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The era of antibiotics as a cure-all for bacterial infections appears to be coming to an
end. The emergence of multidrug resistance in many hospital-associated pathogens
has resulted in “superbugs” that are effectively untreatable. Multidrug efflux pumps
are well known mediators of bacterial drug resistance. Genome sequencing efforts
have highlighted an abundance of putative efflux pump genes in bacteria. However,
it is not clear how many of these pumps play a role in antimicrobial resistance.
Efflux pump genes that participate in drug resistance can be under tight regulatory
control and expressed only in response to substrates. Consequently, changes in gene
expression following antimicrobial shock may be used to identify efflux pumps that
mediate antimicrobial resistance. Using this approach we have characterized several
novel efflux pumps in bacteria. In one example we recently identified the Acinetobacter
chlorhexidine efflux protein (AceI) efflux pump in Acinetobacter. AceI is a prototype for
a novel family of multidrug efflux pumps conserved in many proteobacterial lineages.
The discovery of this family raises the possibility that additional undiscovered intrinsic
resistance proteins may be encoded in the core genomes of pathogenic bacteria.

Keywords: multidrug efflux systems, bacterial transmembrane pair, adaptive resistance, bacterial drug
resistance, transcriptomics

Introduction

Multidrug efflux pumps are a significant obstacle preventing the control of infections caused
by pathogenic bacteria. Genes encoding these transporters have been found in all bac-
terial genomes sequenced, and the overexpression of just one can lead to the reduced
efficacy of a range of structurally and mechanistically unrelated antimicrobials (Ren and
Paulsen, 2007; Brzoska et al., 2013). Five families of transporters that include multidrug
efflux systems have been studied extensively, and include representative proteins that have
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been characterized biochemically and by tertiary structural anal-
yses. These include the ATP-binding cassette (ABC) super-
family, the major facilitator superfamily (MFS), the resis-
tance/nodulation/division (RND) superfamily, the small mul-
tidrug resistance (SMR) family, and the multidrug and toxic
compound extrusion (MATE) family (Figure 1).

Significant longstanding difficulties surround identifying the
physiological functions of these multidrug efflux transport pro-
teins and determining which of the many pumps encoded
by bacterial strains actually contribute to antimicrobial resis-
tance (Piddock, 2006; Schindler et al., 2015). Studies have
shown that these efflux pumps often have overlapping substrate
recognition profiles (Tal and Schuldiner, 2009). Furthermore,
it is not uncommon for a bacterial genome to encode a
large number of efflux pumps that have predicted drug sub-
strates, e.g., strains of Bacillus cereus encode more than 100
of these pumps accounting for more than 2% or their pre-
dicted protein coding potential (Ren and Paulsen, 2007; Simm
et al., 2012). It is unlikely that all these pumps share the pri-
mary function of protection against toxic compounds, high-
lighting a need for higher throughput approaches to assess
the physiological roles of individual proteins, be they in drug
resistance, native housekeeping functions, or other cellular
roles.

FIGURE 1 | Schematic diagram showing the basis for the energisation
of multidrug efflux pumps operating in bacteria. The large oval
represents the bacterial cell. An electrochemical H+ gradient
(proton-motive-force) across the cytoplasmic membrane is generated as a
result of respiration (green). Energy from the proton-motive-force is used to
power transport in secondary active transport systems, such as those within
the major facilitator superfamily (MFS), resistance/nodulation/division (RND),
and small multidrug resistance (SMR) (super) families. Sodium/proton
antiporters (orange) harness the proton-motive-force to generate a Na+
gradient that powers transport by other multidrug efflux pumps, including
those in the multidrug and toxic compound extrusion (MATE) family. ATP
production by ATP-synthase (pink) is also powered by the
proton-motive-force, and ATP is used to power transport by the primary active
transporters of the ATP-binding cassette (ABC) superfamily. Previously
characterized efflux pump (super) families are shown in red, whereas the
proteobacterial antimicrobial compound efflux (PACE) family is shown in blue.
The PACE family transport proteins are likely to be powered by the H+
gradient.

Efflux Pumps Participate in Intrinsic,
Adaptive, and Acquired Resistance

Bacterial drug resistance can be divided into three general cate-
gories, intrinsic, adaptive, and acquired (Fernandez andHancock,
2012). Depending on their mode(s) of regulation and their
local genetic context, bacterial multidrug efflux pumps can be
geared to participate in any of these three resistance categories.
Intrinsic resistance stems from inherent properties of a bacte-
rial cell and can occur as a result of high constitutive expression
and activity of some multidrug efflux pumps. Adaptive resis-
tance is related to physiological alterations that are induced by
environmental changes and can occur when multidrug efflux
pumps are expressed in response to antimicrobial substrates.
Finally, acquired resistance can result from mutations promot-
ing constitutive expression of an ordinarily tightly controlled
endogenous multidrug efflux system, or when efflux pump genes
are acquired on a mobile genetic element, such as a plasmid
or phage.

Adaptive Resistance Responses
Identify Efflux Pumps that Mediate
Drug Resistance

High-level expression of efflux pumps can have a negative impact
on cell growth (Brzoska et al., 2013), resulting in a need to control
the timing of efflux system expression to coincide with specific
physiological requirements. As such, efflux pumps with physi-
ological resistance functions may be characteristically expressed
in response to drug substrates. These pumps may be part of
an adaptive drug resistance response or part of general stress
response regulons. For example, expression of the adeAB and
adeIJK efflux pump genes in Acinetobacter baumannii (Hassan
et al., 2013; our unpublished data), the acrAB and acrF genes
in Escherichia coli (Shaw et al., 2003; Bailey et al., 2009), the
mexXY and mexCD genes in Pseudomonas aeruginosa (Morita
et al., 2014), the norA gene in Staphylococcus aureus (Kaatz
and Seo, 2004), and the bmr gene in Bacillus subtilis (Ahmed
et al., 1994), is induced in response to antimicrobial shock treat-
ments.

The mode of regulation and regulatory cues of most efflux
pumps are typically only investigated after their functional
characterisation. However, global gene expression profiles that
show heightened expression of putative efflux pump genes fol-
lowing drug or toxin shocks have provided the impetus to
assess the drug resistance functions of these pumps. For exam-
ple, members of our team recognized that an uncharacterised
MFS exporter, BC4707, was expressed in response to bile salt
shock in the human food-poisoning associated pathogen Bacillus
cereus, and went on to characterize its role in drug resis-
tance (Kristoffersen et al., 2007). The gene encoding BC4707
is conserved in the core genome of B. cereus and its dele-
tion from B. cereus ATCC 14579 resulted in increased suscep-
tibility to norfloxacin (Simm et al., 2012). Overexpression of
BC4707 in E. coli BL21 �acrAB resulted in increased resistance
to norfloxacin, ciprofloxacin, and kanamyacin and fluorescence
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transport assays showed that accumulation of norfloxacin
is reduced by BC4707 in an energy dependent manner
(Simm et al., 2012).

Adaptive Resistance Responses
Identify a New Class of Drug Efflux
Pump

Extending from this work, we have exploited adaptive resis-
tance responses to identify efflux pumps that may mediate drug
resistance in hospital-acquired bacterial pathogens, with a focus
on biocide resistance. For example, in recent work we con-
ducted a transcriptomic study to examine the regulatory response
of A. baumannii to a shock treatment with the synthetic bio-
cide chlorhexidine (Hassan et al., 2013). Chlorhexidine is com-
monly applied in antibacterial soaps, mouthwashes and anti-
septics, and is listed as an “Essential Medicine” by the World
HealthOrganization. Chlorhexidine is amembrane active biocide
and as such, multidrug efflux pumps are commonly associated
with reduced levels of susceptibility (Russell, 1986; McDonnell
and Russell, 1999). In line with the discussion above, the most
highly overexpressed genes in our chlorhexidine shock treat-
ment encoded AdeAB, components of a major tripartite RND
multidrug efflux system in A. baumannii (Hassan et al., 2013).
This efflux system has previously been shown to mediate resis-
tance to a very broad range of antimicrobials and biocides,
including chlorhexidine (Rajamohan et al., 2009). The overex-
pression of genes encoding AdeAB in response to chlorhexi-
dine confirmed the role of this efflux system in adaptive resis-
tance to chlorhexidine in A. baumannii. Apart from the genes
encoding AdeAB, only one gene was highly (>10-fold) over-
expressed in response to chlorhexidine. This gene was origi-
nally annotated as encoding a hypothetical membrane protein.
Using biochemical approaches we showed that this protein is
in fact a chlorhexidine resistance protein that functions via
an active efflux mechanism (Hassan et al., 2013). We named
this protein the Acinetobacter chlorhexidine efflux protein I
(AceI).

The AceI Transporter is a Prototype for
a New Family of Bacterial Multidrug
Efflux Systems

The AceI transport protein contains two tandem “Bacterial
Transmembrane Pair” (BTP) protein domains defined within
the Pfam database (Finn et al., 2014). There are more than 750
protein sequences containing this domain architecture listed in
the Pfam database (version 27.0). Genes encoding these pro-
teins are particularly common among proteobacterial lineages,
but can also be found in the genomes of unrelated bacterial gen-
era, including the Firmicutes and Actinobacteria. We have not
yet identified these genes in the genomes of any archaeal or
eukaryotic organisms.

We have recently characterized more than 20 homologs of the
AceI transporter by heterologous expression in E. coli (Hassan

et al., 2015). These studies have demonstrated that many AceI
homologs are able to provide resistance to an array of biocides
in addition to chlorhexidine. For example, the VP1155 protein
from Vibrio parahaemolyticus and Bcen2424_2356 protein from
Burkholderia cenocepacia each conferred increased resistance to
chlorhexidine, benzalkonium, acriflavine, and proflavine, when
expressed in E. coli (Hassan et al., 2015). Fluorescence trans-
port assays conducted on cells expressing these and other AceI
homologs that conferred resistance to acriflavine and proflavine,
demonstrated that these compounds are actively exported from
the cell by these transporters (Hassan et al., 2015). These results
corroborate our earlier findings that chlorhexidine is actively
transported by AceI (Hassan et al., 2013), and indicate that efflux
is the mechanism of resistance operating in this group of proteins.
Taken together all the observations suggest that these proteins
comprise a new family of multidrug efflux pumps common
amongst Proteobacterial lineages. We have named this family the
Proteobacterial Antimicrobial Compound Efflux (PACE) family
(Figure 1; Hassan et al., 2015).

PACE Family Proteins are Encoded
Within the Core Genome

Given that the PACE family represents a new class of resistance
determinants, we were interested in gathering basic information
regarding the mode of inheritance of these genes in bacteria. To
this end, we examined their level of conservation within represen-
tative bacterial lineages following the basic premise that highly
conserved genes within core bacterial genomes are expected to
have been inherited vertically, whereas those in the accessory
genome are likely to have been horizontally acquired.

We examined PACE family protein conservation in four
γ-Proteobacterial species (A. baumannii, P. aeruginosa, V. para-
haemolyticus, and E. coli) a β-Proteobacterial species (B. ceno-
cepacia) and a member of the Firmicutes (Veillonella parvula).
Annotated protein sequences from all complete and draft
genomes of these species were downloaded from the NCBI
Genbank database (October, 2014) and were queried using the
BTP PfamHMM (Finn et al., 2014) in HMMER3 searches (Eddy,
2011). These searches determined that PACE family proteins are
encoded in the pan-genomes of all six species examined. To
determine the number of distinct orthologous groups of PACE
family proteins in each species we performed a clustering anal-
ysis based on sequence identity (cluster stringency >90%) using
cd-hit v4.6.1 (Fu et al., 2012). This analysis demonstrated that A.
baumannii had three clusters (100, 96.7, and 0.3% conservation
in 623 strains); P. aeruginosa had three clusters (99.5, 99.5, and
0.5% conservation in 197 strains); V. parahaemolyticus had one
cluster (90.1% conservation in 101 strains); E. coli had 4 clusters
(0.2, 0.1, 0.1, and 0.1% conservation in 1986 strains); B. cenocepa-
cia had three clusters (100, 88.9, and 88.9% conservation in nine
strains); and V. parvula had one cluster (100% conservation in
four strains).

These data demonstrate that the pattern of PACE family pro-
tein conservation is variable between the species. For example,
both A. baumannii and P. aeruginosa each encode two highly
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conserved PACE family proteins present in virtually all sequenced
strains, and one additional PACE protein encoded in one or two
specific strains. Whereas, V. parahaemolyticus and V. parvula
each encode only one highly conserved PACE protein, and B.
cenocepacia encodes three highly conserved PACE proteins. Most
E. coli strains do not encode a PACE family protein, although
a small handful of strains encode one of four PACE protein
variants. The highly conserved PACE family proteins encoded
by A. baumannii, P. aeruginosa, V. parahaemolyticus, B. ceno-
cepacia, and V. parvula are likely to constitute part of the core
genome in these species and to have been inherited vertically
rather than on mobile genetic elements. The almost complete
lack of genes encoding PACE family proteins in E. coli strains
suggests that these genes were lost early in the development
of the E. coli lineage, but after its divergence from other γ-
proteobacteria. In the few cases where E. coli strains were found
to encode a PACE family protein, it was sometimes associated
with mobile genetic elements suggesting that it had been acquired
by horizontal gene transfer. The paucity of PACE genes in E. coli
strains confirms our previous conclusion that E. coli is an excel-
lent host to study the function of these proteins (Hassan et al.,
2013).

Physiological Substrates for PACE
Family Transporters

To date, the substrates identified for PACE family transport
proteins include synthetic biocides only, such as chlorhexi-
dine, dequalinium, benzalkonium, proflavine, and acriflavine.
The presence of these toxic biocides in the environments occu-
pied by Proteobacteria is likely to have been negligible across
evolutionary time, until perhaps the last 50–100 years when
these compounds were applied in various industries. Given that
the organisms encoding PACE family genes are likely to have
diverged long before the development of this potential selective
pressure, it is seems unlikely that biocides are the native physio-
logical substrates of PACE efflux pumps. Nonetheless, these genes
are transcriptionally responsive to at least one biocide, chlorhex-
idine in four species, A. baumannii, A. baylyi, P. aeruginosa, and
B. cenocepacia (Nde et al., 2009; Coenye et al., 2011; Hassan
et al., 2013), suggesting that chlorhexidine can serve as a mimic
of their natural physiological substrate for inducing efflux pump
expression.

Regulatory Proteins Acting on PACE
Efflux Pumps

In addition to antimicrobial resistance, the promiscuous sub-
strate recognition profiles of multidrug efflux pumps allow them
to participate in diverse physiological processes. For example,
efflux systems in Gram-negative bacteria function in cell adher-
ence, invasion, biofilm formation, virulence in animals and
plants, and resistance to host encoded factors (Piddock, 2006).
Consequently, the regulation of bacterial drug efflux systems can
be highly complex and responsive to a range of cellular and

extracellular conditions. Complex regulation may be particularly
apparent in efflux pumps, such as AceI and its homologs, which
are encoded within core bacterial genomes. These genes are likely
to have been present in these species for significant periods of
evolutionary time, allowing fine-tuning of their expression in
response to a range of environmental cues. A case in point, as
summarized within the EcoCyc database (Keseler et al., 2013),
transcription of the acrAB efflux system genes, within the core
genome of E. coli, is controlled by at least seven distinct regulatory
proteins, which are themselves subject to a range of regula-
tory pressures. These regulatory proteins are likely to integrate
efflux pumps into the adaptive resistance responses observed in
bacteria, as well as other pathways controlling their alternative
physiological functions.

Regulators mediating the most direct control of genes encod-
ing efflux pumps are often encoded locally – adjacent to and
divergently transcribed from the gene(s) encoding the efflux sys-
tem. These regulators, either activators or repressors, typically
bind a similar spectrum of compounds to their cognate efflux
pump with high affinity as a signal for transcriptional activation
or relief of transcriptional repression. Some well characterized
examples include AcrR, which controls transcription of the E.
coli acrAB efflux pump genes (Li et al., 2007), and QacR, which
controls qacA/qacB expression in S. aureus (Grkovic et al., 1998;
Schumacher et al., 2001).

The PACE family transporters that we have studied to date
are each encoded adjacent to a divergently transcribed LysR
family regulator. To determine whether these regulators con-
trol the expression of their cognate PACE family gene, we used
our established methods (Brzoska et al., 2013) to construct a

FIGURE 2 | Expression of the PACE family gene, ACIAD1978, in
wild-type and mutant (�ACIAD1979) A. baylyi ADP1 in response to
chlorhexidine shock treatments. Cells were grown in LB broth to
OD600 = 0.6, then split, with one half of each culture treated with
chlorhexidine and the other half receiving no treatment. RNA was isolated and
assessed by qRT-PCR following our established protocols (Brzoska and
Hassan, 2014) to determine relative expression levels of ACIAD17978 in
chlorhexidine treated and untreated samples. Error bars show the SEM.
Changes in expression of ACIAD1978 were negligible in the ACIAD1979
mutant treated with 2 mg/L chlorhexidine, and thus the bar is difficult to see.
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deletion mutant of the regulator gene ACIAD1979 in A. baylyi
ADP1, which is encoded adjacent to the PACE family chlorhexi-
dine resistance gene ACIAD1978.We examined the expression of
ACIAD1978 in both the wild-type and the �ACIAD1979 regula-
tory mutant in response to chlorhexidine shock treatments using
quantitative real-time PCR analysis (Brzoska and Hassan, 2014).
In the absence of chlorhexidine the expression of ACIAD1978
was similar in both strains. However, whereas increasing concen-
trations of chlorhexidine induced ACIAD1978 gene expression
in the wild-type strain, chlorhexidine addition failed to induce
ACIAD1978 expression in the �ACIAD1979 mutant (Figure 2).
These results suggest that the ACIAD1979 LysR family regulator
functions as an activator of the PACE family gene ACIAD1978.
We are currently investigating the role of LysR family proteins
in controlling expression of PACE family pumps in other species
and are determining whether the spectrum of ligands recognized
by these regulators is closely linked to the substrate recogni-
tion profile of their cognate PACE family pump. It also remains
to be determined whether the PACE-associated regulators con-
trol expression of other genes, or if there are distally encoded
regulators that also modulate expression of PACE transporter
genes.

Conclusion and Future Directions

Transcriptomic analyses of antimicrobial shock treatments are
valuable in identifying the potential resistance mechanisms oper-
ating in bacteria, including multidrug efflux pumps participating
in the adaptive resistance response. Using transcriptomic analy-
ses, we have defined roles for new efflux pumps and identified the
PACE family of multidrug transport proteins, the first new family
of drug efflux proteins discovered in over a decade.

Transporters within the PACE family are currently enigmas.
We have identified drug substrates, such as chlorhexidine that
are common to many of these pumps. Furthermore, PACE fam-
ily gene expression is induced by chlorhexidine, a response that

is mediated via locally encoded regulators. This highlights a close
relationship between the function of these pumps and their reg-
ulatory control. Since PACE family genes are encoded in the
core genomes of bacterial lineages that diverged long ago, this
functional-regulatory relationship is likely to have arisen early in
the evolution of these proteins. However, the substrates/inducers
that have been identified for PACE proteins are synthetic bio-
cides that are likely to have been absent from the environment
until the last 50–100 years. Therefore, it is unlikely that these
biocides would have provided the selective pressure required
to drive the functional or regulatory evolution of PACE fam-
ily pumps. Consequently, a deeper understanding of these novel
resistance proteins requires future investigations aimed at identi-
fying their physiological substrate(s) and primary functional roles
in bacteria.

The discovery of the PACE family opens up the possibility that
there may be more novel efflux proteins waiting to be discovered.
There are many hypothetical membrane proteins of unknown
function encoded in all bacterial genomes. For example, even in
the best-studied bacterial genome,E. coliK12, there are 409mem-
brane proteins of unknown function. At least some of these may
represent entirely novel types of efflux pumps.
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