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The high frequency radiation emitted by a quantum conduc-

tor presents a rising interest in quantum physics and condensed

matter[1, 6, 3, 4, 5, 7, 8]. However its detection with microwave

circuits is challenging. The important mismatch between the quan-

tum conductor impedance (∼ h/e2) and the circuit impedance (typ-

ically 50 Ω) strongly limits the sensitivity. Recent realization of

on-chip quantum detection [7, 9, 10, 11, 12, 13] have circumvented

this issue using spatially close detectors with larger impedance pro-

viding high sensitivity up to high frequency. However, they lack of

a universal photon-response. Here, we propose to use the Photon-

Assisted Shot Noise (PASN) for on-chip radiation detection. It is

based on the low frequency current noise generated by the parti-

tioning of photon excited electrons and holes which are scattered

inside the conductor [14, 15, 16, 17]. For a given electromagnetic

coupling to the radiation, the PASN response is independent on

the nature and geometry of the quantum conductor used for the

detection, up to a Fano factor, characterizing the type of scatter-

ing mechanism. Ordered in temperature/frequency range, from

few tens of milli-Kelvin/GHz to several hundreds of Kelvin/THz,

a wide variety of conductors can be used like Quantum Point

Contacts (this work), diffusive metallic or semi-conducting films,

Graphene, Carbon nanotubes and even molecule, opening new ex-

perimental opportunities in quantum physics.
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To circumvent impedance mismatch limitation, different types of on-chip

photon detectors have been developed using a second nearby quantum con-

ductor and exploiting its photon detection ability. On-chip detectors have

been realized using GaAs/AlGaAs 2D electron gas patterned quantum dots

[9, 10] and Aluminium or Niobium SIS junctions [11, 12, 13, 7]. The photon-

response of quantum dots depends on an energy scale set by their geometry,

that of superconducting junctions is limited by a characteristic energy gap

and both systems show tunnel resistance variability. Regarding bolometric

detectors their efficiency depends on the phonon relaxation time, requires

low temperature and shows slow response time.

In this letter, we propose a novel on-chip radiation detection based on

PASN. When a quantum conductor is submitted to a time dependent drain-

source voltage, electrons and holes are created which then scatter inside the

conductor. Their partitioning between source and drain contacts leads to

a current noise called Photo-Assisted Shot Noise. Remarkably, there is a

simple link between PASN and the incident radiation power up to a noise

Fano factor characterizing the statistics of partitioning. This simple link is

better understood if we remark that PASN is the quantum manifestation

of the rectification property of ordinary shot noise [18, 19, 20, 21] which is

proportional to the absolute value of the drain-source voltage.

Figure 1 shows the principle of the on-chip detection. It consists of two

separate excitation and measurement circuit lines etched in a high mobility

two-dimensional electron gas (2DEG). Each line involves two QPCs in se-
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ries. On the upper line, the left QPC is the high-frequency emitter. When

biased by the dc voltage V E
ds it generates shot noise up to the frequency

eV E
ds/h [20, 22]. The right QPC tuned on a conductance plateau acts as a

stable series resistance RE
S converting current noise into voltage noise. In

the lower line the left QPC is the detector. In series with the right QPC,

also tuned on a resistance plateau RD
S , it experiences the emitter line volt-

age fluctuations via the coupling capacitance CC up to the cut-off frequency

fmax [23]. The number of electron-hole pairs generated in the detector line

is a direct function of the radiated noise power integrated up to frequency

min(eV E
ds/h, fmax). Their scattering by the QPC detector generates a low-

frequency PASN which is measured. fmax depends on all QPC resistances

and on the self-capacitance Cself of the 2DEG part between the QPCs in

series.

To understand the photon detection principle, let us first assume that the

detector line is excited by a coherent radiation at frequency Ω/2π such that

V E
ds (t) = Vac cos(Ωt). Electrons in the detector line can absorb l photons of

energy El=l~Ω by creating an electron-hole pair with a probability P (El)=

| Jl(eVac/~Ω) |2, with Jl the lth Bessel function. Electrons and holes are

independently and randomly partitioned by the QPC detector between left

and right contacts. This generates a PASN whose low-frequency spectral

density of current fluctuations SPASN
I is given by [14, 15, 16, 17]:
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SPASN
I =

2e2

h
[4kBTe

∑
n

D2
D,n+

2
∑
n

DD,n(1−DD,n)
l=+∞∑
l=−∞

ElP (El) coth
El

2kBTe

] (1)

with Te the electronic temperature and DD,n the transmission of the nth

electronic mode through the detector QPC, n=1, 2, ... . For weak ac

voltage eVac ≪ ~Ω and zero temperature a direct relation can be estab-

lished between the radiation power Prad = V 2
ac/2Zrad and the current noise:

SPASN
I ≃ 2GDF (Zrade

2/~)Prad/Ω, where Zrad is the radiation impedance

assumed smaller than the QPC detector conductance GD and F the Fano

factor.

From Eq. (1), it is clear that the maximum PASN will be obtained for

total transmission DD =
∑

n DD,n = k + 1/2, k an integer. In addition to

shot noise, a photon assisted dc current Iph is generated when considering

the (weak) energy dependence of the QPC transmission :

Iph =
2e

h

∫
dǫ(−∂f

∂ǫ
)(
∑
n

∂DD,n

∂ǫ
)
l=+∞∑
l=−∞

E2
l P (El) (2)

f(ǫ) is the equilibrium Fermi distribution. Modeling the QPC transmis-

sion with a saddle point potential [24, 25], it can be shown that
∂DD,n

∂ǫ
∝

DD,n(1−DD,n): maximum photocurrents will be also obtained at half-integer

DD.
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In the present case, the excitation is not coherent but due to random fluc-

tuations of the QPC detector drain-source voltage which originates from the

capacitive coupling with the noisy QPC emitter. The above expressions can

be generalized, giving the PASN as:

SPASN
I =

2e2

h
[4kBTe

∑
n

D2
D,n+

2
∑
n

DD,n(1−DD,n)

∫
EP (E) coth

E

2kBTe

dE] (3)

and the photocurrent:

Iph =
2e

h

∫
dǫ(−∂f

∂ǫ
)(
∑
n

∂DD,n

∂ǫ
)

∫
E2P (E)dE (4)

The generalized probability distribution P (E) is similar to the P (E) function

used in the dynamical Coulomb blockade theory (see Supplementary Infor-

mation). It is a direct function of the radiation power to be detected, which

as a shot noise itself is maximum for DE = 0.5.

We first focus on the photocurrent whose measurement set-up is described

in Fig. 2(a). Source Vin leads to a current in the upper line and to the

voltage difference V E
ds across the emitter. The resulting shot noise induces

a photocurrent Iph in the detector. We modulate Vin at frequency 174 Hz

and detect the induced photocurrent using lock-in techniques. Series resis-

tances are tuned on a plateau for each line while the emitter and detector
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transmissions are varied. Following the saddle point potential model of a

QPC [24, 25], the transmission of the nth mode can be written DD,n(Vg) =

1/(1+e2π(V0−Vg)/Vg,n) where Vg,n is related to the negative curvature of the

saddle point potential. The photocurrent is given by (see Supplementary

Information):

Iph =
e

h

1

∆

kBT
∗
Ee

2

Cself

∑
n

2π

Vg,n

DD,n(1−DD,n) (5)

Vg,n and the lever arm ∆ = ∂ǫ/∂Vg are extracted from a study of the

differential QPC conductance versus gate and bias voltages. We have intro-

duced T ∗
E as the effective noise temperature of the circuit which, up to a

coupling factor, includes a combination of the shot noise temperature of the

emitter: (1 −DE)
eV E

ds

2kB
plus other equilibrium thermal noise contributions of

the circuit surrounding the detector QPC (see the supplementary Informa-

tion).

The color plot in Fig. 2(b) shows the measured photocurrent as a function

of the emitter and detector transmissionsDE andDD, up to two transmitting

orbital electronic modes. Above the color plot, the photocurrent is plotted as

a function of DD for a fixed value of DE ∼ 0.45. As expected, it is maximum

for half transmission of the emitter electronic modes and vanishes for integer

transmission. These measurements have been found essential for a fine cal-

ibration of the electrical circuit and for complementary characterization of

the photon-assisted shot noise effect (see the Supplementary Information).
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We now consider PASN measurements. The cross correlation noise mea-

surement set up is described in Fig. 3(a). To characterize the detector line,

the QPC detector transmission is set to DD = 0.5 while a dc bias is ap-

plied on the detector line. The resulting shot noise measured, black dots

in Fig. 3(b), perfectly agrees with the theory in red solid line. We extract

an electronic temperature Te = 310 mK close to the fridge temperature T

= 300 mK . Then we turn off the applied bias on the detector line and the

QPC emitter is biased and also tuned at transmission DE = 0.5. Both series

resistances are tuned on the first plateau. Because of the coupling capaci-

tance, voltage fluctuations are reported on the detector line. The only dc

current flowing through the detector line being the weak dc photocurrent, no

detectable transport shot noise is expected. However, we detect some noise,

confirming that the PASN detection works as illustrated in Fig. 3(c), black

circle. The detected PASN, ∆SPASN,D
I , is expected to be:

∆SPASN,D
I ≃ −4e2

h
DD(1−DD)

e2

Cself

T ∗
E

6Te

(6)

Here, considering P (E) takes only important values for E ≪ kBTe, a low-

energy expansion of Eq. (3) has been made. The T ∗
E(V

E
ds )/Cself amplitude

compatible with the detector geometry (estimated Cself=3 fF and Cc=1 fF)

and obtained from photocurrent measurements can now be compared to the

noise measurement. The theoretical prediction (red solid line) following Eq.

6 also includes an additional term due to heating effect. We discuss this
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point in the following.

We open the series QPC of the detector line such that the current to

voltage fluctuation conversion is now mediated by the smaller resistance of

the long resistive mesa. Then we apply a fixed bias V D
ds and sweep the

detector transmission (red circles in Fig. 4(a)). As expected the shot noise

is maximum for DD = 0.5 and cancels for DD = 1. The slight disagreement

with the theoretical prediction (red solid line) around DD ∼ 0.7 reveals a

weak ”0.7” anomaly [26, 27, 28, 29]. Then we tune the series QPC on its

first plateau and repeat the same experiment (black circles). Surprisingly,

the shot noise does not cancel anymore for DD = 1. To understand it, we

must consider heating effects. Since the size of the QPC is much smaller

than the electron-phonon relaxation length, there is a temperature gradient

from the QPC to the ohmic contacts assumed to be at the base temperature

of the fridge. Combining Joule heating together with the Wiedemann-Franz

law, we obtain [18]:

Te(Vds) = T 2
fridge +

24

π2

G

Gm

(1 +
2G

Gm

)(
eVds

2kB
)2 (7)

with Gm the total conductance linking the QPC to the ohmic contacts, and

Tfridge the base temperature. Considering this effect, a QPC tuned on a

plateau will not be noiseless anymore. We find a good agreement with mea-

surements, black solid line.
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We now apply V E
ds=6 mV on the emitter line, fixing DE ∼ 0.5 to get the

maximum emitted signal. In Fig. 4(b), the PASN is measured as a function

of DD. The non zero value of the shot noise for DD = 1 results from the

similar heating effect. The agreement between theory and experimental data

confirms our good understanding of the ”on-chip” detection mechanism: both

photocurrent and PASN result from the same photon assisted effect.

To conclude, we have described a new way of detecting high frequency

voltage fluctuations based on photon-assisted shot noise measurement and

seconded by photocurrent measurement. If the latter depends on the details

of the mesoscopic conductor used, PASN is universal up to a noise Fano

factor. The PASN approach for noise or photon radiation detection can be

applied to other systems. This technique offers the possibility to probe meso-

scopic properties at very high frequency (GHz and THz) of various materials

(GaAs, Graphene, Carbon nanotube).

Methods

Emitter and detector lines were patterned using e-beam lithography on a

high mobility two dimensional electron gas formed at the GaAs/GaxAl1−xAs

heterojunction. The two-dimensional electron gas is constituted 100nm below

the surface has a density of 1.8 × 1011 cm−2 and mobility 2.69 × 106cm2/

V s. Measurements were performed in cryogen free 3He cryostat at 300 mK

(base temperature).
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Figure 1: Device structure. a Scanning electron microscope view of the

sample. Two independent circuit lines defined by wet-chemical etching of

the 2DEG are coupled via the capacitance CC . On the upper line are

patterned two QPCs in series: the QPC emitter (in red), and the QPC

series resistor (in white) tuned on a plateau. On the lower line, the QPC

detector is colored in blue. b, Equivalent circuit. In red the emitter line is

coupled via the coupling capacitance CC to the detector line in blue. The

self capacitances Cself have been added that model the capacitance of each

line between the two QPCs to the ground.

Figure 2: Photocurrent measurement. a, Schematic representation of

the experimental set up for the photocurrent measurement. The QPC

emitter is excited by a sine wave function Vpp ∼ 460 µV at 174 Hz. The

measurement of the photocurrent in the detector line is realized with a

lock-in amplifier, with the excitation source as a reference signal. b, The

photocurrentas a function of the total transmissions DD (x-axis) and DE

(y-axis). On the upper graph is represented the photocurrent as a function

of DD (DE tuned to 0.45). The right graph shows the photocurrent as a

function of DE ( DD tuned to 1.36).

Figure 3: PASN measurement. a, Schematic representation of the

experimental set up for the PASN measurement. The QPC emitter being

biased emits shot noise. Because of the capacitive coupling between the

emitter and detector line, high frequency voltage fluctuations are

transferred in the detector line, generating PASN. Shot noise measurements
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are done by converting the current fluctuations into the voltage fluctuations

across a RLC circuit, cooled at 300 mK using 3 MHz resonant frequency

and 300 kHz typical bandwidth. Home made cryogenic amplifiers, with

ultra low input voltage noise (0.2 nV/
√
Hz) and located on the 3 K stage

amplify the voltage fluctuations. Using fast acquisition card and Fast

Fourier Transform, the current noise cross-correlation is computed in real

time. b, Measured shot noise SV as a function of dc voltage V D
ds across the

QPC detector, when the QPC series resistor is opened. c, Measured PASN

SPASN
V as function of the V E

ds accross the QPC emitter. QPCs emitter and

detector are tuned at DD=DE=0.5. Both series resistances are tuned on

the first plateau.

Figure 4: Transmission dependence of the PASN. a, black dots:

measured shot noise as a function of DD for an opened series QPC together

with our theoretical model (black solid line). red dots: same measurement

with the series QPC tuned on a plateau. The non-zero value of the noise

for DD = 1 results from heating effect. In both cases V D
ds=100µV. b, red

dots: measured PASN as function of DD for the series QPC tuned on the

first plateau and a fixed DE ∼ 0.5 (theoretical prediction represented by a

black solid line). The applied DC bias is V E
ds=6 mV.
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