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Abstract

This paper is concerned with computing interval estimates for

appraisal values of travel time savings (VTTS) for non-work journeys.

The paper has important conclusions relating to the benefits, in terms

of uncertainty in appraisal VTTS, of resampling the base year VTTS

and improving on the precision of the estimate of the GDP elasticity in

the uprating equation. Importantly it is shown that the interval widths

increase dramatically as VTTS is forecast further into the future. This

has a significant modelling implication in that it is the uncertainty

associated with the process of uprating base estimates of VTTS which

results in the large interval width, rather than that associated with the

base year VTTS estimate. This in turn implies a need to regularly

resample the base VTTS, so as to avoid excessive temporal

extrapolation of the base VTTS.
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1 Introduction

Given the prominence of travel time savings as a key source of benefit from transport

investment schemes, there is a clear imperative to estimate the Value of Travel Time Savings

(VTTS) as precisely as possible. However, in practical modelling and appraisal, there is

rarely any analysis of the relationship between the precision of VTTS estimates and the

outcomes arising from the appraisal. For example, transport appraisal guidance in the UK

(WebTAG; Department for Transport (DfT), 2012) does not make such allowances; official

UK estimates of VTTS documented in WebTAG Unit A1.3 are point estimates, and no

account is taken of the sample distribution underpinning these estimates. This issue has

recently come under high-profile scrutiny in the context of the business case for the proposed

High Speed 2 (HS2) rail scheme in the UK, where the National Audit Office (NAO)

recommended that: ‘The Department (for Transport) and HS2 should recognise explicitly the

uncertainty in the economic case by quoting ranges rather than a point estimate. The risks

and uncertainty to the benefit-cost ratio have not been clearly stated’ (NAO, 2013 p12).

Partly in response to such critiques, the UK DfT has developed an ‘Analytical Assurance

Framework’ (DfT, 2013), which endeavours to promote: ‘the correct balance between

robustness, timeliness, and cost, for the decision at hand’ (p4). The Framework encompasses

three key dimensions, namely: 1) the potential for challenge to the analysis; 2) the risks of an

error in the analysis and the uncertainty inherent in the analytical advice to the Permanent

Secretary and Secretary of State; and 3) the degree to which error and/or uncertainty has been

reduced. In the particular context of VTTS, DfT has recently employed the Framework to

support decision-making in relation to the update of official UK appraisal values for ‘non-

work’ journey purposes. These appraisal values derive from Willingness-to-Pay (WtP)

evidence collected through Stated Preference (SP) surveys, and give rise to separate values

for ‘commuting’ and ‘other’ non-work journeys, which are applied universally across all

modes. It should be clarified that UK appraisal values for business journeys are based on the

altogether different ‘Cost Saving Approach’ (CSA), which derives from wage rate data as

opposed to WtP data
1
. The present paper focuses on the analysis of uncertainty inherent

within non-work values, and the corresponding analysis of business values falls beyond our

immediate scope.

Recognising that non-work appraisal values for 2014 and beyond are based on behavioural

WtP values estimated in 1994 – i.e. some 20 years ago – the Department has undertaken two

inter-related strands of work focussed around the following considerations:

1. The degree of error inherent within estimates of VTTS extrapolated over time from

1994, using the official model prescribed by DfT in WebTAG Unit A1.3.

2. The extent to which any error can be reduced through updating parameters in the

model and/or through re-sampling the behavioural values altogether.

The present paper arises from research commissioned by DfT which seeks to inform the

above considerations. The specific objectives of the paper are:

a. To quantify the uncertainty associated with official UK estimates of non-work

VTTS.

b. Within these estimates, to identify key sources of uncertainty.

1
Current UK appraisal values of travel time savings for both non-work and business are documented in TAG

Unit A1.3 (DfT 2014a).



Whilst we will focus on the precision of non-work VTTS estimates in the UK, it is important

to acknowledge that the implications of our paper reach far beyond the UK, in the following

respects. First, the formula used in the UK for estimating non-work VTTS has (in essence)

been transferred to other countries, notably Switzerland and the Netherlands. Second, British

VTTS estimates have, more generally, been seen as a key reference point for transport

investment schemes, both across Europe (HEATCO, 2006) and beyond (World Bank, 2005).

Third, even in countries that employ VTTS estimates based on other formulae, similar issues

concerning the precision of estimates arise.

In general terms, there are two key dimensions to the analysis of uncertainty in VTTS

estimates. First and foremost, we should consider the precision of base year estimates of

VTTS, which typically arise from discrete choice modelling of WtP data. Second, given the

30-60 year economic life that typifies transport investment schemes, any imprecision in base

year estimates of VTTS may be compounded as the scheme proceeds through its economic

life. Within the non-work VTTS formula employed in the UK, the latter source of uncertainty

is associated with the scaling of base year estimates by a GDP multiplier and associated GDP

elasticity, which arise from a further econometric ‘meta’ model of SP and RP evidence on

VTTS. As GDP moves away from the base year level, so the uncertainty in the estimate of the

GDP elasticity is amplified within the overall non-work VTTS estimate; this in turn increases

the error associated with the VTTS estimate.

In pursuit of the objectives outlined above, the paper is arranged as follows. Section 2

provides a brief summary of relevant academic literature concerning the analysis of

uncertainty within transport models. Section 3 outlines the motivation for analysing

uncertainty within estimates of non-work VTTS specifically. Section 4 develops an approach

for computing the latter uncertainty, whilst Section 5 implements the approach and reports the

resulting interval estimates. Section 6 considers the potential for improving the precision of

non-work VTTS estimates by updating historical estimates of the GDP elasticity. Section 7

undertakes a set of ‘what if’ experiments to highlight the impact on the interval width of re-

sampling and re-estimating the base VTTS, and Section 8 concludes.

2 The extant literature on analysing uncertainty within transport models

Whilst practical modelling and appraisal often overlooks the uncertainty inherent within

VTTS estimates, it should be acknowledged that there is an extant literature – albeit

somewhat limited in size and scope – on the representation of uncertainty within transport

models, especially in relation to travel demand forecasting. De Jong et al. (2007) provided a

useful summary of 21 studies from the period 1980 to 2007, noting for each study:

 The type of uncertainty studied;

 Variables for which uncertainty is studied;

 Methods to quantify uncertainty;

 How uncertainty is expressed;

 Order of magnitude of uncertainty.

Complementing De Jong et al., Rasouli & Timmermans (2012) provided a similar summary

of uncertainty inherent within 14 travel demand forecasting studies from the period 2002 to



2012. The studies identified by De Jong et al. and Rasouli & Timmermans are relevant to the

present paper, to the extent that VTTS estimates were a source of uncertainty within a number

of them and travel demand forecasts represent an important component of transport appraisal;

however none of these studies focused on uncertainty in VTTS estimates specifically.

These prior studies offer various characterisations of the causes and effects of uncertainty, but

the recent paper by Yang et al. (2013) outlined a simple but useful framework which can be

applied to most studies of transport model uncertainty. More specifically, they distinguished

between three steps in analysing such uncertainty, namely:

i. Analysing the distributional characteristics of ‘input’ and ‘parameter’ uncertainty in

the model, where the former reflects inherent uncertainty in model inputs, whilst the

latter reflects uncertainty in parameters which could potentially be reduced by

collecting more and/or better quality data.

ii. Analysing the manner in which model input/parameter uncertainty is propagated by

the model into model ‘output’ uncertainty.

iii. Analysing the distributional characteristics of the output uncertainty, for given inputs

and parameters.

Reconciling our present interest in the uncertainty of non-work VTTS estimates in the UK –

as introduced in section 1 above – to Yang et al.’s framework, note that:

 The base year VTTS, GDP multiplier and GDP elasticity introduce sources of

parameter uncertainty.

 Any uncertainty in base year VTTS is potentially propagated through the 30-60 year

appraisal period, as a function of the GDP multiplier and GDP elasticity.

3 The motivation behind analysing uncertainty within VTTS estimates

In 1994, Accent Marketing and Hague Consulting Group (AHCG) were commissioned by the

UK Department for Transport (DfT) to undertake research to inform the update of official UK

estimates of non-work VTTS, subsequently reporting their findings in 1999. DfT experienced

difficulties in implementing AHCG’s findings, and therefore commissioned the Institute for

Transport Studies (ITS), University of Leeds, together with John Bates Services, to help

resolve some of the outstanding issues. This involved a substantial re-analysis of the AHCG

data (Mackie et al., 2003), and the modelling approach developed and applied in the course of

this re-analysis has since been adopted as standard in the UK (see TAG Unit A1.3; DfT

(2014a)).

As noted above, official UK estimates of non-work VTTS arise from two econometric

models, which contribute different insights. The first model estimates ‘behavioural’ values of

travel time saving, whilst the second model facilitates the conversion of behavioural values

into ‘appraisal’ values of travel time saving. This section will give the background to each

model, and describe the manner in which the models are combined. It is not the intention of

the paper to evaluate the suitability of this modelling approach, and the justification for each

model will not therefore be discussed in any great detail.



3.1 Behavioural values

Re-analysing SP data collected by AHCG using discrete choice modelling methods, Mackie

et al. (2003) discerned a significant relationship between VTTS and both income and journey

cost (where the latter was employed as a proxy for journey distance), reporting the following

preferred model
2
:
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where V is the non-work VTTS in pence per minute (ppm)
3
, Y is household income in £’000

pa, C is the cost of the ‘current’ journey in pence (both in 1994 prices), 0Y and 0C are

‘reference’ values of income and cost which take the fixed values 35 and 100 respectively,

and 
T
, 

C
,

Y
 and 

C
are parameters to be estimated. The model was segmented by two

types of non-work journeys, namely commuting and ‘other’ non-work.

3.2 Appraisal values

In order to translate behavioural values of time saving for non-work travel into values suitable

for appraisal, three adjustments were made.

1. To facilitate interface with the primary segmentations (and bandings therein) of

National Travel Survey (NTS) data (1995-2000), which considered travel distance

but not travel cost, Mackie et al. constructed a ‘bridge’ between the two variables.

This relationship assumed that cost per mile had an average value of 13.2 pence

(1994 prices), and that cost and distance were linearly related. On this basis, the cost

variables were re-interpreted as distance variables, such that:
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where
yd

V is the non-work VTTS in pence per minute (ppm) for NTS income and

distance bands y and d respectively;
y

Y is household income in £’000 pa within

NTS income band y , and 0Y is the associated ‘reference’ value, calculated to be 0Y

= 35;
d

D is the (inferred) distance of the ‘current’ journey in miles within NTS

distance band d , and 0D is the associated ‘reference’ value, calculated to be 0D =

2
In passing, note that (1) was derived from discrete choice modelling of binary choice SP data, wherein the

conditional indirect utility function was specified:
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where i
W is conditional indirect utility for SP travel option 1,2i ; C is travel cost for the ‘current’ journey,

and
i

C is travel cost for option 1,2i ; T is travel time for the ‘current’ journey, and
i

T is travel time for

option 1,2i , and the remaining terms are defined as for (1).
3
Note that separate values were calculated for commuting and ‘other’ non-work, but for presentational

simplicity we do not index on this basis here.



100/13.2 = 7.58 miles (12.2 Km); and K is a further adjustment to account for price

inflation. With regards to the latter adjustment, the AHCG data was in 1994 prices

and 1994 income levels, and the K term thus facilitates adjustment for inflation

from 1994 to the desired year (1997 in Mackie et al. (2003)), although this paper

reports estimates in 2010 prices
4
. Separate adjustment for income growth is

discussed below.

2. Employing (2), non-work VTTS estimates were computed for several distance and

income combinations in NTS, and a base VTTS elicited as the weighted average:
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(3)

Where V is the weighted average of non-work VTTS in pence per minute (ppm)

across NTS income and distance bands y and d respectively;
yd

N is the number of

NTS journeys for the specified purpose (commuting or ‘other’ non-work, by all

mechanised modes) within distance band d and household income band y ; and
d

D

is the average distance for distance band d within NTS.

3. With reference to (1), the
Y

 term represents the elasticity of VTTS with respect to

income, and captures any cross-sectional variation in VTTS across the SP data. In

order to represent the influence of income growth over time, it was judged

appropriate to introduce external evidence on the elasticity of VTTS with respect to

GDP, drawn from meta-analysis of a wide range of RP and SP studies
5
. The

econometric model of meta-data, which is summarised in Mackie et al (2003) and

discussed in more detail in Wardman (2001), reported a GDP elasticity of 0.8.

Applying this result to (3), the base year estimate of VTTS (for 1994) was uprated

using a logarithmic function as follows:

*

1994


 

  
 

GDP

t
t

GDP
V V

GDP
(4)

where 0.8 
GDP

. In this way, we arrive finally at the definitive formula for

estimating non-work VTTS, as recommended for appraisal purposes in official UK

guidance.

4 Methodology

Having introduced the background to official methods for estimating non-work VTTS in the

UK, we will now outline the methodology that we used to compute the statistical uncertainty

surrounding estimates of (4). More specifically, we will describe a methodology to compute

interval estimates, in the form of a confidence interval, associated with the point estimate of

4
The estimate emerging from the [R] code later in this paper is in 1997 prices (K=1.1 in that computation).

5
Whilst not a time-series elasticity, this does give a sense of variation in VTTS with respect to travel conditions

and external factors.



*

t
V . In this regard – and drawing reference to Yang et al.’s (2013) framework outlined in

section 2 above – four distinct sources of statistical uncertainty are relevant, namely.

i. Parameter uncertainty arising from estimation of the discrete choice model (i.e.

associated with the 
T
, 

C
,

Y
 and 

C
parameters in (1)); this introduces uncertainty

to
yd

V in (2).

ii. Parameter uncertainty arising from estimation of the meta-model (i.e. associated with


GDP

in (4)); this introduces uncertainty to *

t
V in (4).

iii. Data uncertainty associated with the forecasting of future income levels; this

introduces further uncertainty to *

t
V in (4).

iv. Data uncertainty associated with the weighting of the base VTTS in (3); there is a

degree of uncertainty as to whether the NTS sample is truly representative of the

population.

The methodology outlined below will address the first two sources of uncertainty. Whilst any

substantive analysis of the latter two sources of uncertainty falls beyond the remit of the

present paper, section 5 will demonstrate that data uncertainty with respect to forecasting

future income would serve only to amplify the results and policy conclusions from our

analysis.

Before proceeding, we should acknowledge the potential for further – but unquantifiable –

sources of uncertainty, in that the initial discrete choice model could have been mis-specified

and/or (more likely) the data generating process could have been subject to a structural break

since the base year of 1994. Whilst the former issue would simply call for re-specification of

the discrete choice model, the latter issue would have more significant implications,

necessitating the collection of new SP data. It is with such considerations in mind that

national transport ministries, such as the UK DfT, intermittently review the case for spending

public monies on updates to VTTS estimates. For present purposes, we will simplify matters

by assuming that the discrete choice model was correctly specified in 1994, and that the

specification continues to be defensible (indeed the latter assumption would seem to be

(broadly
6
) supported by the Swiss and Dutch applications). By contrast, we will consider the

scope for updating the GDP elasticity using more recent evidence.

The size and complexity of the problem provoked challenges in computing the statistical

uncertainty of the non-work VTTS in (4). With reference to (3), estimates of non-work VTTS

cover a large number of weighted non-linear functions; in total, there are 12 distance bands

and 21 income bands, yielding 252 individual functions (i.e. d and y combinations) of the

form (2). Furthermore, each such function is not independent of the others, given that they

share the same parameter estimates.

For purposes of computing the standard error (SE) of the VTTS estimate (4), there are a range

of statistical methods which could be employed. In choosing between methods, our starting

point was to acknowledge that the only available inputs for the computation were the

estimated parameters from the original SP model and the associated matrix of variances and

6
Both studies show slight deviations from (1), but the essence of the discrete choice model was the same.



co-variances
7
. This inevitably meant that the candidate statistical methods should utilise large

sample (asymptotic) properties to provide valid intervals. Fortunately, this did not represent a

significant constraint, since the sample sizes of the two contributing studies (the SP analysis

and meta-analysis) were large (for example, the SP analysis generated 8038 and 4737

observations for the ‘other’ non-work and commuting journey purposes, respectively (Mackie

et al., 2003 p18).

In order to compute confidence intervals for the problem at hand, we combined two well-

established statistical methods, as follows:

 The Delta method; this utilises differential calculus to derive an expression for the

variance of a specific function of estimated parameters. More specifically, the

approach is to compute a first order Taylor series expansion of the variance (the

square of the standard error) of a function around the estimated parameter value.

This has the attractive property of converging to the true variance as the sample size

increases.

 A simulation method attributed to Krinsky and Robb (1986) (K&R); this utilises the

result that, for large samples, model parameter estimates are distributed Normally. In

practical terms, each parameter is sampled from a multi-variate Normal distribution

(utilising the estimated co-variance matrix), and the combination of parameters (i.e.

V , in the case of Stage 1 below) is then computed. This process is repeated many

times ( 610 times), and the computed V are then ordered to form an empirical

distribution, from which the standard error is calculated.

The two methods generally give similar results (e.g. see Krinsky and Robb (1991) and Greene

(2012)); this is because both rely upon the large sampling result that the model parameter

estimates are approximately Normally distributed. The choice between the two methods may,

to a large extent, be influenced by the practicalities of the problem at hand. As outlined

below, our own problem can be separated into two stages. For each stage, we utilise a

different method (K&R for Stage 1 and the Delta method for Stage 2). The attraction of this

formulation is that, by adopting different methods in the two stages, we can introduce much

greater functionality in terms of allowing intervals to be computed for different years, for

different assumptions on GDP growth, and for different GDP elasticities. The development of

such scenarios would have been much more cumbersome if we had utilised K&R in both

stages.

As noted above, both methods rely upon large sample approximations to the true parameter

distribution in order to derive valid intervals. Whilst the underlying error distributions in the

SP model (and indeed the meta-model) may not have been Normal, the maximum likelihood

estimates of the model parameters have an (asymptotic) Normal distribution. This is based on

the Central Limit Theorem applied to maximum likelihood estimates (see Greene, 2012,

p554, Theorem 14.1 for a full discussion). Such reliance on large sample properties of

estimators is commonplace in models estimated using maximum likelihood.

We justify a two stage process by recognising that the parameter estimates from the two

econometric models (i.e. based on SP data (1), and based on meta-data (4)) are independent.

This is because the sample data for each model are independent of each other. Importantly

7
The original SP data was not available to us, and we therefore dismissed the possibility of re-sampling using

bootstrapping methods.



this allows for a two stage computation: first, uncertainty in V is computed, and second, this

is combined with uncertainty from the GDP elasticity to yield uncertainty in *

t
V .

4.1 Stage 1: Computing the uncertainty of V

With reference to (3), V arises from a weighted average of non-work VTTS estimates across

distance and income bands. This means that the actual base VTTS is a weighted summation

of 252 non-linear functions. In principle this is not really a complication, but in practice most

automated routines in off-the-shelf statistical packages are unable to consider such a

convoluted relationship. The computation was therefore undertaken using bespoke code in the

matrix programming language [R], and this is available from the first author on request.

Although it requires a relatively large amount of computing time, the K&R method was used

to estimate the SE associated with the estimate of V . The advantage of the K&R method is

that it is easy to program, relative to deriving the associated expression required for the Delta

method. The disadvantage is the need to re-run sampling simulations when parameters or

levels of variables are changed (which limits sensitivity testing with respect to this element).

4.2 Stage 2: Computing the uncertainty of
*

t
V

Once the SE associated with the base non-work VTTS (V ) had been computed, it was

combined with the SE associated with the GDP elasticity (
GDP
 ) from the meta-analysis to

form a confidence interval for the uprated VTTS. The latter SE was computed using the Delta

method. Thus the K&R method was first used to compute the SE of the base non-work

VTTS, followed by the Delta method to combine this with the uncertainty associated with the

GDP elasticity. The Delta method can be used for Stage 2 since the expression for the overall

SE is now relatively simple (unlike when computing the base VTTS). The advantage of using

the Delta method for this part of the computation is that a closed form expression is available,

thus allowing the user of this approach greater functionality vis-à-vis having to undertake

further K&R runs in [R].

The SE for 
GDP

was reported by Mackie et al (2003) as 0.1646 and the SE for V arose from

the K&R simulations in Stage 1. GDP was assumed to be non-stochastic, i.e. with regards to

point iii) at the outset of section 4, uncertainty associated with forecasting GDP was not taken

into account.

Thus *

t
V in (4) comprises two sets of estimated parameters to which the Delta method is

applied. Furthermore, because the two parameters derive from samples of data which are

independent of each other (the meta-analysis sample is independent of the AHCG sample),

there will be no correlation between the two parameter estimates. This simplifies the

computation.

The Delta method proceeds by computing the (asymptotic) variance of *

t
V as:
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The estimated SE of *

t
V is thus:

   ** var.
tt

VasyVSE 

The 95% Confidence Interval (CI) for *

t
V is then given as

 * * *95% CI for 1.96
t t t

V V SE V     (6)

5 Results

In this section, the findings on the width of interval estimates are described. Figure 1 presents

95% and 50% CIs for *

t
V , for the commuting journey purpose, from 1994 to 2075. Figure 2

presents the same interval for the 'other' non-work journey purpose. GDP was based on

growth forecasts per head published in DfT (2012). The hypothetical appraisal period of 2015

to 2075 extends 81 years forward from the base year of 1994; this reflects the 60 year

appraisal period which has become standard in UK-based appraisal of transport projects with

indefinite lives (DfT, 2014b). The following two observations arise from Figures 1 and 2.

Firstly, as described in (4), the point estimate, i.e. the value actually used in appraisal, is

increasing with GDP. Since forecasts of GDP are upward, the point estimate is increasing

over time, even throughout the recent recession. In 1994, the central estimate for the

commuting journey purpose is 9.39 pence per minute (ppm) (2010 prices), for 2015 it is

12.28 ppm, whilst in 2075 it is 32.69 ppm. For the ‘other’ non-work journey purpose, the

1994, 2015 and 2075 central estimates are 8.39, 10.97 and 29.21 ppm respectively.

Secondly, it is notable that the interval estimates for the earlier years are very tight relative to

the intervals for later years. For example, the 1994 interval estimate for commuting is [8.35,

10.43] ppm and the associated SE is 0.53 ppm or 6% of the central estimate. In contrast, the

interval estimate for 2075 is [15.85, 49.53] ppm and the associated SE is 8.59 ppm or 26% of

the central estimate. Therefore, the interval increases over time both in absolute and

proportionate terms.

This is a significant observation, suggesting that it is the growth in GDP away from the base

that drives the increase in the width of the interval, and not the uncertainty within the GDP

forecasts (since the latter is not quantified in this approach). In other words, uncertainty in the

estimate of the GDP elasticity is amplified as the ratio of GDP in the year of interest to GDP

in the base year increases. This can be seen in the expression for the variance of *

tV in (5). In

particular the term     1994 1994ln GDP

t tV GDP GDP GDP GDP
  shows that the SE of *

tV

increases by a factor greater than proportional to GDP, and that this term is subsequently

multiplied by the SE of the GDP elasticity. The width of the CI will therefore be sensitive to

both the value of the point estimate and the error associated with the GDP elasticity, and this

width will be amplified as the time period of interest becomes more distant from the base.

An important policy implication emerges from this analysis. It is not sufficient to provide a

robust estimate of the base year non-work VTTS. Rather it is important to robustly estimate

the growth factor (represented here by the GDP elasticity
GDP
 ) associated with the

conversion of behavioural values into appraisal values. A more precise estimate of
GDP
 can



have substantial implications for the precision of the appraisal VTTS for years toward the end

of the appraisal period. Given that the costs of projects tend to be front-loaded, with benefits

(including travel time savings) appearing later in the appraisal horizon, it would seem

beneficial to direct a reasonable research effort into precise VTTS estimates not just in the

base year but also in future years i.e. through precise estimation of
GDP
 .

Indeed, the effect would be compounded if we were also to include uncertainty of the GDP

forecast within the CIs (i.e. point iii in section 4). The upper and lower bounds of GDP

forecasts naturally diverge as they extend into the future from the present day, and this would

further contribute to the ‘fanning out’ of the CIs. Thus, in terms of absolute reductions in CIs

at least, the benefits of re-sampling would become even more apparent.

This is not to say that re-sampling and re-modelling the base year non-work VTTS does not

have benefits. Clearly this may (but not necessarily will) yield a more precise base estimate.

Furthermore, re-sampling allows any unforeseen structural break that has occurred between

the previous sampling date and the re-sampling date to be accounted for. However, the most

immediate benefit indicated by this analysis is that re-sampling ‘resets’ the base year,

meaning that that any future GDP value will be closer to the base year value than without re-

sampling (assuming the upward trend).

Putting to one side the debate on whether to update or improve the model (this will be

revisited in section 6), the analysis indicates that there exists substantial uncertainty as to the

appraisal VTTS, even for years within the recommended 60 year appraisal period. Given the

reliance of many transport schemes on time savings as a key source of benefit, it is likely that

adopting high or low estimates would make material differences to the benefit-cost ratio of

projects.

Arising from the above analysis, a natural question to ask is how can this information be

integrated within an appraisal framework? This question provokes two responses.

Firstly, there is precedent in the appraisal framework in Britain for sensitivity testing of

modelling assumptions (DfT, 2012b). Scheme promoters could be required to undertake a

high and low VTTS sensitivity test.

Secondly, it should be recognised that whilst the 95% CI includes the actual value of *

t
V 95

times out of a 100 in re-sampling, the region immediately around the central point estimate

still represents the highest probability mass of the sampling statistic. Thus in probabilistic

terms, there is a concentration of mass around the central estimate. This is important, since it

indicates that the actual value of *

t
V is more likely to be located in proximity to the central

estimate, and less likely to be located within the tails of the 95% CI. The latter proposition is

reinforced by the 50% CI, which is reasonably proximate to the central point estimate. This

observation, as well as the pragmatic desire to keep the high and low sensitivities within

reasonable bounds, could encourage policymakers to set the high and low VTTS sensitivity

levels at the 50% CI boundaries rather than at the 95% CI boundaries.

6 Incorporating best evidence on the GDP elasticity

Abrantes and Wardman (2011) updated the meta-analysis (Wardman, 2001) that was used to

generate the GDP elasticity
GDP
 in (4). This revised study included data from a substantial



number of studies not available in the original work and, as such, the updated GDP elasticity

can be considered superior.

The revised point estimate was 0.9 (i.e. increased from 0.8 in the 2001 study), and embodied

a smaller SE of 0.11 (as opposed to 0.16 in 2001). The implication for our estimated CI is

shown for the commuting journey purpose in Figure 3, and for the ‘other’ non-work journey

purpose in Figure 4. Table 1 summarises the existing and revised estimates. In addition to the

central point estimate of non-work VTTS being greater for the revised estimate for each year,

the smaller SE means that the CI is also narrower. The 1994 base year estimates are invariant

to the GDP elasticity by construction. However, by 2075 (60 years from the hypothetical

appraisal start year of 2015) the central estimate for the commuting journey purpose has

increased to 38.20 ppm for the updated GDP elasticity (i.e. from the 2011 study), as

compared with 32.69 ppm for the original GDP elasticity (i.e. from the 2001 study). The

lower boundary has increased from 15.85 ppm to 24.71 ppm, whilst the upper bound has

increased more modestly, to 51.70 ppm from 49.53 ppm. The net impact is to reduce the

width of the CI, with the biggest gains realised at the lower bound (relative to the CI for the

existing point estimate). This pattern is exactly the same for the ‘other’ non-work journey

purpose (since both journey purposes are subject to the same GDP elasticities).

Moreover, by 2075 there remains a substantial degree of uncertainty concerning the estimate

of non-work VTTS, but the revised GDP elasticity achieves a marked reduction in the width

of the CI (e.g. 21% narrower for the ‘other’ non-work journey purpose).



Table 1: Summary of 95% confidence interval estimates for the existing and revised

GDP elasticities

1994 2015 2045 2075

Commuting journey purpose Pence per minute (2010 prices)

Existing GDP elasticity

Central estimate 9.39 12.28 19.69 32.69

Lower interval boundary 8.35 10.38 13.42 15.85

Upper interval boundary 10.43 14.18 25.96 49.53

Interval width 2.08 3.80 12.54 33.68

Updated GDP elasticity

Central estimate 9.39 12.70 21.60 38.20

Lower interval boundary 8.35 11.02 16.68 24.71

Upper interval boundary 10.43 14.37 26.52 51.70

Interval width 2.08 3.36 9.84 26.99

Percentage difference 0% -12% -22% -20%

1994 2015 2045 2075

Other non-work journey purpose

Existing GDP elasticity

Central estimate 8.39 10.97 17.59 29.21

Lower interval boundary 7.70 9.48 12.15 14.32

Upper interval boundary 9.08 12.46 23.04 44.10

Interval width 1.37 2.97 10.89 29.77

Updated GDP elasticity

Central estimate 8.39 11.35 19.30 34.14

Lower interval boundary 7.70 10.11 15.15 22.35

Upper interval boundary 9.08 12.58 23.45 45.92

Interval width 1.37 2.47 8.31 23.57

Percentage difference 0% -17% -24% -21%

7 Sensitivity analysis to understand the decomposition of uncertainty and the

implications for future investment in VTTS updates

Policy officials in the UK and elsewhere routinely face the challenge of allocating finite

public monies to research and consultancy, whilst seeking to maximise the accuracy and

precision of key planning parameters such as VTTS. Against this background, it is apparent

that, whilst the previous section has demonstrated the clear analytical benefits of exploiting

best evidence on the GDP elasticity, this does not obviate the need for policymakers to

consider more significant questions such as:

 How frequently should the base VTTS be re-estimated?

 How much research and development expenditure should be committed to any such

re-estimation?

Whilst it is outside the scope of the present paper to address these questions in any great

detail, a simple ‘what if’ analysis using the existing model will offer useful insight.



This analysis begins by considering what the interval estimates for future year non-work

VTTS would be if the base non-work VTTS were undertaken on 2015 rather than 1994 data.

We assumed the same point estimate of non-work VTTS (2) as the original work, computed

the base non-work VTTS (3) (as well as any inherent uncertainty), and uprated by GDP

growth from 1994 to 2015 (4) (but considering any inherent uncertainty post-2015 only). In

effect, this scenario considers the analytical benefits that would accrue if, for a given set of

parameter estimates from (1), the analyst were able to ‘reset’ the extrapolation of appraisal

values. Of course, if the parameter estimates from (1) were revised through re-sampling, and

their precision improved, then this would introduce a second source of analytical benefit.

Finally, we computed 95% CIs for future year forecasts (2015 to 2075). These are shown (by

the green line) in Figure 5 for the commuting journey purpose only. We restrict ourselves to

this journey purpose, since the findings are the same for both journey purposes (and our

calculations are in any case only illustrative).

We can see from Figure 5 that the interval widths are narrower post-2015. This is intuitive,

since there is no longer a need to uprate (with uncertainty inherent within the uprating factor)

between 1994 and 2015. What is more interesting is that there is a greater absolute decrease

in the interval width for the later years relative to the earlier years. In particular, the 95% CI

for 2075 (60 years from 2015) is 39% narrower for the re-sampled 2015 data relative to the

original 1994 data, a decrease in uncertainty of 13.71 ppm. This compares to a decrease of 5.9

ppm for 2045. The overall impact of re-sampling is to achieve a substantial increase in

precision for appraisal non-work VTTS estimates, especially towards the end of the 60 year

appraisal period.

This finding is useful in itself for informing research and development policy. It implies that

there is a need to regularly re-sample the base VTTS. However, research and development

budgets are often heavily constrained and it is therefore useful to understand the trade-off

between frequency of re-sampling (the above issue) and the level of expenditure assigned to

each such re-sampling. We characterise the latter issue as relating to the precision of

estimating the base non-work VTTS, which tends to be a function of sample size.

In addition to considering the scenario where the base non-work VTTS is re-sampled in 2015

but with the same precision as 1994, Figure 5 also shows (by way of the red line) the scenario

where the base non-work VTTS is re-sampled in 2015 but with an increase in precision by a

factor of three (i.e. the SE associated with the 2015 estimate is one third of the previously

described 2015 reference
8
). This comparison reveals that in the years immediately following

the new base of 2015, appraisal values are considerably more precise. For example, in 2025

the 95% CI for non-work VTTS has a width of 1.51 ppm for the 2015 base (red line), as

compared with 2.73 ppm for the reference 2015 case (green line). However in later years, the

difference becomes very small. In 2075 the interval widths are 19.83 and 20.51 ppm

respectively, a difference of only 3.4%.

8
Improvements in the precision of behavioural estimates could be realised through increases in sample size

and/or through the exploitation of ‘efficient’ SP design methods (which were not available in 1994).



8 Conclusion

This paper has developed confidence intervals (CIs) for non-work appraisal values of travel

time savings (VTTS). The paper has decomposed uncertainty into two independent parts;

firstly, that which arises from estimating non-work VTTS in the base year, and secondly, that

which arises from applying the GDP elasticity to uprate the base non-work VTTS estimate to

the relevant appraisal year. The base year non-work VTTS was found to be estimated

precisely relative to the uncertainty that manifests further into the forecasting period.

This gives rise to an interesting conclusion. The production of robust VTTS estimates for use

in appraisal requires more than precisely estimating VTTS in the base year, since the

precision of parameters used for uprating is a crucial determinant of the degree of uncertainty

inherent within the overall VTTS for a given appraisal year. It has furthermore been

demonstrated that, by exploiting best evidence on the GDP elasticity, the CIs for appraisal

VTTS can be reduced, with the biggest percentage and absolute reductions pertaining to

values further into the forecasting period.

That said, forecasting 81 years into the future (from the base year) is undeniably difficult, and

even though the base year VTTS is the minor contributor to overall uncertainty, re-estimating

the base year VTTS has the effect of re-setting the forecasting period. Whilst acknowledging

the constraints on research and development budgets, we would advocate regular re-sampling

of VTTS. Such re-sampling could however be modest in scale (and expense), since the

benefit of precision in the base year VTTS estimate is considerably outweighed by any

imprecision introduced when uprating over time.

An important caveat is that the estimated base year VTTS is assumed to be an unbiased

estimator of the actual base year VTTS. Any economy in the data collection underpinning re-

sampling of VTTS should not therefore overlook the need for the base model to be correctly

specified and appropriately estimated.
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Figure 1: 95% and 50% confidence intervals for VTTS for the commuting trip purpose

(2010 prices)
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Figure 2: 95% and 50% confidence intervals for VTTS for the ‘other’ non-work trip

purpose (2010 prices)
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Figure 3: 95% confidence intervals for VTTS for the commuting trip purpose including

an updated income elasticity (2010 prices)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080

V
a
lu

e
o
f

T
ra

ve
l
T

im
e

S
a

vi
n

g
(p

e
n
c
e

p
e

r
m

in
u
te

)

Year

Central VTTS Updated Income Elasticity Lower CI Updated Upper CI Updated

Central VTTS Existing Income Elasticity Lower CI Existing Upper CI Existing

Figure 4: 95% confidence intervals for the ‘other’ non-work trip making purpose

including an updated income elasticity (2010 prices)
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Figure 5: 95% confidence intervals for VTTS for the commuting trip purpose including

‘what if’ analysis scenarios (2010 prices)
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