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Solution of Differential-algebraic Systems with Control and State Constraints

Dr. D. H. Owens, University of Sheffield

1. Introduction

In many applications of mathematics in science and engineering, the
concept of optimization is used as a tool rather than a direct objective,
Typical examples of this observation can be found in classical mechanics
and, for example, the solution of the algebraic problem f(x) = 0,

xEaC R" as a solution of the optimization problem
: 2 :
min “F(BE) ” ) xe Q e (1)

7 This class of problem must be distinguished from the well-known optimal
control problem where the objective of the design is to optimize a known
performance criterion.

(1)

In the analysis of many control systems , it is necessary to
investigate the existence of and calculate a solution of linear equations

of the form,

k() = Ax(t) + Bu(t)
R'D0 = Eu(t) + Fx(t)
x0) = x , x(DESC R

W €g (SR, xDEa ()R
0 tgT (fixed) i)

ie the problem is the choice of an input trajectory_g(t)éé Qu(t), O<t<T,
generating a solution x(t) of the algebraic equations and differential

equations satisfying the terminal state constraint E(T)EE S and
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E(.t)e ﬂx(t), O<t<T. Note that a solution may fail to exist, may be
unique or there may be an infinite number of controllers u(+) generating
states x(*) satisfying (2). Note also that the problem is not an
optimal control problem, and the engineering problem is not that of
optimization in any sense.

The discrete form of (2) is the set of equations,

x(k+l) = A x(k) +B u(k+1)
4] = E u(k+l) + F x(k) . 0 <k < N=-1
x(0) =, 5 x(N) &€ S fr cee kD)
U E o ® : x(1) € 9_(K)
15k N )

In both cases the existence of algebraic equalities usuglly arises from
regulating fast stable time constants in the system and/or from
algebraic conservation relations.

The problem is best set in the geometric framework of the mathematical
method called functional analysis(2’3). Our attention will be restricted
to the discrete problem but the approach provides significant geometric
insight into the solution of both problems and enables the solution of
a much large class of problems by application of the same mathematical
theorems.

2. Mathematical Background(2’3)

A real vector space X is a set of elements called vectors together with

two operations called vector addition and scalar multiplication which
associates with each pair x, y & X and scalar A &R the sum x+y € K and
Ax & X, both operations satisfying the normal commutative, associative
and distributive laws. The zero vector in X is denoted 0 and (-1)x

(x& X) is denoted -x.
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A real inner product space X is a real vector space with an inmer

product <e,*> which associates with each pair _ﬁg,ze)( a real number -
<X,y> such that
Iy, T LR
<x,x> » 0 and equality holds iff x =0
<§_]_+£2’Z> = <§1,y> + <§2’_X>
A <X,y> = <AX,y> \{ A€ R es+(5)
The metric or distance function on X is termed the norm and, x & X,

lzll & { o ¥ e

A Cauchy sequence in a real inner product space is a sequence of vectors

{xX, 3%, 5+..} such that for every real number ¢>0, there exists a positive
=1°=2 ¥ P

integer N:1 such that H_:_:n—zcm" < e for all n,m 2 N.

A real Hilbert space H is a real inner product space such that, for

every Cauchy sequence {3{_1,_}52,...} in H, there exists x &H such that

lim ||x -x|| = 0. The sequence {x } is said to converge to x or
e 0 I nz1

lim x = X.

nee

The Cartesian Product of two Hilbert spaces H.,H_ is denoted H = H_xH

1772 2

and is a Hilbert space of pairs (3{_1,32), _}EieHi, i=1,2, with

A
(x5%,) + (775¥,) = (% *+ ¥, X, *7,)
A
Mz Hx) = Oxs M%) ikl
and inner product and norm,

' A
<(§1,§2), (¥,53)> = S AT STS Ste

1
2 2
[z = Cllx 7+ x5 4 )

A closed set K in a real Hilbert space H is a set of elements of H such

that if _lgie K, iz1, and 1lim X, = X & H then x &K,
100
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A convex set K in a real Hilbert space H is a set of elements of H such

that Ax+(1-A)y &K for all x,y¢& K and for all O<i<Il.

A linear variety K = a+M in a real Hilbert space H is generated by a

vector a & H and a linear subspace M H and consists of all vectors

of the form a+x (x& M.
(2)

The fundamental theorem used in this lecture is the theorem

characterizing the minimum distance to a convex set.

Theorem(z) 1

Let x be a vector in a Hilbert space H and K a closed, convex subset

of H., Then there is a unique vector EOC_— K such that

lz=x Il < [lxkll fi19)

for all k € K. Furthermore, a necessary and sufficient condition that

X be the unique minimizing vector is that, for all _1_:_6 K,

X, kx> 50 S aGo)

Finally, if K is a linear variety the inequality in (10) is replaced by
equality.

(4)

3 Problem Formulation

Consider the solution of the discrete system (3)=(4). In general
it is impossible to obtain a solution by inspection and an iterative
solution technique is necessary which, after a small finite number of
iterations, generates an approximate solution to (3)-(4) in some sense.

The problem is best posed in the context of a suitable Hilbert
space(a) Hi We define H1 to be the Hilbert space of sequences

x = {x(1),x(2),...,x(N) } with addition and scalar multiplication defined

by




{x(1) 0002} + {y(De0e,y@} = {x(1) + y(1,.ee,x(M) +yM)}
Mr(1) yee0,x(M 1 = {Ax(1),...,2x(N) } vs s GIL)

with inner product of x = {x(1),.0.,x(N)} and y = {y(1),...,y(N)} defined

by

Wb«ﬂz

<x,y>1 x(3) e, ¥ oo (12)

j=1

and the corresponding induced norm

Ifbwuz

1
I=ll, = ¢ 3 x@Te, 23} 2o

j=1

Here Qj’ 15<j<N, are symmetric positive-definite matrices, which for the
problem under consideration are unspecified, although they do provide
a technique for conditioning of the algorithm,

In a similar way H, is defined to be the Hilbert space of sequences

2
u = {u(l),...,u(N)} with addition and scalar multiplication defined in
an analogous way to (11) and inner product and norm defined as in (12),
(13) with Qj’ 1<j<N, replaced by symmetric positive definite matrices
Rj’ 1gjgN.

The Hilbert space of interest here is the cartesian product space
H = HIXH2 which is a Hilbert space with inner product and norm defined
as in section (2). It is convenient to characterize (3) and (4) in
terms of subsets of H, by hoting that any solution of (3)—(4) can be

regarded as an element of H. Let

H=D

]

set of all solutions of (3) regarded as points of H .o (14)

ne>

H> A set of all solutions of (4) regarded as points of H is oGO0

and, to avoid trivialities, assume that both D and A are non-empty.
The engineering problem can now be posed in the abstract form of the

search for a point in the interaction of D and A. This is a complex
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problem unless extra structure is included in the problem. It is
assumed therefore that Qu(k), Qx(k), 1<kgN and S are closed and convex,
from which both D and A are closed, convex subsets of H. The geometric
representation of the problem is illustrated in Fig.l and is the
intuitive key to a solution of the problem.

Consider the geometric construction illustrated in Fig.2 where
EOGE H is an initial guess at the solution of (3),(4) not necessarily
in D or A. Let_lg1 be that unique point in D nearest to Eo’ EQ be that
point in A nearest to 51, 53 that point in D nearest to EQ etc then,
intuitively, the sequence {31,52,53,...} tends in the limit to a point

k @ DN A. Formally(A)

E]

Theorem 2

Let 5065 H and D N\ A be nonempty where D and A are closed convex

subsets of the real Hilbert space H. Defining k

1 to be that unique

vector in D such that

0 | R 1 | ve o (16)
1 —o KeD =25
and Ei by
”1_{.21_.15:21_1” = ;2‘-: HE”}_(_zi_.]_” s EZl E‘;‘A
”.l.c.zj_q-]_—kzi “ in :;2]1; ”E_-lc_zi ” s _1_(_21_!_1 7D s G

then the sequence {31,52,...} is defined uniquely and, for any point

x&DNA

2 2
Iz - k. 1 © > I

vss:(18)

i ~318
=

1 ”.ISJ+1 B .liJ

Moreover, for any e>0, there exists an integer N such that, for jzN,
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inf |lk. = k|| + inf Hk - k|| < <2 £19)
keD 9 keA

Finally, if H is finite-dimensional, there exists a point k & DN A

such that
limk, = k_ 2+4/(20)
jre I
Proof (Outline)
By theorem 1, the sequence is defined uniquely and <x- kJ+l’kJ+1 Ej > 0,
j>1 ie
2 2
e -k 12 = - kg kg - K
2 . 2
Hx - k_]"'].“ + ||Ej+1 - ..lij “ + 2 <X . k +1 ] _1£J+1 Ej>
plz -k 12 % Tl - k012 (21)
+1 —j+1 = etn

Equation (18) follows directly from induction and hence that

}iﬁ HE§+1 - Eﬂ" = 0 so that (19) follows by noting that Ej+1G=3)’

5.65 A (or vice versa). Equation (20) can be proved(a) by noting from
the above that {k k2"'°} is relatively compact and hence has a cluster
point k € D N A (by (19)) which is unique by convexity.
o
Q.E.D.

Interpreting this result in terms of the solution of the discrete

problem (3)-(4), we can write, 120,
k= (x5 (D,%, (2,005, M, {10,082, 000,u,MD

so that Ei (i odd) is generated by the solution of the optimization problem
N

. B ; oy s T ; :
min 3-.21 [Gey (D-x;_, (D)0, (D=, (D)

+ (o (D= (D) R,y (D ()] e (22)




subject to
x,(k+l) = A x.(k) + B u, (k+l)
i L =1 =1
0 = Eu(k+l) +F x. (k) , O0sksN-1
EAS) . ® o xMEs il

or, if i is even, Ei is the solution of the optimization problem

min (22) subject to _Ei(k) - Qu(k), _:gi(k)C—:_ Hx(k)

l1sk N ees(24)

Problem (22), (23) can be solved in many cases for example by
application of discrete dynamic programming techniques and problem (24)
is soluble by standard algebraic minimization routines. The algorithm
has guaranteed convergence but, in practice, can suffer from slow
convergence problems due to the geometry of D and A in H as illustrated
in Fig.3. In this case an accelerated algorithm can be obtained if D
is a linear variety ie S = R, The general idea is illustrated in
Fig.4 and consists of the use of tangent hyperplanes to A to construct

(4)

an improved iterate. Formally i

Theorem 3

If D is a closed linear variety in H, EOEE H and r. is the unique

1

solution of the optimization problem

gy ~% I = 48 lz-k| - @D ...(29)
reD
and, izl
leg = zell = dof Jl-xll 0 KEA
ls; ~ kMl = inf [ls -k s. €D ...(26)

s€D -
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Tiyp = It (g -rp
2
I, - =, _
1 < lié 5 c(2D
ls; - x|

then the sequence {_1:_1,51,_@_1,_1_:_2,3_2, % ab

Moreover, for any e£>0, there exists an integer N such that, for j:N,

} is well-defined for each k € H.

inf ||k - .|| + inf |z -k.|]| <e == (2B}
keA ] reD ot

Finally, if H is finite-dimensional, there exists a point r & D NA

such that

limr. < % s (:29)
j»m

b

Note that

(a) The flexibility in choice of Ai, i»1, implicit in (27) is very
useful in practice as a large extrapolation factor hi tends to
magnify numerical errors.

(b) The algorithm has a similar interpretation to that of theorem 1%
except that the constraint_gi(N)GfS is now trivial.

(c) Both theorem 2 and 3 have similar interpretations for the
continuous system (2) but, in this case the Hilbert space of
interest is infinite-dimensional so the existence of a limit
point is not proved. All is not lost however as (28) and (19)
indicate that it is always possible to generate an approximate
solution (in the sense of the norm) with an arbitrary degree of

accuracy.
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4, Numerical Examples

Example One: consider the problem of calculating a solution of the

scalar equations

1
%(t) =u(t) , x() =0, x(1) =1, [ tult)dt =1 ,..(30)
" (o]

This is an infinite dimensional problem and the appropriate choice of H

igs H = L2 (0,1) with norm
2 1 2
k]| © = 3/ &Nt , kEH b (3D
o
Let
A 1
D={u€EH: f u(t)dt =1 } (closed linear variety)
o .
A b .
A={u&H: f tu(t)dt =1 } (closed hyperplane) shel32}
(8]

111

Applying theorem 3 with ko(t) 0, Ostgl, then rl(t) is the solution of

the problem,

1
2 2 .
min f (u(t))"dt. subject to x(t) = u(t), x(o) =0, x(1) =1
¢ : s (39)
Application of optimal control theory yields the solution
rl(t) =1 " 0<tgl T34
and in a similar manner
4 3
kl(t) 1+ 5 t
ok 2 &
Sl(t) =5 + > t saean)
Choosing A, = Hk =T ]|2/ Hs -t ||2 = 4, then
1 1l i | ?
r,(t) = 1+ 4{ 143 t -1} = =2 + 6t «..(36)
2 4 .2

Moreover rZGE—D N A and the algorithm converges in two iterations.
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Example Two: The power distribution P(x,t) in a one-dimensional
thermal nuclear reactor of length L can be approximately described
by the relation

4 ‘
I 2 . Jmx
Plx,t) = jzl uj(t) IL sin <=

OSX$L, OStST 000(37)

where the flux mode amplitudes uj(t), l<jg4, are regarded as constrained
system inputs., There are three other inputs uS(t)’ u6(t), u7(t)
representing bulk control action and two trimming control mechanism,

A detailed description of the dynamics of the spatial power distribution
is outside the scope of this lecture(l’s). However on the iodine-
xenon time scale (10-30 hours) it should be noted that large, thermal,
power reactors can exhibit spatial instability in the flux mode uz(t)

despite the presence of bulk control action u5(t) if no trimming

control action is used. A linearized discrete model of the process

(4)

n

can be derived of the form given by (3) with S =R, n =28, £ =7

and m = 5 where Eﬂt) is a state vector of iodine and xXenon concentrations
T g
through the reactor core and u(t) = {ul(t),...,u7(t)} 5 With the

initial condition

x(0) = {10'* , -10*, -10'%, 10, o, 0, 0, 03" ... (38)

and T = 40 hours, N = 20, the solution of (3) with bulk control action
and no trimming control is unique and uz(t) is as illustrated in
Fig.5. It is noted that the system is unstable, with peak magnitude
of uz(t) equal to 5.39x1014.

The problem considered in this example is the choice of trimming
control action in the time interval of interest to stabilize the system

and, in particular to induce transient behaviour from the initial

condition (38) satisfying the constraint,




.-----E::———————————_________________________________________________________f:j--ﬂ

e i L2 5=
luy ()| < 0.4 x 10M E)

which would obviously be a great improvement on the open-loop behaviour.
Note again that the problem is not an optimal control problem!

In the notation of section 3, the constraint sets Qu, Qx are

Qx(k) = R8 " 1<k gN

< 0.4 x 1014} 3 l<sksN eas (40)

7
2 = {u€R : Iu2|

Applying the algorithm defined by theorem 1, with

Q.=18 il 1LgjsN

8 100 ey Bk GRD)

a

R,j = diag'{1:0,1.0,1.0,1.0,105,10

the following results were obtained, with a zero initial guess,

Iteration ”Eiiki“
1 50.4
10 42.8
50 16.9

illustrating the extremely slow convergence of the unaccelerated
algorithm, In fact, after 50 iterations, the algorithm had not
converged to an acceptéble degree of accuracy.

Application of the accelerated algorithm defined for a zero initial

guess yielded the results,

Iteration Ai ”EifEi|
5 34.6 50.4
2 59.6 10.08
3 1.0 0.35%x10"
4 1.0 0.107x10"

indicating rapid convergence. In fact, the large values of extrapolation
factor used in the initial stages of the algorithm are the main cause of

this success.
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The converged solution u2(t), u6(t), u7(t) are shown in Fig.6,

together with the flux constraint.

D Summary

The lecture is devoted to a discussion and demonstration of the
fact that optimization is not necessarily the objective of a design
exercize but can play an important role in the solution of complex
engineering design problems. The lecture described a large class of
problems soluble by sequential application of optimization methods.
The level of mathematics required to formulate the algorithm is relatively
sophisticated but, with hindsight, the intuitive appreciation of the
methods and proof of convergence are difficult to obtain without the

use of such sophisticated methods,
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