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Optimization of Industrial Processes I

Optimization of Control Margins in Nuclear Reactor Systems

Dr, D. H. Owens, University of Sheffield

13 Introduction

In many applications of optimal control theory to industrial processes
it can be difficult to choose an appropriate form of performance criterion
to guarantee the form of system response required. In most cases the
desired structure of the performance criterion is known but the
individual control and state weightings can only be 'guessed' and the
optimal design achieved by iterating on available parameters, In rough
terms, the typical design exercize can be undertaken as follows,

STEP ONE: Formulate the system model, control constraints and a
trial performance criterion.

STEP TWO: Use a numerical technique to solve the resulting optimal
control problem.

STEP THREE: Examine the resulting state and control trajectories. If
satisfactory, stop. If unsatisfactory, return to step two
with a performance criterion, modified in such a manner
as to improve the system response.

In this sense, optimal control theory does not, in general, remove the

trial and error aspect of classical approaches to control. It does

however enable the inclusion of terminal state constraints and hard
controller constraints, and provides an explicit solution to ﬁany problems
of practical interest where the performance criterion is well-defined in
terms of a known control target and the physical nature of the system
under consideration. It is the purpose of this lecture to describe the
application of optimal control to such a situation arising in the

analysis and control of thermal nuclear power reactors.
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2, Nuclear Reactor Dynamics and Xenon Poisoning

A thermal nuclear reactor can be regarded, for our purposes, as a
finite volume of space containing uranium fuel, a neutron moderation
medium, coolant and structural elements required to contain radioactive
products and separate the various components, The reactor can be

modelled(l)

either by a lumped or point reactor model describing only
those variables directly relevant to the reactors engineering environment
(eg. net coolant flow, total power output, average core temperature ete.)
or by a more detailed distributed model describing the reactor dynamics
at points within the core. FEach type of model has applications to
different situations e.g. a point model would be used when the dynamics
and control of the reactor-boiler-turbine combination is under
consideration whereas a distributed model is required if the control

of peak fuel temperature is under consideration. Whatever the form of

(2)

model used" ™, it will contain the basic physical laws relating reactor
power or reactor power distribution to fuel temperature, moderator
temperature, coolant density and temperature, fission cross—sections
and absor ption cross—sections etc.

0f particular relevance to the long term (one hour to twenty-four
hour) dynamics of the reactor is the effect of xenon-135 poisoning(lﬁz).
Xenon is produced via a radioactive chain of events initiated by the
fission of the uranium nucleus by a free neutronrproducing‘as a fission
fragment iodine-135 which decays by emission of an electron to xenon-135
with a half-life of approximately seven hours. Xenon itself decays by
an emission of an electron with a half life of approximately nine hours
but, more importantly, xenon can itself absorb neutrons. In other
words the fission reaction produces the 'poison' Xenon-135 which tends

to inhibit the reaction and suitable control action must be included

within the reactor core to offset its effect.
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The dynamic equations governing the behaviour of the iodine I(r,t)

and xenon X(r,t) concentrations at a point r within the reactor core

are(lwz)

VI (OP(r,t) - A I(x,t) =

AL

T (x,t) sentl)

Yyl (OP(r,t) + A I(x,t) - (Agro (D P(x, ) X(x,t) = g—% (B,E) - uu(2)

where Ty = fractional yield of iodine-135 in fission = 0.056
zf(z) = macroscopic fission cross-section at the point r. (cmfl)
AI = 1iodine decay constant = 0.29:{10_4 sec_l
Yy = fractional yield of xenon-135 in fission = 0,003
AX = xenon decay constant = 0.21x10—4 sec_1
GX(E) = microscopic absorbtion cross-section of xenon at r. (cmz)
P(r,t) = power density at the point r and time t (neutrons/sec/cmz)

Note that, although (1)-(2) are partial differential equations they contain

no spatial derivatives; a useful feature when numerical discretization
becomes necessary.

Given a steady state power distribution PO(Ej it is easily
demonstrated that the iodine and xenon concentrations have steady state
distributions,

Yp2e(r) P (2) (YI+YX)Zf(£)PO(3:_)

I @ = . , X (@ = Yo (P (D S n(3)

3
The rate of neutron absorbtion (neutrons/sec/cm™) can be expressed
in the form Ea(r,t)P(r,t) where I (r,t) is the macroscopic absorbtion
ns L o o
cross-section, taking the form

5 (r,t) = 3 © ©) (o)
a— a

oea(4)

(£,8) + o (DX(x,t) + I (x,t) + I
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where Ea(o)(zﬁt) = power dependent absorbtion cross—section
EC(E,t) = gpatially dependent trimming control action
EC(O)(t) = spatially independent bulk control action

35 Spatial Control Margins and Power Manoeuvres

Consider the situation of a load-following nuclear station during
the 'quiet period' overnight when power demand drops. For theoretical
purposes it is supposed that the reactor maintains a 1007 steady state
power distribution PO(E) during the daytime period and at time t = 0
the total power output drops to f£Z of the 1007 value and is maintained

at this value until the time t = T (known terminal time) when the total

power moves rapidly back to the 100% power condition (3@ new day begins!),

This situation is represented schematically in Fig.l together with a
typical xenon concentration transient at a sample point in the core.
It is noted that the xenon concentration rises during the interval OgtgT
so that the absorbtion cross—-section Ea(E;t) will rise throughout the
core in the absence of control action. More particularly, in general,
the xenon concentration will rise by differing amounts at different
points within the core.

The initial control problem is to choose the overall control effect

(o)
EC(E,T)+ZC

(T) to ensure that P(r,T) = PO(E) ie the power distribution
at the terminal time T is equal to that at t = 0. This is desirable

as any discrepancy here automatically implies higher fuel temperatures
at some point within the core which must be avoided to preserve the
integrity of the fuel elements. This condition can be achieved by

choosing control so that

Ea(E’O) = Za(EJT) sieakd)




or

(o) (o)

ZC(E,T) + ):C (T) EC(EsD) * ZC (0)

+ o () { X(x,0) - X(z,} s (6)

which relates the desired control action to the terminal xenon
distribution. This is an idealized situation which can only be
approximated in practice.

It is noted that the control action can be shared between the bulk
and trimming controls and that the total effect (equation (6)) is
governed by the terminal xenon distribution. By (1) and (2) the
terminal xenon distribution is governed by the spatial power dynamics
P(r,t) during the low power period, Ost<T ie the total spatial control
distribution at t = T is dictated by the spatial power)dynamics B(x, L)
during the low power period. This observation makes possible the
secondary control problem of choosing P(r,t), O<t<T, such that the
terminal control action defined by (6) has desired characteristics.

The problem considered in this lecture is the maximization of the
spatial control margins or equivalently the choice of low power profile
to minimize the required trimming action. In principle we require that

z (r,T) =0 Sl
s

as, in practice, the effect of trimming control is limited in capacity
and the trimming control also has to deal with disturbance regulation.
There is no reason to suppose that (7) can be satisfied exactly but

it is possible to obtain a least squares approximation to this condition

by the application of optimal control methods.
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4, Formulation of the Optimal Control Problem

The distributed system of (1)-(2) is approximated by a lumped state
vector model by the division of the reactor core into N zones of volume
AVS, 1sj<N, and the iodine and xenon dynamics restricted to single

points Ej’ 1€j<N, within each =zone. The state equations take the form

x(t) = Ax(t) + Bp(t) + C(x(t),p(t))
x(o) = x ais « (B)
where
A 8 -, 0 o o .. .. 0 ) (2nx2W) ()
AI -AX 0 0 .
0 0 - 0 %
I
0 0 AI “AX .
. 0] —AI 0
\ 0 e L3 ® o ° ° ® ° O }\I _AX J
(block—-diagonal)
é [ 5
K = ylzf(£1) 0 Q % 5 & 0 (2NxN) ...(10)
YXZf(El) 0 0 ”
0 YiZe(L,) 0 "
0 YXZf(IQ) 0 =
. 0
i 0 YIEfQ;N)
[ 0 e v e s 0y 2 (x) )




ses(11)

0

=0y (T XynPy

with the state and control vectors

PO R [Br 8 Pgt), o B 2l 0]
x(t) : [I(gl,t), X(gl,t), I(r?_,t), X(_l:z,t),..., X(r ,t)]T
| o1y
with initial condition
A r T
g = LIo(El)’ X (x)s een s XO(EN)] L) ey

The vector function C(x,p) is continuous and bilinear ie in
particular,
AC(x,p) = C(Aix,p) = C(x,Ap) are C14)
for all scalars A and vectors x,p. Also
C(x;*%,5 p) = C(x;» p) + C(x,, P)

C(x,p;*p,) = C(E,_P_l) +C(§,32) ds 0 (15)

for all vectors x, Pys Pye
During the low power period the total reactor power must be £7

of the steady state full power condition ie

N | e N
P .’t ) ; = e
jzl (x;: )2 (x,)av, S0 .Z

P (r.)Z _(r.)AV, ciatlha)
Jlo—J £ =] ]

or, defining




o T
2 [E.G)AV,, 2 (£ )AV,, vu., T (x)AV, |7 (17)
£ £ e/ Rlge Selagltigr. v E Splig)iig “e
A T f
pom [ROOR R Y 5 ey B ] e ... (18)
then the control restraint set @ is defined by the relation
N
o & {pER : g fp-p} = 0} Gwa(19)

“o
To formulate the required performance criterion note that, without

loss of generality, we can always suppose that (equation (6))

N
L, B (rj,t) = 0 s Dokl ++(20)

by suitable sharing the control between trimming and bulk action. Using
this relation in (6) yields the equation

N
N zc(‘”) (™) = N Ec(o)(o) + )

i UX(EJ.){X(Ej,O) N X(g:_j,T)}...(Zl)

Assuming for simplicity that ZC(EAO) = 0 then, substituting (21) into

(6) yields, 1lgjgN,

. = : 3 - oo F
Zc(gJ,T) UX(EJ) {X(_T_;J,o) X(£J )1
1 N
- ﬁ ]'_Z]_ GX(Ej){X(El’O) = X(‘Ei’T)} sk ie)
Defining
y B 2 |
Je) = Y (z_ (x.,M) e o]
i=1 o
then the problem of maximization of control margins is formulated(s) as

the search for the input trajectory p*(t)GE Q, 0stsT, generating a
solution of the state equations (8) and minimizing the performance
criterion (23).

Equation (23) can be transformed into a more conventional form by

using (22) to write




=0 =

Jtp) = A=) -~ gt_}T F {x(1) ~al <o (24)

where F is symmetric and positive semi-definite and o is a constant

¥ GG : . i 4
vector. In this form the optimization problem is recogn1zed( ) as

a quadratic terminal optimization problem with bilinear state equations

and equality control constraints.

5. A Numerical Optimization Technique

The numerical solution of the optimal control problem posed in

section (5) can be attempted by application of techniques such as the

(4)

steepest descent algorithm, An improved algorithm can be obtained
in this case however which also provides a simple illustration of

Pontriagins Principle.

Theorem(3’4)

If El(t) and EQ(t) are allowable power trajectories, 0<tsT,

generating state trajectories_gl(t), Ez(t) respectively satisfying

(8) then

T
I(p)-3(py) = [ {[x, (£),p, () ,A(r),t]-H[x (t),p, (£),A(E),t] }dt
: :

+ 1, (D=x, (D } Flx, (D-x, (D} eee(25)

where the Hamiltonian

H[x,p.a,t] & 0B+ 22| 1A Jos(26)
and the costate equations are
\ T ac |T
AdE) = -AA(E) - 5 ‘ ()
= g

MDD = 2F{x (T) - a} o s {27}




.._]_0_.
Proof

Using integration by parts

(D (D) - x (D}

T 3
= [ AT, (0-x ®) + A0 E, (0 - £ (e ...(28)
(o]

It follows directly from the definitions that

AD Hx, (D= (D} = I@)- I

5 _
- {x,(D - x, (M'F {x,(D - x,(D} o (28
Also
LA T
[ 4% e, <t 15, =& K
(e}
1 T ¢ | .T
=] e d=az | 2 -5
(o] — E—Z
+ 2! {Alx,=x,} + B{p,=p, } + C(x,,p,) - C(x;,p;) }}dt
T 1 T e
2 cf) A'Blp,py} + A{C(x,5p) - Clxopy) i {x,~x,}}}dt
By
T -
= £ {Hklsgzslst] = lel’_l:ll’i’t] Hdt ons (30}
as
C(xyop)) — C(x5py) = % iz, =
= lp,
= -g'g {p, =~ P—l} aas(31)

The result follows by substituting (29) and (30) into (28). Q.E.D.
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A necessary condition for J(EQ) < J(El) is that,

T T
[ H[x (£),p,(£),A(0) ,t]dE < H{El(t),Bl(t),_?l(t),t]dt e G I0)
(o} o

A sufficient condition for (32) to hold is that

Bx, (£),p,(£) ,A(6) ,t] < H[x, (£),p (£),A(8) ,¢]

, O£tgT wi (33)
ie a '"descent direction' for the Hamiltonian H is a 'descent direction'
for J.

The above analysis suggests the following numerical procedure for
the systematic reduction of the performance criterion.

STEP 1: Choose an initial trial solution Rl(t).

STEP 2: Evaluate the state trajectory_§1(t), 0<t<T, from the state
equations and evaluate the cost J(El)'

STEP 3: Choose a real scalar >0 and compute an updated power
Fransient Eﬂ(t) by integrating the costate equations (27)
backwards in time and at each time step solve the algebraic
minimization problem

Hlx, (8), p,(t), A(t),t] - H[x (©), p, (B), A(D),¢]

+ € {Bg(t) - E_l(t)}T {EQ(t) = gl(t)}

= min {H[x,(6), p, A(6),t] - H[x (©), p, (), ACD),¢t]
pER

+e{p-p; (0} (p-p(O)) En

The scalar >0 is required to reduce the magnitude of
Bz(t)jgl(t) and hence reduce the positive effect of the
second order terms in (25).

STEP 4: Evaluate the state trajectory‘gz(t), 0<t<T, and J(EQ)'
If J(EQ) > J(Bl) increase the value of e (typically, double it!)
and return to step three. If J(EQ) < J(El) replace Py by 2,

and return to step two.
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In practice the algorithm is terminated by a convergence criterion
which could be based on the magnitude of the changes in power
transients, but is more conveniently based on a maximum number of
iterations coupled with the requirement that the performance criterion

is reduced by a required fraction of the original guess.

6. A Numerical Example

Dividing the reactor into three zones (ie N = 3) with the data

P (r,) = 0.8}(1014 , P (r.) = 1.Ox1014 , P (F )= O.8x1014
o —1 o —2 o —3

£f=20 , T = 7 hours

“ -2 e -2 A -2
Zf(zl) = 0.21x10 ~., Ef(gz) 0.2x10 5 Zf(EB) = 0.21x10
2 ~17 : ~17 o ~17
GX(El) = 0.1x10 , GX(EZ) = 0.1x10 " OX(EB) 0.1x10
AVl = 1.0 5 AV2 = 2.0 5 AV3 = 1.0
(@) _ o.167x107°

X
c

5 6

% (r,,0) = 0.184x10

e g ZC(EZ,O) = 0,34x%10

3 ZC(EB,O) = =0,216x%10

with the initial guess obtained by choosing the low power profile to be
% of the 1007 steady state power distribution, The following numerical

results were obtained

Iteration J

0.102x10"°

0.250x10 *°
0.742x10
0.247x10 1
0.981x10 ' >
0.412x10 12
0.184x10 12
0.829x10 -3
0.380x10 -2
0. 174x16 2
0.802x10"

O o N O W= O

[
o

5




&
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ie, in ten iterations, the performance criterion has been reduced by

a factor of 104 and the algorithm was terminated at this point producing
the power transients shown in Fig.2. In many cases the power
transients are difficult to achieve in practice, but the solution can
provide useful insight into the general structure of the optimal control
policy which can be used to guide the solution of an extended

optimization problem including hard power constraints.,
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