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ABSTRACT1

 Background and Aims2

Plants regulate cellular oxygen partial pressures (pO2), together with reduction/3

oxidation (redox) state to manage rapid developmental transitions such as bud burst4

after a period of quiescence. However, our understanding of pO2 regulation in5

complex meristematic organs such as buds is incomplete, and particularly lacks6

spatial resolution.7

 Methods8

The gradients in pO2 from the outer scales to the primary meristem complex were9

measured in grapevine (Vitis vinifera L.) buds, together with respiratory CO210

production rates and the accumulation of superoxide and hydrogen peroxide, from11

ecodormancy through the first 72 h preceding bud burst, triggered by the transition12

from low to ambient temperatures.13

 Key Results14

Steep internal pO2 gradients were measured in dormant buds with values as low as15

2.5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production16

rates increased soon after the transition from low to ambient temperatures and the17

bud tissues gradually became oxygenated in a patterned process. Within 3 h of the18

transition to ambient temperatures, superoxide accumulation was observed in the19

cambial meristem, co-localisingwith lignified cellulose associated with pro-vascular20

tissues. Thereafter, superoxide accumulated in other areas subtending the apical21

meristem complex, in the absence of significant hydrogen peroxide accumulation,22

except in the cambial meristem. By 72 h, the internal pO2 gradient showed a23

biphasic profile, where the minimum pO2 was external to the core of the bud24

complex.25

 Conclusions26
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Spatial and temporal control of the tissue oxygen environment occurs within1

quiescent buds, and the transition from quiescence to bud burst is accompanied by a2

regulated relaxation of the hypoxic state and accumulation of reactive oxygen3

species (ROS) within the developing cambium and vascular tissues of the4

heterotrophic grapevine buds.5

6

KEYWORDS7

Bud burst, Vitis vinifera L., Grapevine, Reactive Oxygen Species, Superoxide, Hypoxia,8

Oxygen Partial Pressure, Meristem, Development, Respiration, Ecodormancy,9

Quiescence.10

11
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INTRODUCTION1

The buds of perennial trees and vines comprise one or more embryonic shoots with2

multiple meristems of diverse organogenic states, enclosed in a protective shell of dense3

scales. Similar to germinating seeds, the transition from quiescence to metabolically-4

active occurring during bud burst is rapid, and requires the re-structuring of intercellular5

communication, respiratory and biosynthetic metabolism and cell division and6

expansion. The identity, pluripotency and fate of cells in the meristem is determined by7

spatial organisation (Esau, 1977, van den Berg et al., 1995), which is compounded in8

the embryonic shoot. Hence, this transition requires intricate spatial and temporal9

coordination of intercellular signalling networks within and between the functional10

domains of each meristem.11

Oxygen is an essential substrate and signal in all aerobic organisms. Plants regulate the12

availability of oxygen and its metabolism during key transitions, including the13

regulation of quiescence (Considine and Foyer, 2014). Within this context the cellular14

reduction/ oxidation (redox) hub plays a key role (Gapper and Dolan, 2006, Considine15

and Foyer, 2014), and we suggest the partial pressure of oxygen (pO2) also plays an16

important role, as known in animals and other aerobic organisms (Brahimi-Horn et al.,17

2007). The complex roles of redox processes in seed germination (Diaz-Vivancos et al.,18

2013 and references therein) and the control of pO2 are far from understood (Bradford et19

al., 2008, Borisjuk and Rolletschek, 2009). Similarly, our current knowledge of redox20

and pO2 sensing and signalling during bud burst is limited, particularly in terms of the21

spatial resolution of oxygen dynamics. Animal stem cell models consider that the redox22

environment, together with hypoxia (low pO2), are central regulators of the stem cell23

niche, that are key to cell identity and the maintenance of quiescence and pluripotency24

(Mohyeldin et al., 2010, Wang et al., 2013). The quiescent centre of the root meristem25
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resides in an oxidised niche (Jiang et al., 2003, Jiang and Feldman, 2005). It is probable1

that the organising centre and stem cells of the shoot apical meristems have similar2

requirements (Reichheld et al., 2007, Considine and Foyer, 2014).3

In plants, as in animals, intracellular redox signals govern the cell cycle (Colucci et al.,4

2002, Jiang et al., 2003, Rothstein and Lucchesi, 2005, Diaz Vivancos et al., 2010). The5

local perception of pO2 in animals enables acclimation during developmental6

transitions, as well as mediating responses to various stress conditions and pathologies7

(Brahimi-Horn et al., 2007). Recent studies have increased understanding of the sensing8

and signalling of pO2 in plant oxygen-stress responses (Gibbs et al., 2011, Licausi et al.,9

2011). However this type of regulation has scarcely been studied in developing systems10

other than seeds.11

Regulation of respiration is central to the transition from quiescence to the metabolically12

active state. During seed germination or bud burst, respiration increases because of the13

requirement for oxidative phosphorylation and reducing power (Morohashi and14

Shimokoriyama, 1975, Hourmant and Pradet, 1981, Bewley, 1997). Studies on seeds15

have demonstrated a regulatory role of redox signalling during germination and clear16

spatial gradients that illustrate the function of reactive oxygen species (ROS) and low17

molecular weight antioxidants in cell division and expansion (Gidrol et al., 1994,18

Schopfer et al., 2001, Oracz et al., 2009, Kranner et al., 2010, Rewers and Sliwinska,19

2014).20

The transition to bud burst can be accelerated by numerous sub-lethal stresses, including21

transient inhibition of respiration, heat shock or hypoxia (Esashi and Nagao, 1973, Erez22

et al., 1980, Erez, 1987), as is also the case with seed germination (Roberts, 1962,23

Siegel et al., 1962, Siegel et al., 1964, Chen, 1970, Al-Ani et al., 1985). ROS are24

proposed to be key signalling agents induced by respiratory inhibition, as they function25
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both directly on the cell cycle and by modulating activities of plant growth regulators1

such as ethylene, abscisic acid and auxin (Ophir et al., 2009). This fits with earlier2

suggestions that repressed catalase activity (Shulman et al., 1983, Nir et al., 1986) and3

increased production of hydrogen peroxide stimulate bud burst in grapevine (Perez and4

Lira, 2005, Vergara et al., 2012a). Indirect evidence that dormant buds reside in an5

hypoxic state comes from analyses of gene expression. Transcripts encoding proteins6

involved in oxidative phosphorylation and the TCA cycle are repressed in dormant buds7

while those encoding components involved in glycolysis, pyruvate metabolism,8

fermentation and redox networks are increased (Halaly et al., 2008, Ophir et al., 2009,9

Vergara et al., 2012b). Much of these data come from buds under stress conditions.10

The scales of buds have low oxygen permeability and so the enclosed tissues are likely11

to be hypoxic, similar to the situation in dry seeds (Borisjuk and Rolletschek, 2009). In12

the seeds of some species, the suberised cell layers beneath the seed coat act as a barrier13

to oxygen diffusion, and their removal accelerates germination (Collis-George and14

Melville, 1974, Rolletschek et al., 2007). To date, no studies in the literature report data15

on pO2 values in buds. The following studies were therefore performed to resolve this16

issue, and to examine the cellular redox poise and pO2 status during bud burst.17

Furthermore, we aimed to resolve the spatio-temporal changes in these parameters that18

accompany the transition to bud burst, in a simplified developmental system that may19

provide a platform for further studies in a range of conditions and quiescent states20

(Considine and Foyer, 2014). The following experiments were performed on grapevine21

(Vitis vinifera L.), which is one of the most economically important woody perennial22

crop species, and has become a model species for research on perennial woody plants.23

Due to the anatomical complexity of the grapevine bud relative to other meristematic24

organs, it is useful to describe grapevine bud structure (Pratt, 1974, May, 2004). The25
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mature bud complex, or N+2 according to May (2004), comprises a hierarchy of three1

buds – primary, secondary and tertiary, each resembling primordial shoots (Fig. 1). The2

primary bud is the most developed and by maturity bears 12-15 nodes, including3

inflorescence, tendril and leaf primordia, enclosed by layers of bracts and hairs. During4

maturation prior to winter, outer bracts lignify and harden to physically protect the bud5

over winter. Concurrent with this is a gradual cessation of meristematic activity and the6

acquisition of tolerance to desiccation and chilling (Schrader et al., 2004, Rohde et al.,7

2007, Ruttink et al., 2007). The cessation of growth involves the acquisition of8

dormancy, defined as the failure of an intact, viable bud to burst in otherwise conducive9

conditions, until repressive factors are overcome through entrainment to seasonal10

signals such as chilling and photoperiod (Bewley, 1997), otherwise known as11

endodormancy (Lang et al., 1987). Once endodormancy is overcome, the bud is said to12

be ecodormant, i.e. quiescent but awaiting conducive conditions for growth. In this13

study, we refer to the mature bud complex as a whole, although pO2 measurements were14

directed at the primary bud, and the secondary and tertiary buds were often lost during15

histological processing. The data presented here show that ecodormant buds undergo a16

regulated transition from hypoxia to the oxygenated state during bud burst. These17

findings provide a platform to further explore and dissect the roles of these signalling18

agents in mediating transitions in bud dormancy governed by environmental and19

developmental inputs.20

21

22

23
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MATERIALS AND METHODS1

Plant material2

Grapevine var. Crimson Seedless canes with mature dormant buds were harvested mid-3

winter from a vineyard in Yallingup Siding, Western Australia (Latitude: -33.694;4

Longitude: 115.102). Canes with buds intact were stored at 4 °C in the dark until they5

had received at least 5500 chilling hours (c. 7 months). The low degree of quiescence of6

the buds after cold-storage was confirmed by growing single-node cuttings of nodes 5-77

(explants, numbered acropetally) at 23 °C in vermiculite in darkness, with water8

maintained at field capacity (refer Fig. 1 for developmental progression). Nodes 5-79

were chosen due to positional effects noted previously (Antcliff and May, 1961). The10

cumulative rate of bud burst was scored similarly to that described by Antcliff and May11

(1961) and according to the modified Eichorn-Lorenz scale (EL; Coombe, 2004),12

showing that 50 % of buds had reached EL-4 after 96 h at 23 °C and 80 % bud burst by13

240 h (data not shown). On this basis we chose to study a time series over 72 h from14

transfer to 23 °C, in continuous darkness to minimise complexity. One or more single15

nodes were considered a biological replicate, as described for each assay.16

Internal O2 partial pressure (pO2)17

The internal pO2 of buds were measured after 3, 24 and 72 h at 23 °C, using a Clark-18

type oxygen microelectrode with tip diameter of 25 µm (OX-25, Unisense A/S, Aarhus,19

Denmark). Internal pO2 was also measured in buds with the outer scales removed by20

scalpel 10 min prior, after 3 h at 23 °C. Microelectrodes were calibrated at atmospheric21

pO2 (20.87 kPa) and at zero O2, then mechanically guided into the buds, from the outer22

scale surface to the core of the primary bud, in 25 µm steps to a depth of 2000 µm using23

motorised micro-manipulator (MC-232, Unisense). The microelectrode recording was24
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allowed to stabilise for 20 s after each step with measurements taken over the1

subsequent 10 s. Means and 95 % confidence intervals of individual buds (n = 3) were2

calculated using R (R Development Core Team, 2014) and graphics were compiled3

using the latticeExtra package and functions within (Sarkar and Andrews, 2013).4

Bud respiratory CO2 production5

Four buds per biological replicate were excised from the cane by transverse section at6

the base of the bud, weighed and placed onto thin agar plates, cut-side down, so that O27

entry and CO2 exit would occur across the bud scales rather than via the cut base. The8

rate of CO2 production of each biological replicate was measured in the dark, in an9

insect respiration chamber (6400-89, Li-COR, Nebraska, Canada) attached to Li-10

6400XT portable gas exchange system. Measurements were performed at 23 °C, in11

CO2-controlled air (380 µmol CO2.mol
-1
air) with 100 µmol.m

-2
.s
-1
air flow, at 55-75 %12

relative humidity. The system was allowed to stabilise for 10 min before recording and13

until the “stableF” value was equal to 1, i.e. the condition of humidity, CO2 and air flow14

were in equilibrium and stable. Means and 95 % confidence intervals were determined15

by fitting the time-series of CO2 evolution to a quadratic equation of the form, y =  +16

1x + 2 x
2
, using the linear model function within R (R Development Core Team,17

2014) and plotted using ggplot2 (Wickham, 2009).18

Histology19

Chemicals for histology were supplied by Sigma (St. Louis, USA) unless otherwise20

stated. To confirm the path of the pO2 microelectrode, buds were fixed for sectioning21

immediately after measurement. Before excision and fixation, a vector was cut in a22

sagittal plane from each side of the bud complex, adjacent to the primary bud and23

parallel to the path of the microelectrode to aid penetration of the fixative. Buds were24
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then excised from the cane by transverse section at the base of the bud, then fixed in1

10 % v/v formaldehyde (Chem-Supply, Adelaide, Australia) with 5 % v/v propionic2

acid (Ajax Chemicals, Sydney, Australia) overnight at 4 ºC, and subsequently3

dehydrated in serial ethanol solutions (15, 20, 25, 30, 50, 75, 90 and 100 % v/v), 30 min4

each, with gentle agitation at 4 °C. Buds were then embedded in paraffin wax. Sagittal5

sections (5 m) of the bud were made on a microtome (Leica Biosystems, RM2255,6

Nussloch, Germany), transferred to slide, de-waxed and stained with 0.05 % w/v of7

toluidine blue O in 0.1 M phosphate buffer pH 4.8. The sections were then scanned at8

20x magnification by Aperio Scanscope LX (Leica Biosystems).9

Histological detection of hydrogen peroxide (H2O2) and superoxide (O2
.-
) were10

performed on bud sections from explants grown for 0, 3, 23 or 72 h at 23 °C. The11

methods of Groten et al. (2005) were followed with minor change: nitrobluetetrazolium12

(NBT) and 3,3’diaminobenzedine (DAB) were each dissolved in 10 mM phosphate13

buffer pH 7.8 without dimethylsulfoxide. Buds were excised from the cane as described14

to visualise the path of the microelectrode, and stained under light vacuum for 8 h at15

room temperature in darkness. Stained buds were fixed in 4 % v/v formaldehyde16

(Chem-Supply) in a buffer of 5 mM MgSO4, 5 mM EGTA and 50 mM PIPES pH 6.9,17

vacuum infiltrated for 1 h, incubated overnight at 4 °C, dehydrated in serial ethanol18

solutions (15, 20, 25, 30, 50, 75, 90 and 100 % v/v), 30 min each, with gentle agitation19

at 4 °C. The buds were then transferred into 1:1 v/v of ethanol: Steedman’s wax20

solution (Norenburg and Barrett, 1987) and incubated for overnight at room temperature21

prior to embedding. Serial sagittal sections of the bud were made at 20 m intervals22

using a microtome (Leica Biosystems, RM2255), transferred to slide and de-waxed in23

100 % followed by 50 % v/v, 5 min each solution. The sections were then scanned at24

20x magnification by Aperio Scanscope LX (Leica Biosystems).25
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To visualise lignin, NBT-stained buds were counter-stained with 0.05 % w/v Auramine-1

O (Ajax Chemicals, Auburn, Australia) in deionised water. A drop of stain solution was2

placed on each section and let to absorb for 1 min before washing the slides with3

sprayed water. The stained sections were then visualized using Carl Zeiss microscope4

(D-708Z Oberkochen, West Germany) with blue light 450 - 490 nm.5

6
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RESULTS1

CO2 production and internal oxygen partial pressure (pO2)2

Respiratory CO2 production rates increased from c. 4.0 to 5.2 nmol CO2.g FW
-1
.s
-1
in3

ecodormant buds maintained at 23 °C over the first 72 h following the transition from4

low to ambient temperatures. Subsequently respiration rates fell to 4.0 nmol5

CO2.g FW
-1
.s
-1
by 144 h (Fig. 2), showing that metabolic activity was increased upon6

transition to conducive growth conditions for bud burst.7

We determined the internal pO2 profile from the outer scale towards the core of the8

primary bud complex; At 3 h after transfer to 23 °C, which was the earliest stage of9

measurement, the internal pO2 was hypoxic immediately within the scale (c. 10 kPa cf.10

air = 20.6 kPa), declined towards 5 kPa within the outer 500 m and declined steadily to11

c. 2.5 kPa through to the core of the bud complex (Fig. 3A). Some replicate data12

showed indetectable O2 (severe hypoxia/potential anoxia) at the core. Removal of the13

outer layer of scales at this time point resulted in oxygenation of the outer 15-1800 m14

of the tissue profile, relative to the intact bud, however the core remained near 2.5 kPa15

(Fig. 3B). Despite this effect, de-scaling buds had no significant effect on the rate or16

completion of bud burst to stage EL-4, relative to intact buds (data not shown, refer17

Materials and Methods). We then determined the pO2 profiles of intact buds at 24 and18

72 h after transfer to 23 °C to determine whether removal of the scale at 3 h simply19

expedited the normal progression of oxygenation within the bud. By 24 h, only the pO220

of the outer 500 m of the bud had increased, up to c. 15 kPa pO2 immediately within21

the scale, while the remaining path towards the core remained near levels seen in intact22

buds at 3 h (Fig. 3C). By 72 h, the pO2 profile of outer 1400 m of tissue resembled23

that of the de-scaled buds at 3 h, however the pO2 of the inner 500 m had increased,24
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resulting in a biphasic profile such that the minimum pO2 along the electrode’s transect1

was c. 7 kPa at 1400 m depth from the scale, while at 2000 m depth, the pO2 was2

>10 kPa (Fig. 3D). Figure 3E shows the path of the microelectrode in a representative3

section.4

Histological detection of superoxide and hydrogen peroxide5

Using replicate buds of the same developmental series and treatment conditions as used6

for pO2 microelectrode measurements, we stained for the local accumulation of7

superoxide (O2
.-
) and hydrogen peroxide (H2O2), detected as the products of reactions8

with NBT or DAB respectively. Immediately upon removal from 4 °C (0 h) and after9

3 h at 23 °C, O2
.-
accumulated in a very confined zone of the meristematic tissue,10

around the axillary meristems (Fig. 4A). After 3 h however, O2
.-
accumulation was11

observed in the cambial meristem tissues. For the first 3 h no H2O2 accumulation was12

detected in tissues around the apical meristem but low levels were observed in the13

cambial meristem tissue (Fig. 4E, 4F). After 24 h, O2
.-
levels were increased in a wider14

zone of tissues of the apical meristem complex and retained in the cambial meristem15

tissues, while H2O2 was not accumulated in the tissues with the exception of the cambial16

meristem (Fig. 4C, 4G). At this time point the pO2 at the core of the bud complex17

remained low. A more distinct pattern of O2
.-
localisation emerged at 72 h, which18

suggested association with the developing pro-vascular tissues (Fig. 4D). At 72 h, no19

H2O2 accumulation was observed in the bud tissues (Fig. 4H). By this stage, the pO2 at20

the core of the bud complex had increased, suggesting a possible association between21

the patterns.22

To investigate the cell types associated with the distinct O2
.-
pattern seen at 72 h, we23

counter-stained sections to visualise lignin. Figure 5 shows a clear co-localisation of24

O2
.-
with lignified cellulose as early as 3 h from transfer to 23 °C, but not earlier,25
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providing further evidence that these are developing pro-vascular tissues. At 0 h, O2
.-

1

accumulation was localised in the meristematic tissues but very little lignin associated2

with this pattern (Fig. 5C, 5D show magnified images of the boxed areas of Fig. 5A,3

5B). By contrast, at 3 h the co-localisation of O2
.-
and lignin was observed (Fig. 5D, 5E,4

5F shows the individual and superimposed images). Close inspection of Figure 5E5

reveals the typical ladder-like perforation plates of xylem vessel elements.6

7
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DISCUSSION1

The experimental system presented here mitigated the potentially confounding effects of2

endodormancy and the influence of light. Endodormancy in grapevine, as in many3

perennial trees and vines is primarily overcome by an accumulated exposure to chilling.4

Adequately chilled buds are termed ecodormant, a qualitative condition that is repressed5

only by the unfavourable growth environment (i.e. cold) and therefore more comparable6

to quiescence in other organs and forms of life. Bud burst per se does not require the7

presence of light (Pouget, 1963), although several studies have demonstrated influences8

of light intensity and photoperiod on organogenesis at other stages of development9

(Buttrose, 1970, Srinivasan and Mullins, 1981). There is no knowledge of whether10

photosynthesis may initiate in the bud prior to bud burst. Drawing analogy to seeds,11

where in several species photosynthesis influences the internal pO2 even during12

development or when mature and imbibed prior to germination (Borisjuk and13

Rolletschek, 2009), we may expect this to be the case in buds. Hence, overcoming14

endodormancy and excluding light allowed us to accurately and precisely study15

heterotrophic metabolism during the acute phase of bud burst.16

Cells in a quiescent state are defined by very slow metabolic rates, with minimal17

respiration until environmental or metabolic triggers prime the metabolic systems to18

resume growth. While several authors have described conserved responses to hypoxia or19

other oxidative stress across species and life forms (Hochachka, 1986, Jones et al.,20

2000, Mustroph et al., 2010), it is not possible to construct a generalised description of21

the metabolic state of quiescent cells or the changes that occur upon the transition to the22

metabolically active state or subsequent proliferation (Valcourt et al., 2012, Teslaa and23

Teitell, 2015). The findings of the present study provide new insights into the24

management of hypoxia when dormancy is broken in quiescent grapevine buds by25
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exposure to chilling and the subsequent transition to ambient temperatures. While1

respiration rates are rapidly increased and superoxide accumulation is observed in and2

around the developing lignified zone of the cambium following the transition to ambient3

temperatures, the release from the hypoxic state is gradual and occurs in specific regions4

of the bud as the developmental transition progresses.5

A rapid acceleration of respiratory CO2 production was observed in the buds following6

the transition from low to ambient temperatures demonstrates the alleviation of the7

constraints maintaining the quiescent state. This process, which was observed over the8

72 h of bud burst measured at 23 °C, resembles the pattern observed during seed9

imbibition (Bewley, 1997) and in other studies on perennial buds (Hollis and Tepper,10

1971, Shulman et al., 1983, Gardea et al., 1994, McPherson et al., 1997, Perez et al.,11

2008). Measurements of respiratory CO2 production, do not allow discrimination12

between TCA cycle activity, fermentation, the pentose phosphate pathway or other13

pathways. Evidence suggests that fermentation occurs during bud burst under stress14

conditions and that the imposition of stress accelerates bud burst. For example15

acetaldehyde and ethanol accumulate in ecodormant grape buds treated with sodium16

azide, hydrogen cyanamide or heat shock (Ophir et al., 2009). Hydrogen cyanamide,17

heat shock and hypoxia increase the levels of transcripts that are orthologues of18

ALCOHOL DEHYDROGENASE, PYRUVATE DECARBOXYLASE and SUCROSE19

SYNTHASE in ecodormant grapevine buds (Or et al., 2000, Ophir et al., 2009, Vergara20

et al., 2012b). However in each case, untreated controls showed a slower or weaker21

transcriptional response with negligible fermentation activities observed during bud22

burst. These observations suggest that stress-induced changes in transcript profiles do23

not reflect the transcriptome signatures of developmental regulation of bud burst. Some24

evidence of pentose phosphate pathway activity was seen throughout seasonal25
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development in pear buds (Zimmerman and Faust, 1969), and during chilling of potato1

tubers (Dwelle and Stallkneckt, 1978) or Peony buds (Gai et al., 2013). However, these2

studies represent quite different physiological states compared to bud burst.3

Many plant tissues and organs, including dry seeds, have permeability barriers that4

reduce oxygen diffusion. In the case of seeds, the hypoxic state may contribute to5

maintaining quiescence (refer Introduction). The data presented here show that the6

scales of the dormant bud are a significant barrier to oxygen. Crucially however, the7

meristematic core of the bud tissues remained in a hypoxic state even when the outer8

scales were removed. While Iwasaki and Weaver (1977) suggested some acceleration of9

bud burst in de-scaled ecodormant grapevine buds, removal of the outer scales did not10

affect the rate of bud burst in our study (data not shown). Schneider (1968) also showed11

that removal of scales attenuated quiescence of Rhododendron floral buds. However, in12

these earlier studies there was very limited replication of experiments. Nevertheless, it is13

conceivable that the buds used in our study were near to 100 % labile and hence very14

little effect of scale removal would be seen.15

The data reported here demonstrate that the pO2 at the meristematic core of the bud16

complex was in an hypoxic state for up to 24 h after the environmental trigger to resume17

growth had caused an increased in respiration. Respiratory CO2 production rates had18

increased by 15 % in 24 h and superoxide accumulation was observed in the cambial19

tissues underlying the meristematic core of the bud complex. By 72 h however, the20

oxygen profile was biphasic, the oxygen levels within the bud core had increased and21

superoxide accumulation was pronounced within the pro-vascular tissues. Present data22

are insufficient to explain the biphasic profile of oxygenation. In the heterotrophic23

conditions presented, even once the resistance to diffusion of the outer scales and24

compacted tissues were relaxed, the increased respiratory rates would contribute to25
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substantial declines in pO2 with distance into the tissue. Further investigation of the1

vascular flow and metabolic activities at the core of the bud complex are required. Our2

group is currently exploring these features, and also the developmental processes and3

controls that preside in the presence of light, where photosynthesis may contribute to4

oxygenation even prior to bud burst, as is the case during germination of some seeds5

(Borisjuk and Rolletschek, 2009).6

Vascular development and re-activation of intercellular communication are proposed to7

be essential early features of the transitions to and from quiescence in plant organs,8

including grapevine buds (Esau, 1948, Rinne et al., 2001, Paul et al., 2014). Cell9

expansion, cell wall thickening and the conductivity of plasmodesmata in vascular10

tissues are all dependent on, or influenced by ROS accumulation (Gapper and Dolan,11

2006, Benitez-Alfonso et al., 2011). Ogawa et al. (1997) showed a strong co-12

localisation of lignin and superoxide (NBT) in vascular tissue of spinach hypocotyls.13

Moreover, these authors demonstrated that inhibition of CuZn SUPEROXIDE14

DISMUTASE (CuZnSOD) or NAD(P)H OXIDASE reduced vascular lignin15

biosynthesis. More recently, ectopic expression of CuZnSOD and/ or ASCORBATE16

PEROXIDASE (APX) in Arabidopsis resulted in enhanced vascular lignin synthesis17

(Shafi et al., 2015). SOD, APX and catalase were found in cell membranes that had18

been partially purified from lignin-producing tissues of Norway spruce (Karkonen et al.19

(2014). Taken together, these data suggest that vascular lignin synthesis is dependent on20

superoxide and/ or hydrogen peroxide production. It is important to note that hydrogen21

peroxide did not accumulate in vascular tissues of the buds studied here.22

Taken together, the data presented here adds to the growing body of evidence showing23

that regulation redox and oxygen metabolism are critical to organ development24

(Considine and Foyer, 2014). The present study demonstrates that during bud burst, the25
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complex network of enclosed shoot meristems undergoes a controlled transition from1

hypoxia to increasing pO2. This transition is accompanied by a highly localised2

accumulation of ROS in and around the developing cambium and vascular tissues.3

These data clearly demonstrate the spatial and temporal nature of the control of the4

oxygen and redox environments within the bud that occurs during the transition from5

quiescence to burst in heterotrophic grapevine buds.6

7
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FIGURE LEGENDS1

Figure 1. Time-series of grapevine bud burst. Single node explants of ecodormant2

buds were transferred from cool-storage (4 °C) and planted out at 23 °C (dark). Figure3

shows the progression of bud burst at 0, 1, 3, 7 and 9 days (left to right) at 23 °C. Buds4

were sampled for the studies presented here at select time points during this5

development. The figure insert shows a sagittal section of the bud, with the primary6

(centre arrow), secondary (right arrow) and tertiary (left arrow) bud meristem7

complexes. When ecodormant (0 days), the bud complex is enclosed by a layer of8

lignified scales and several layers of bracts. Progressively over 3-5 days we observed9

expansion of the bud complex and rupture of the outer scales. Within 5-7 days, buds10

reached the stage of bud burst, according to the modified Eichorn-Lorenz scale (EL4;11

Coombe, 2004). By 9 days, the first leaves had separated from the shoot apical12

meristem (EL7). Scale bar main figure = 5 mm, figure insert = 1 mm.13

Figure 2. Respiratory CO2 production during grapevine bud burst. Ecodormant14

buds were transferred from cool-storage (4 °C) and planted out at 23 °C (dark) at zero15

hours. The rate of CO2 production was measured on groups of four excised buds with16

the cut base on agar using an infra-red gas analyser in darkness. Data represent a17

regression (n = 4 replicates of 4 buds per replicate) +/- 95 % confidence intervals by18

fitting the time-series of CO2 evolution to a quadratic equation of the form, y =  + 1x19

+ 2 x
2
(refer Materials and Methods).20

Figure 3. Internal profile of the partial pressure of oxygen (pO2) during grapevine21

bud burst. The pO2 of ecodormant buds, intact (A = 3h, C = 24h, D = 72h) or with the22

outer scale removed (B = 3h) was assayed after time at 23 °C in darkness. Data23

represent scatterplots of raw data (n = 3), with a regression curve applied and 95 %24

confidence intervals shown as grey shading. E - Sagittal section of the primary bud25



26

meristem complex, fixed and stained with toluidine blue, showing the path of the O21

microelectrode from the outer scale (arrow) towards the inner core of the primary bud2

complex. Scale bar = 500 m.3

Figure 4. Spatial and temporal localisation of reactive oxygen species (ROS) in4

sagittal sections of the primary bud meristem complex during bud burst.5

Superoxide (A-D) and hydrogen peroxide (E-H) localisation were indicated using6

nitrobluetetrazolium (NBT) and 3,3’diaminobenzedine (DAB) respectively against fixed7

sections (20 m), sampled at 0 h (A, E), 3 h (B, F), 24 h (C, G) or 72 h (D, H) after8

transfer to 23 °C. Scale bar = 500 m. Figures are representative of three independent9

replicates.10

Figure 5. Spatial and temporal localisation of superoxide (A, C, E) as contrasted to11

lignin (B, D, F) in grapevine buds during the first three hours after transfer to12

23 °C. Superoxide (NBT) is localised to latent meristem cells at 0 h, with negligible13

association with lignified cells (A-D, indicated by Auramine-O), where C and D are14

magnifications of boxed inserts in A and B. By 3h at 23 °C, superoxide production is15

evidently associated with lignin, indicative of pro-vascular development (E-G), where16

G is F superimposed over E. Scale bar = 100 m (A, B), 20 m (C, D), 50 m (E-G).17

Figures are representative of three independent replicates.18
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