variation 

in the thickness and character of the co-genetic MCR division, and thus lateral 

transition between bed sub-types C1 to C3, can occur rapidly and repeatedly and 

does so non-systematically in relation to palaeoflow direction or proximity to the 

downstream confining northern basin margin (Fig. 9). Stratigraphically (vertically) 

there is an apparent concentration of beds containing a MCR division (Type C) at 

the base of the study interval, however similar deposits are also present in 

abundance above the study interval. 

Despite trends of reducing bed thickness and grain size adjacent to the 

northern basin margin, bed type and the character of the MCR division within Type 

C beds exhibit no systematic lateral or stratigraphic variation in relation to 

palaeoflow direction or proximity towards the downstream counter slope at the 

northern basin margin. Such findings are in contrast with previous studies 

concerning the localised distribution of mud-clast and/or clay-rich sandstone facies 

with respect to confining topography (e.g., Barker et al., 2008; Patacci et al., 2014). 

The potential causal factors driving the lack of variation in depositional character 

locally adjacent and towards confining slopes within the Castagnola Basin are 

explored in Section 5, below. 
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5. Discussion 

5.1 Gravity current confinement and containment within the 

Castagnola Basin 

A number of sedimentological features described in section 4 indicate that gravity 

currents were both confined and contained within the Castagnola Basin. 

Containment is directly shown by observations of direct bed onlap onto the basin 

margin near the base and below the study interval (Felletti, 2002) with thinning of 

the study interval succession towards the basin margins (Fig. 2d). Sufficiently well-

positioned exposure to capture this onlap relationship is lacking throughout the 

remainder of the study interval. In confined systems significantly thick turbiditic 

muds are often found above sandstone beds (e.g., ponded muds, Pickering and 

Hiscott, 1985; Haughton, 1994, 2001); although differentiation between turbiditic 

and hemipelagic mud could not be made in the Castagnola Basin, thicker 

mudstones are consistently found above thicker sandstone beds. (e.g., Key Bed 

2, Beds 209, 210, Fig. 2d).  This relationship suggests that such beds were 

emplaced by greater volume events, including a greater volume of turbiditic mud, 

which was contained (ponded) by the physiography of Castagnola Basin. Flow 

confinement processes are also demonstrated by the variation of palaeoflow along 

individual beds towards the basin margin, as well as variation between the base 

and top of the bed, which indicates that flow confinement persisted during bed 

aggradation. Such trends in palaeoflow have been documented in a number of 

systems from topographically complex settings (e.g., Pickering and Hiscott, 1985; 

Kneller et al., 1991; Haughton, 1994; Kneller and McCaffrey, 1999; McCaffrey and 

Kneller, 2001; Bersezio et al., 2009; Felletti and Bersezio, 2010).  

Sedimentary features indicative of high rates of sediment fall-out during 

deposition (e.g., planar, sinusoidal, climbing ripple lamination and convoluted 

lamination; Lowe, 1982; Jobe et al., 2012) are frequently described where flow 

confinement occurs (e.g., Pickering and Hiscott, 1985; Haughton, 1994). In such 



18 
 

settings these features likely represent reduced flow carrying capacity (sensu 

Hiscott, 1994a) resulting from flow modification following confinement by sea-floor 

topography (e.g., Edwards et al., 1994; Kneller and Branney, 1995; Kneller and 

McCaffrey, 1999). The dominance of these styles of stratification in deposits across 

the study interval, and the presence of encircling containing basin margins, 

suggests flows were subject to flow confinement and containment within the 

Castagnola Basin. Occurrences of complex facies arrangements within individual 

beds (e.g., perched unstratified sandstone within stratified sandstone), sometimes 

developed in Type D beds, have previously been documented in deposits from 

confined systems (e.g., Pickering and Hiscott, 1985; Haughton, 1994, 2001; 

Sinclair, 1994). Such an arrangement has been attributed to collapse of the flow 

head away from confining topography with subsequent deposition above recently 

deposited stratified sandstone from the flow body (e.g., quick beds of Haughton, 

1994).  Similar deposits in the Castagnola basin are also interpreted to record 

individual sedimentation events, as bed amalgamation is not observed within the 

study interval. However as perched, unstratified sandstones do not coincide with 

significant grain size change in Type D beds these arrangements may instead 

record fluctuation in local suspension fall-out rate driven by complex flow dynamics 

within a confined, contained flow following interaction with multiple basin margins 

(see Section 5.2.3, 5.3) rather than a distinct collapse of the flow head sensu 

Haughton (1994).  

5.2 Origin of mud-clast-rich divisions within Type C beds 

The following sections evaluate a range of processes capable of emplacing mud-

clast-rich strata encased within sandstone, to investigate the origin of the co-

genetic MCR division observed within Type C beds.  
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5.2.1 Modification of the substrate by a succeeding flow event 

Where a flow erodes (e.g., Walker, 1966; Fig 14a) or shears (e.g., Butler and 

Tavarnelli, 2006; Fig. 14b) the underlying muddy substrate and penetrates down 

to an underlying sandstone bed a composite deposit may result, comprising a MCR 

division encased within overlying and underlying sandstone. In these cases the 

MCR division (“ghost bedding” sensu Butler and Tavarnelli, 2006) should be 

traceable laterally into intact mudstone between the separate beds. Neither of 

these processes are considered plausible formation mechanisms for MCR 

divisions in the Costa Grande Member, however, as they are never observed to 

pass laterally into intact mudstone partings (Fig. 9). Additionally, it is unlikely that 

erosion or deformation would have been capable of affecting the entire thickness 

of substrate mudstone that frequently exceeds a metre in thickness, across the 

entire extent of the basin. Furthermore, sandstone overlying MCR divisions tends 

to be finer grained and laminated, suggesting emplacement by relatively dilute, low 

concentration flow which would have been incapable of such basin wide erosional 

effects; bypass of an early high density flow whose presence went unrecorded is 

unlikely in the small, contained Castagnola Basin. 

5.2.2 Gravity current interaction with a confining basin margin 

Gravity current-triggered destabilisation of muddy slopes on local sea-floor 

topography is thought to be capable of triggering secondary synchronous MCR 

debris flows which might result in the emplacement of sandstone beds containing 

a distinct MCR division (e.g., McCaffrey and Kneller, 2001). MCR divisions 

generated in such a manner might be expected to be localised, thicker and perhaps 

contain larger mud clasts locally adjacent to the slope with which the gravity 

currents interacted. However MCR divisions in the Costa Grande Member are not 

localised to the downstream counter-slope at the northern basin margin, and 

exhibit no distinct trends in terms of frequency, thickness or mud clast size towards 

this confining feature (Fig. 14c). Although occurrences are rare, long axis 
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imbrication of mud clasts can record emplacement by flow travelling towards the 

north rather than flow sourced from the north following a failure on the northern 

basin margin. Basin margin slope instability is considered unlikely as there is a lack 

of stand-alone slumps or debris flow deposits in the Costa Grande Member (e.g., 

Baruffini et al., 1994; Felletti, 2002). 

Case studies have highlighted the effects that confining sea-floor topography 

can have through modifying gravity currents as inferred from laterally varying 

depositional character towards such confining topography (Barker et al., 2008; 

Patacci et al., 2014). Patacci et al. (2014) describe the localised development and 

thickening of a MCR division within HEBs with increasing proximity towards a 

confining slope; such facies development was localised to within 1 km of onlap 

onto the slope. They consider this facies tract to record the forced deceleration of 

gravity currents with a compositional and rheological complexity (arising from 

segregation of mud clasts to the rear of the flow) which was present prior to 

confinement by the slope and which was captured in the resulting deposits locally 

adjacent to the slope.  The localised effects resulting from confinement by 

topography, sensu Patacci et al. (2014), are not thought to have produced the co-

genetic MCR division found in Type C beds, based on their extent across the basin; 

they are found at least 3.1 km upstream of the northern basin margin, and also 

based on the lack of systematic variation in their thickness and character towards 

this margin (Figs. 2d, 9). Furthermore if co-genetic MCR divisions were related to 

the localised effects of confining slopes, it might be expected that in a suitably 

located vertical succession such deposits would become less common vertically 

as the basin infilled and the depositional point became farther away from the point 

of onlap onto the basin margin (see Section 4.2). However this is not the case and 

co-genetic MCR divisions are present throughout the Costa Grande Member.  
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5.2.3 Entrainment and transport of substrate derived mud clasts 

Type C beds exhibit substrate erosion and entrainment of mud clasts at multiple 

sites across the basin (e.g., Fig. 9, Bed 208, Location VII, V; Bed 215, Location 

VII, V, II) including relatively large mud clasts (> 1 m length), some of which are 

still partially attached to the underlying mudstone substratum (Fig. 5, Style 1). Such 

entrainment, which was both voluminous and randomly distributed across the 

basin floor, is inferred to have established a MCR flow in which mud clasts were 

unevenly distributed. Such flow character, along with flow containment effects (see 

section 5.3), is thought to have contributed to the character of the co-genetic MCR 

division whose presence and thickness within Type C beds varies both significantly 

and non-systematically in downstream and cross-flow directions. Entrainment of 

the muddy substrate into the flow is frequently cited as a mechanism initiating the 

development of those hybrid flows which emplace HEBs containing a distinctly 

thick co-genetic MCR division (e.g., Haughton et al., 2003, 2009; Talling et al., 

2004; Amy and Talling, 2006; Davis et al., 2009; Patacci et al., 2014), comparable 

to that within Type C beds. 

In Type C beds mud clasts are more abundant, reach a greater maximum 

size (>1 m) and are concentrated into distinct, often thick (<1.4 m), co-genetic MCR 

divisions compared to mud clasts in Type A and B beds. As all these beds exhibit 

erosive bases and partial entrainment of large pieces of muddy substrate, Type C 

flows are thought to have been distinct in that they were more efficient at entraining 

muddy substrate, limiting mud clast diminution during transport and/or supporting 

and concentrating mud clasts within the flow. Coarse grain sizes and less frequent 

examples of partial substrate entrainment compared to other bed types suggests 

Type C flows may have been more efficient at entraining substrate from the basin 

floor. The relative dominance of unstratified sandstone in the lower parts of Type 

C beds suggests flows were of relatively higher sediment concentration, in which 

fluid turbulence would have been more suppressed (e.g., Lowe, 1988) and rates 
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of mud clast breakup lower (e.g., Smith, 1972), compared to those in relatively 

lower concentration flows emplacing better stratified deposits (e.g., Type A and B 

beds). Although a wide range of mud clast shapes (e.g., sub-rounded to angular) 

are found in Type C beds, angular examples are relatively common compared to 

other bed types.  However angular clasts do not directly indicate reduced clast 

breakup within Type C flows, as angular mud clasts can be released into the flow 

during the transportation and break-up of larger mud clasts (Fig. 8). Furthermore 

the evolution of mud clast characteristics (e.g., size and shape) is expected to be 

influenced by a number of factors whose relative importance and interplay during 

the flow event are poorly understood. For example mud clast size and shape can 

be influenced both by the intensity of fluid turbulence and duration of transport 

within the flow; both of which may act in combination or in opposition in the flow 

(Smith, 1972).  Thus it is difficult to constrain which of efficient entrainment or 

limited mud clast breakup was more influential in the development of co-genetic 

MCR divisions within Type C beds.  

The elevation of the co-genetic MCR division within Type C beds, emplaced 

by aggradation (see section 4.1), suggests mud clasts were retained within the 

flow whilst the underlying mud-clast poorer sandstone was deposited. Mud clasts 

may have been located within a more rearward later depositing region of the flow, 

perhaps following longitudinal fractionation processes during flow run-out (see 

Haughton et al., 2003). However, considering the recent entrainment of mud clasts 

and limited available flow run-out distance across the basin floor (< 5 km), such 

rearward segregation may have been relatively incomplete and as such may not 

have been the dominant process driving the concentration of mud clasts into the 

co-genetic MCR divisions.  Perhaps more influential were processes which 

provided mud clast support within high concentration flow (e.g., mud clast 

buoyancy, hindered settling and kinetic sieving) whilst deposition of much of the 
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sand fraction occurred.  Mud clasts are positively buoyant when their often 

relatively low density is exceeded by that of the surrounding sediment-water 

mixture (e.g., Flemings et al., 2006; Talling et al., 2010).  High rates of sediment 

fall-out typical of high concentration flows (Lowe, 1988) can drive a significant 

upwards flux of displaced fluid which may hinder the settling of other particles (e.g., 

hindered settling; Davis, 1968; Druitt, 1995); mud clasts may have been 

preferentially supported due to their larger surface areas compared to sand grains. 

Displacement of mud clasts upwards through the flow can also occur in high 

concentration flows as smaller sand particles are more likely to fall into voids and 

thus settle downwards whilst larger mud clasts settle less freely (e.g., kinetic 

sieving; Bridgwater, 1976; Gray et al., 2006). Similar mechanisms were proposed 

to provide mud clast support in the experiments of Postma (1988) which 

demonstrated that mud clasts, including outsize examples, could be elevated and 

concentrated in a flow and transported at a density interface between an underlying 

high concentration low turbulence layer and overlying lower concentration more 

turbulent layer.  With sand deposition and subsequent reduction of flow 

concentration beneath a critical threshold, mud clast support mechanisms 

associated with higher concentration flow would have been subdued or removed, 

resulting in the deposition of a co-genetic MCR division above mud-clast poorer 

sandstone in the same bed. A sudden increase in sediment fall-out rate, reduction 

in flow concentration and deposition of mud clasts may have been triggered by the 

effects of reduced flow confinement (e.g., Kneller and McCaffrey, 1999) within the 

Castagnola Basin (see section 5.3). 

Although Type C beds record deposition beneath a high concentration weakly- to 

non-turbulent sandy flow, they are considered to be distinct from high density 

turbidites (e.g., Lowe, 1988), which typically contain much thinner or absent mud 

clast horizons. Type C beds are somewhat more comparable to HEBs as described 
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by Haughton et al. (2003, 2009) and Talling (2013), which also contain a distinct 

thick co-genetic MCR division overlying relatively mud-clast-poor sandstone within 

the same bed. However, they differ in that the supporting sandstone matrix within 

the co-genetic MCR division is not as argillaceous as that described by those 

authors, and is thus not considered to have been deposited beneath a region of 

notably more cohesive flow within the flow event (e.g., Haughton et al., 2003, 2009; 

Talling, 2013). The relatively cleaner (clay-poor) nature of the matrix within Type C 

co-genetic MCR divisions may reflect the relatively recent entrainment, shorter flow 

run-out distance and limited disaggregation of mud clasts within the contained 

Castagnola Basin compared to the larger flow run-out distances achieved in the 

uncontained systems from which HEBs with more argillaceous co-genetic MCR 

divisions have hitherto been described (e.g., Haughton et al., 2003, 2009; Amy and 

Talling, 2006; Davis et al., 2009; Hodgson, 2009).  Thus the term sandy-HEB is 

used here for beds containing a thick, co-genetic MCR division with a relatively 

non-argillaceous sandstone matrix that may also exhibit significant, non-

systematic lateral variability in terms of its presence, thickness and character; it 

can pass into mud-clast-poorer sandstone.  Flows emplacing such deposits may 

represent the early stages of hybrid flow development (sensu Haughton et al., 

2003, 2009). 

5.3 Influence of flow containment upon deposit character and distribution 

in confined deep-water systems 

The lack of localised systematic trends in depositional character near to confining 

topography within the CC Castagnola Basin is in contrast to that documented by 

Barker et al. (2008) and Patacci et al. (2014) in CU settings. The following section 

assesses the importance of flow containment (ponding), in addition to flow 

confinement, in CC settings and its possible influence upon gravity flow dynamics 

and deposit character and distribution within topographically complex settings. 
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5.3.1 Processes of flow confinement 

Considerable experimental work has explored the interaction of gravity currents 

and topography (Pantin and Leeder, 1987; Edwards et al., 1994; Kneller, 1997; 

Kneller and McCaffrey, 1999; Lamb et al., 2004, 2006; Toniolo et al., 2006a,b; 

Sequireos et al., 2009). Many have shown how disturbances, characterised by 

downstream changes in flow velocity and thickness, are generated locally where 

flows are obstructed by a confining obstacle (e.g., Pantin and Leeder, 1987; 

Edwards et al., 1994; Kneller, 1997; Lamb et al., 2004, 2006; Toniolo et al., 

2006a,b; Sequireos et al., 2009). Such topographically induced flow non-uniformity 

(sensu Kneller and Branney, 1995) can be associated with a reduced sediment 

carrying capacity and enhanced sediment fall-out rate from the flow (e.g., Kneller 

and McCaffrey, 1999). Where flow containment occurs in addition to flow 

confinement (Fig. 1), such as that in the Castagnola Basin, this  induced flow non-

uniformity effects may extend across the entire basin (e.g., Pantin and Leeder, 

1987; Kneller, 1991; Alexander and Morris, 1994; Kneller and McCaffrey, 1995; 

Lamb et al., 2004, 2006; Toniolo et al., 2006a,b). Features associated with high 

sediment fall-out rates are dominant in deposits across the Castagnola Basin (e.g., 

deposition of unstratified sandstone and development of crude, planar and 

sinusoidal lamination) and may reflect such non-uniformity effects and/or the 

effects of limited flow expansion and dilution in such settings (e.g. Middleton, 1967; 

Scheidegger and Potter, 1971; Garcia, 1994). 

Both experimental and outcrop studies have demonstrated how complex 

multi-directional flow is established where flows interact with and are confined by 

a single topographic feature (e.g., Kneller et al., 1991; Haughton, 1994; Kneller 

and McCaffrey, 1999; Amy et al., 2004). Kneller and McCaffrey (1999) show how 

confinement of a density-stratified flow can result in the reflection of the upper 

dilute layer at a high angle to the strike of the counter slope, whilst the basal higher 

concentration layer is deflected laterally, parallel to the strike of the slope.  Such 
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palaeoflow trends recording complex three dimensional flow dynamics have been 

documented in outcrop studies (Kneller et al., 1991; McCaffrey and Kneller, 2001) 

including the Castagnola Basin (Felletti, 2002; this study Figs. 6, 12). Furthermore, 

where the incidence angle with the confining obstacle is oblique, such as in the 

Castagnola Basin, the flow reflected perpendicularly away from the counter slope 

is both oblique to the deflected dense basal layer as well incoming flow still entering 

the basin (e.g., Kneller et al., 1991; McCaffrey and Kneller, 2001; see Fig. 15). 

However the majority of experimental studies have generally focussed 

upon flow interaction with a single confining slope (CU setting) and consequently 

largely fail to explore how the three dimensional flow dynamics of a confined flow 

might evolve in CC settings.  However, in the oblique-incidence experiments of 

Kneller et al. (1991), the reflected flow triggered by the initial downstream 

confinement travelled towards and interacted with the side wall of the tank. Thus 

in CC settings it is probable that reflected and deflected flows generated from initial 

interaction with a confining basin margin may further interact with; 1) other basin 

margins (Kneller et al., 1991); 2) other flow disturbances generated at these 

margins, such as that observed from “sloshing” liquids in transportation vessels 

(e.g., Bryant and Stiassnie, 1995; Faltinsen et al., 2005); and 3) flow still entering 

the basin (Pantin and Leeder, 1987; Edwards et al., 1994). The oblique incidence 

with a downstream confining basin margin and presence of encircling confining 

topography in the Castagnola Basin would have favoured such complex three 

dimensional flow dynamics.  This, along with voluminous local entrainment of 

muddy substrate, may have resulted in the lack of any systematic depositional 

trends across the basin.  

Distinct sedimentary structures (e.g., biconvex rounded ripples and small-

scale hummocky type lamination with internal truncations) have been suggested 

to provide evidence of multi-directional flow adjacent to confining topography in 
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deep-water CU systems (Tinterri, 2011). The lack of such structures in the 

Castagnola Basin is believed to reflect the high sediment fall-out rates and/or 

complexity of multi-directional flow dynamics.  With high sediment fall-out rates bed 

aggradation outpaces traction and bed forms preferentially develop low relief long 

wavelength stratification (Lowe, 1988; Jobe et al., 2012) which is a poor indicator 

of palaeoflow. Instances when internally truncated stratification does occur, in 

thinner bedded, finer grained, better stratified Type D beds (Fig. 7), suggest 

formation where the flow concentration and sediment fall-out rate were relatively 

lower.  In the presence of highly complex three dimensional flow, such as that 

thought to occur in the Castagnola Basin, the lack of a long-established flow 

direction may also hinder the development ripple and other asymmetrical bed 

forms capable of recording multi-directional flow (see Yokokawa, 1995, Yokokawa 

et al., 1995).   

6. Conclusions 

Gravity currents entering the Castagnola Basin were subject to deflection and 

reflection following oblique incidence with a downstream confining counter slope 

at the northern basin margin and were fully contained by encircling basin margins. 

Bed-to-bed correlations orientated at a high angle to the strike of the downstream 

northern basin margin show the distribution and depositional character of sandy 

HEBs (Type C beds) over short (<100 m) and long (<5 km) length scales. Individual 

bed transects demonstrate that sandy HEBs are extensive (>3 km) across the 

basin and are highly variable laterally in terms of the presence and thickness of a 

co-genetic MCR division, as well as the size and abundance of mud clasts within 

this division, over short (tens of m) and longer (< km) length scales. Such variation 

is non-systematic with respect to palaeoflow direction and with increasing proximity 

towards confining sea-floor topography. The extensive and non-systematic 

variable character of sandy HEBs within the CC Castagnola Basin setting is in 



28 
 

contrast to similar deposits from CU settings, where systematic depositional trends 

have been recognised locally near to confining sea-floor topography (e.g., Barker 

et al., 2008; Patacci et al., 2014). 

Distinct co-genetic MCR divisions, which exhibit highly variable and non-

systematic variation in depositional character and distribution with respect to their 

distance from confining topography, are interpreted to have resulted from the 

volume, support and uneven distribution of abundant mud clasts in high 

concentration flows. Flow containment, in addition to flow confinement, is thought 

to have established extensive complex three dimensional flow dynamics across 

the basin, following interaction with multiple basin margins, which perturbed the 

development of localised or coherent depositional trends adjacent to confining 

topography. 

This study sheds light on the contrasts in HEB distribution and depositional 

trends between different topographically complex settings; specifically showing 

that HEBs are not necessarily localised adjacent to confining topography and can 

vary non-systematically in their depositional character in systems where the effects 

of flow containment were superimposed upon those of  flow confinement. These 

insights highlight the importance of understanding the confined system type (e.g., 

contained or uncontained) and have implications for the prediction of depositional 

character, and thus reservoir quality distribution, in topographically complex 

settings. 
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Figure Captions 

Fig. 1. Schematic plan view depicting the difference between unconfined and 
uncontained (A), confined and uncontained (B) and confined and contained (C) 
deep-water systems. (A) Sediment gravity flows and the depositional systems they 
emplace are free to expand in unconfined uncontained settings due to the absence 
of confining sea-floor topography. (B, C) In the presence of confining sea-floor 
topography flows and depositional systems are modified (confined) and may be 
additionally contained in the presence of suitable encircling confining sea-floor 
topography (C only).  
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Fig. 2. (A) Stratigraphy (after Andreoni et al., 1981), (B) sketch cross-section (after 
Di  Giulio and Galbiati, 1993) and (C) geological sketch map (redrawn and modified 
after Stocchi et al., 1992) of the Castagnola Basin with inset showing its location 
in the eastern portion of the Tertiary Piedmont Basin of north west Italy (modified 
after Felletti, 2002a). (D) Correlation of log transects across the Costa Grande 
Member study interval, log positions indicated on (C). 

Fig. 3. Bed types recognised within the Costa Grande Member study interval. 

Fig. 4. Graph depicting bed type maximum grain size versus bed thickness. Type 
A beds are outsized in terms of their thickness compared to other bed types whilst 
Type D beds are thinner bedded and finer grained. The ranges of bed thickness 
and grain size in Type B and C beds overlap with the latter bed type being thicker 
and coarser grained. Sand grain size abbreviations are as follows: Lvf, lower very 
fine; Uvf, upper very fine; Lf, lower fine; Uf, upper fine; Lm, lower medium; Um, 
upper medium.  

Fig. 5. Key characteristics of the different styles of mud clast distribution observed 
within deposits of the Costa Grande Member. 

Fig. 6. Palaeoflow data collected all bed types within the study interval. Sole 
structures (groove casts, prod marks and flute casts) record two distinct trends with 
incoming flow directed north-north-east towards the confining northern margin of 
the Castagnola Basin and flow which was deflected eastwards at this northern 
basin margin. Current ripple lamination, representing later stage deposition after 
sole structure formation, records wider spread palaeoflow directions which are 
often directed at a high angle away from the confining northern basin margin. 

Fig. 7. (A) Internally complex and truncated lamination within a Type D bed. (B) 
Vertically alternating stratified and unstratified sandstone within a Type D bed 
dominated by sinusoidal lamination in the upper half of the bed. 

Fig. 8. Short length-scale transect through a Type B bed at Location II with partial 
entrainment of muddy substrate along the base of the bed. Type B beds retain their 
depositional character over short length-scales compared to Type C beds (see 
Figs. 9, 12). 

Fig. 9. Basin scale transects of individual bed types across the Costa Grande 
Member study interval. Type B and D beds retain their depositional character 
across the basin whilst Type C beds are highly variable in terms of the thickness 
of their co-genetic mud-clast-rich divisions and the size and abundance of mud 
clasts within this division. Co-genetic mud-clast-rich divisions are extensive across 
the basin (>5 km) and variation in their character is non-systematic in respect to 
palaeoflow direction and proximity towards the confining northern basin margin. 

Fig. 10. Example of lateral transition from a Type B (right) to a Type C2 (left) bed 
character over <15m. Typically Type B beds retain their depositional character on 
outcrop (Fig. 4) and basin (Fig. 9; Bed 214) scales whilst Type C beds typically 
vary between Type C sub-types (Figs. 9; Bed 208, 210). 
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Fig. 11. Lateral variation in the size and abundance of mud clasts can result in 
significant variation in the character of the co-genetic mud-clast-rich division (e.g., 
Beds 200, 201) and overall bed character.  Sub-type C3 is rare (e.g., Bed 200 only) 
and comprises significantly large mudstone rafts (>1 metre length) which result in 
the supporting sandstone matrix being sparse and irregular in shape; sub-type C3 
in Bed 200 is seen to pass laterally into sub-type C2 along a single continuous 
outcrop (Location V) within a distance of 30 m (not shown). 

Fig. 12. Short length-scale transect through a Type C bed at Location IV illustrating 
how the thickness of the co-genetic mud-clast-rich division, and the mud clast 
abundance and size within, is highly variable over short length-scales. A-B) Bed 
character at log sites 1 through to 4. C-D) Mud-clast-rich sandstone near log 
position 1. E) Low angle stratification and unstratified sandstone near the base of 
bed at log position 2. 

Fig. 13. Sole structures record flow deflection commencing between Locations V 
and IV during early deposition of the study interval (Package A) whilst during later 
deposition of the study interval (Package B) the zone of flow deflection is inferred 
to have advanced north beyond Location I. Such shift in the zone of deflection is 
resultant of basin floor aggradation within a basin with inclined basin margins 
(sensu Kneller and McCaffrey, 1999) and does not record a change to an 
unconfined setting as bed thicknesses remains similar (Fig. 1d) and current ripple 
lamination records continued reflection of flow away from the northern basin 
margin (Fig. 1d). 

Fig. 14. Discounted mechanisms for the development of sandstone deposits 
containing a distinct mud-clast-rich division within the Costa Grande Member study 
interval. (A) Sandstone bed amalgamation between successive gravity currents 
sensu Walker (1966). (B) Substrate deformation and sandstone bed amalgamation 
beneath high concentration (modified from Butler and Tavarnelli (2006). (C) Gravity 
current triggered destabilisation of muddy slopes on confining sea floor topography 
(sensu Kneller and McCaffrey, 1999). 

Fig. 15. Contrasting flow dynamics and depositional trends between confined and 
contained (CC) settings and confined uncontained (CU) settings. The interaction 
of gravity flow with multiple surrounding basin margins in CC settings results in a 
confined flow with extensive and complex three dimensional flow dynamics; such 
flow characteristics contribute to the prevention of developing localised 
depositional trends adjacent to confining topographic features and the prevention 
of developing systematic depositional trends on a basin scale. Gravity flow 
interaction with fewer confining topographic features in CU settings is thought to 
result in relatively localised confined flow with simpler three dimensional flow 
dynamics which favours the development of localised depositional trends adjacent 
to confining topography as documented by others in CU settings (e.g., Barker et 
al., 2008, Patacci et al., 2014). 
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InterpretationKey Characteristics

Alternations of unstratified and various laminated
sand facies (e.g., planar, sinusoid,  climbing ripple 
and current ripple lamination) in varying sequences.

Inverse & normal grain size grading.

InterpretationKey Characteristics
Grain size Fine to coarse sand
Thickness Very thick beds (900 - 1300 cm)

Thin basal traction carpets sometimes present (e.g.,
S2 of Lowe [1982] sequence). 
Current ripple lamination in opposing directions.

High suspension fall out rates 
(e.g., climbing & sinusoidal 
ripples).

High sediment concentration
flow (e.g., high density turbidity
current sensu Lowe [1982]).
Large volume / duration event.

Flow interaction with, and
reflection from the basin 
margin.

Grain size Fine to medium sand
Thick to very thick beds (50 - 400 cm)Thickness

Erosive and non-erosive bases with partial entrain-
ment of large muddy substrate clasts. 

Basal unstratified or crude laminated (wide spaced,
1 cm) sand overlain by variably laminated sand (e.g., 
sinusoidal, current ripple & planar lamination)
in variable or repeating sequences.

Complex palaeoflow within individual beds.

High suspension fall out rates 
(e.g., climbing & sinusoidal 
ripples).

Erosive & high sediment 
concentration flow (e.g., high 
density turbidity current sensu 
Lowe [1982]).

Flow interaction with, and
reflection from the basin 
margin.

2 cm
InterpretationKey Characteristics

Basal crudely laminated and / or unstratified sand over-
lain by a variable mud-clast-rich interval (sub-types C1, 
C2 & C3) followed by laminated sandstone. 

Grain size Fine to medium sand
Thick to very thick beds (50 - 400 cm)Thickness

Mud-clast populations reflect
complexly distributed erosion.

Erosive high sediment 
concentration flow (e.g., high 
density turbidity current sensu 
Lowe [1982]).

Flow interaction with, and
reflection from the basin 
margin.

2 cm
InterpretationKey Characteristics

Mud-clast poor and non-erosive bases.

Grain size Silt to fine sand
Very thin to thick beds(1 - 50 cm)Thickness

High suspension fall out rates 
(e.g., sinusoidal ripples).

Lower sediment concentration 
flow compared to those of bed 
types A-B (e.g., low density 
turbidity current sensu Bouma
[1962]).

Flow interaction with, and
reflection from the basin 
margin.

500 500

Stratified beds typically commencing with spaced 
stratified sand overlain by varied arrangements of 
sinusoidal, climbing ripple, current ripple lamination.
Examples of beds containing unstratified, slightly 
coarser grained, loaded sandstone sandwiched bet-
ween underlying and overlying laminated sandstone. 

Type A Type B

Type C Type D

40 cm 15 cm

Disperse current ripple lamination directions.

Erosive bases common with evidence of entrainment
of large (> 1 m) pieces of muddy substrate.
Complex palaeoflow within individual beds.

Mud-clast-rich interval thickness is highly variable on
short (10 m) and long (1000 m) length-scales. 

Type CType C

50025 cm 5000.5mm50020 cm
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Spaced stratification

2 cm 10
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Bed 200 Loc V

20cm

Bed base

Style 1 Entrainment of large 
portions of mudstone substrate.

10cm

Shape:          Angular to sub-angular.
Alignment:   Parallel to sub-parallel to bedding.
Size:             Often exceed 1 metre in length.
Comments:  Can be partially attached to underlying muddy substrate.

Shape:          Sub-angular to sub-rounded.
Alignment:   Parallel to sub-parallel to bedding.
Size:             Typically smaller; rarely exceed 40 centimetres in length.
Comments:  Long axis imbrication record palaeoflow to the north.

Shape:          Sub-angular to sub-rounded.
Alignment:   Chaotic; larger clasts tend to be sub-parallel with bedding.
Size:             Wide ranging from centimetre scale to over one metre in length. 

Comments:  Sandstone matrix can be slightly argillaceous (clay-rich).
                      Sandstone grain size is comparable to that in the lower bed.
                      Long axis imbrication can show palaeoflow to the north.
                      

Weathered bed top
Style 2 Mud-clast horizon

Bed base

Bed top

Style 2

Style 3 Co-genetic mud-
clast-rich interval with large

(>50 cm) mud-clasts. 

Abundance of chaotically arranged,
sub-rounded to sub-angular mud-
clasts supported in a sandy matrix 10cm20cm

Figure 5



Grooves Current ripple laminationProd marks & flutes

n=149
South

Deflected 
flow

Incoming flow

n=36
South

Deflected 
flow 

dominated

Reflected 
flow

dominatedn=35
South

Deflected 
flow

Incoming flow

Direction (arrows) inferred from that of 
prod marks and flute casts.
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3 cm

B

Unstratified

Complex lamination showing
thickness variation and 

truncations

Stratified

Bed base

Bed top

Bed top

Bed base

10 cm
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Figure 7

5 cm

10cm

Mud-clast horizon

Thesis images
also carbonaceous horizon

NESW Short-scale bed transects: Bed 215, Location II
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5 cm

Mud-clasts sourced from partially 
entrained pieces of mudstone substrate.

15 cm

Delamination (partial entrainment)
of muddy substrate as larger rafts

Bed base
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Stratified

Recessive weathering of stratified upper bed
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1 2

Current ripple lamination Convoluted lamination
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NESW
Short-scale bed transects: Bed 212, Location V

Bed base

Bed top

Sinusoidal
stratification
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20 cm 20 cm

Bed top
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mud-clast-rich 

interval

15 m
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1 Sharp, erosive and loaded base to event
bed 200. 

EW Loc V Loc V Loc IVLoc V

IV

Bed 201
- Subtle reduction in bed thickness northwards until dramatic thinning
  occurs close to onlap along with finer grain size.
- Mud clasts span the transect and are relatively small (<30cm)

Bed 200 - Studied interval tabularity provides strength for the correlation of this complex bed.
- Complex trends.  The basal mudclas- poor sandstone can be thick, typically in 
   central localities, or dramatically reduced (Loc. VI. II). 
- The recessive middle is either charactered by mudclast-charged intervals with a 
   muddy sandy matrix or a silty mudstone in which irregular patches of sandstone
  comparable in grain size to sands above and below occur. Discrete mud clasts
  are apparently lacking. 

1 Thick basal sandstone overlain by a 
silty mudstone recessive interval 
containing irregular shaped sandstone
patches (see below).

1 Deformed mud clast potentially reflecting
shearing during transport and or 
depositional processes.

1 Example of a silty mudstone recessive 
interval containing carbonaceous (orga-
nic matter) and sand patches (2) similar in
grain size to the basal or top sandstone.

1

Mudclast-charged interval containing an
abundance of small (<15cm) mud clasts
supported within a sand matrix which
can often locally be strongly enriched
in carbonaceous (organic matter).

1 Example at loc. V where the basal
sand can become dramatically reduced
in thickness over a distance of <50m.
Compare this to the basal sand also
from loc V. two photos to the left.

1 The basal sand is relatively poor in large mud clasts and is overlain by a mudclast-charged
interval with a horizon of large mud clasts at the junction between the two (black shading); 
large mud clasts often, but not exclusively, show a bottom to the south-west incline.

Loc VI

1 Tripartite structure with a recessive
middle containing abundant mud
clasts (<20cm) supported in a sandy
matrix.

2 Load and flame structure to the base
of the basal sand.

1

2
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1
1

1
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Bed 200 photos

Current ripple lamination

Planar lamination

Undulated lamination

Convoluted lamination

Recessive weathering 
sandstone
Competent weathering
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Undulated erosive base

Sole structure 

Mudclast horizon
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Weakly structured 
sandstone
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Syn-sedimentary
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Lateral bed transitions, Beds 200 - 202

The size of mud‐rafts within Type C3 beds can result in very thin 
sandstone being preserved at the bases and tops of C3 beds, 
meaning the bed can easily be mistaken for a succession of thin‐
bedded strata.  However, lateral tracing has revealed that a Type 
C3 bed character can transition laterally into Type C1 and C2 bed 
(e.g., Bed 200, Figure 8); similar transitions have been observed 
by others (Fonnesu et al., in press). 
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Figure 12

NESW 4 m
Short-scale bed transects: Bed 209, Location IV

Low angle 
stratification

Unstratified

CBA Mud-clast charged sandstone.
Clasts can be elongate and range
from sub-angular to sub-rounded.

Greater erosion occurs where
mud-clast abundance is higher
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Flow head run-up and collapse at a confining slope

NN

D
Imbrication within mud-clast-rich intervals indicates 
emplacement by flow from the south rather than from 
failure sourced from the northern basin margin.

X

Mud-clast-rich intervals are neither thicker nor more 
frequent with increasing proximity towards the 
confining northern basin margin. 

~

1. Incoming flow with an older mud-clast population subject to attrition and on-
going entrainment of new, relatively larger mud-clasts in the flow head.

2. Run-up and collapse of the mud-
clast-rich flow head onto deposits
emplaced by more rearward flow. For thesis only..

Bed amalgamation

Substrate deformation beneath high concentration gravity flows

???Gravity flow triggered destabilisation of a confining slope

N

1. Incoming gravity flow.

3. Gravity flow triggered slope destabilisation
synchronous with gravity flow still entering
the basin.

Time 1 Time 2

Time 1 Time 2

2. Deflected flow.

Erosion

Amalgamation

Substrate deformation Amalgamation

A

B

C

Mud-clast-rich intervals are neither thicker nor more 
frequent with increasing proximity towards the 
confining northern basin margin. 

X

Imbrication within mud-clast-rich intervals indicates 
emplacement by flow from the south rather than from 
failure sourced from the northern basin margin.

X

Large mud-clast entrainment from the basin floor is 
observed over 3 kilometres upstream from the 
confining northern basin margin.

~

Remnant intact muddy substrate parting the separate 
beds are not found when tracing mud-clast-rich 
divisions laterally over c. 5 kilometres.

Mud-clast-rich divisions are overlain by laminated, 
finer grained sandstone deposited by dilute low-
concentration flow which are considered to have been 
incapable of erosion / deformation across the entire 
extent of the basin.

Too fortuitous - requires repeated disruption of the 
entire thickness of thick mudstones down to the 
underlying sandstone bed across the entire basin.

X

X

X

X Sandstone inject accompanied with thrusting and 
folding of mudstone underlying beds is not observed. 

Bed amalgamation

Substrate deformation beneath high concentration gravity flows

???Gravity flow triggered destabilisation of a confining slope

N

1. Incoming gravity flow.

3. Gravity flow triggered slope destabilisation
synchronous with gravity flow still entering
the basin.

Time 1 Time 2

Time 1 Time 2

2. Deflected flow.

Erosion

Amalgamation

Substrate deformation Amalgamation

A

B

C
Mud-clast-rich intervals are neither thicker nor more 
frequent with increasing proximity towards the 
confining northern basin margin. 

Imbrication within mud-clast-rich intervals indicates 
emplacement by flow from the south rather than from 
failure sourced from the northern basin margin.

Large mud-clast entrainment from the basin floor is 
observed over 3 kilometres upstream from the 
confining northern basin margin.

Remnant intact muddy substrate parting the separate 
beds are not found when tracing mud-clast-rich 
divisions laterally over c. 5 kilometres.

Mud-clast-rich divisions are overlain by laminated, 
finer grained sandstone deposited by dilute low-
concentration flow which are considered to have been 
incapable of erosion / deformation across the entire 
extent of the basin.

Too fortuitous - requires repeated disruption of the 
entire thickness of thick mudstones down to the 
underlying sandstone bed across the entire basin.

Deformation (thrusting and folding) of mudstone 
underlying beds was not observed. 

Features that discount the role of substrate 
modification (A and B) or slope failure (C) in 

generating mud-clast-charged divisions

Figure 14



Facies tracts
A-A
D-D
C-C
C-B
C-C’S
B-B

Sandy hybrid event bedConfining topography

Confined & uncontianed (CU) system

Uncontained flow
travels downstream.

Flow concentration & sediment fall-out rate
Flow expansion & energy dissipation

Flow containment

Confined & contained (CC) system
Extensive and highly complex three dimensional flow dynamics due to;
  flow interaction with confining topography at multiple locations.
interaction with and between flow disturbances (e.g., return flow & 
deflected flow) generated by confining topography.
interaction with flow still entering the basin.

Deflected flow Return flow at a high angle to
the strike of the confining slope Mud-clast-rich divisonSubstrate entrainmentConfining topography

Mud-clast-rich divisions are extensive and are not localised 
to confining topography.

Mud-clast-rich divisions are localised to confining topography.

Fewer interactions and the lack of flow containment (ponding) results
in relatively less complex three dimensional flow dynamics which are
localised to the point of confinement. 

Confined & uncontianed (CU) system

Uncontained flow
travels downstream.

Flow concentration & sediment fall-out rate
Flow expansion & energy dissipation

Flow containment

Confined & contained (CC) system
Extensive and highly complex three dimensional flow dynamics due to;
  flow interaction with confining topography at multiple locations.
interaction with and between flow disturbances (e.g., return flow & 
deflected flow) generated by confining topography.
interaction with flow still entering the basin.

Deflected flow Return flow at a high angle to
the strike of the confining slope Mud-clast-rich divisonConfining topography

Mud-clast-rich divisions are extensive and are not localised 
to confining topography.

Mud-clast-rich divisions are localised to confining topography.

Fewer interactions and the lack of flow containment (ponding) results
in relatively less complex three dimensional flow dynamics which are
localised to the point of confinement. 

Confined & uncontained (CU) system

Uncontained flow
travels downstream.

Flow concentration & sediment fall-out rate
Flow expansion & energy dissipation

Flow containment

Confined & contained (CC) system
Extensive and highly complex three dimensional flow dynamics due to;
  flow interaction with confining topography at multiple locations.
interaction with and between flow disturbances (e.g., return flow & 
deflected flow) generated by confining topography.
interaction with flow still entering the basin.

Deflected flow Return flow at a high angle to
the strike of the confining slope Mud-clast-rich divisionConfining topography

Mud-clast-rich divisions are extensive and are not localised 
to confining topography.

Mud-clast-rich divisions are localised to confining topography.

Fewer interactions and the lack of flow containment (ponding) results
in relatively less complex three dimensional flow dynamics which are
localised to the point of confinement. 
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