
Sha et al. Genome Medicine  (2015) 7:64 
DOI 10.1186/s13073-015-0187-6
RESEARCH Open Access
Transferring genomics to the clinic:
distinguishing Burkitt and diffuse large B
cell lymphomas

Chulin Sha1, Sharon Barrans2, Matthew A. Care3, David Cunningham4, Reuben M. Tooze2,3, Andrew Jack2

and David R. Westhead1*
Abstract

Background: Classifiers based on molecular criteria such as gene expression signatures have been developed to
distinguish Burkitt lymphoma and diffuse large B cell lymphoma, which help to explore the intermediate cases
where traditional diagnosis is difficult. Transfer of these research classifiers into a clinical setting is challenging
because there are competing classifiers in the literature based on different methodology and gene sets with no
clear best choice; classifiers based on one expression measurement platform may not transfer effectively to another;
and, classifiers developed using fresh frozen samples may not work effectively with the commonly used and more
convenient formalin fixed paraffin-embedded samples used in routine diagnosis.

Methods: Here we thoroughly compared two published high profile classifiers developed on data from different
Affymetrix array platforms and fresh-frozen tissue, examining their transferability and concordance. Based on this
analysis, a new Burkitt and diffuse large B cell lymphoma classifier (BDC) was developed and employed on Illumina
DASL data from our own paraffin-embedded samples, allowing comparison with the diagnosis made in a central
haematopathology laboratory and evaluation of clinical relevance.

Results: We show that both previous classifiers can be recapitulated using very much smaller gene sets than
originally employed, and that the classification result is closely dependent on the Burkitt lymphoma criteria applied
in the training set. The BDC classification on our data exhibits high agreement (~95 %) with the original diagnosis.
A simple outcome comparison in the patients presenting intermediate features on conventional criteria suggests
that the cases classified as Burkitt lymphoma by BDC have worse response to standard diffuse large B cell
lymphoma treatment than those classified as diffuse large B cell lymphoma.

Conclusions: In this study, we comprehensively investigate two previous Burkitt lymphoma molecular classifiers, and
implement a new gene expression classifier, BDC, that works effectively on paraffin-embedded samples and provides
useful information for treatment decisions. The classifier is available as a free software package under the GNU public
licence within the R statistical software environment through the link http://www.bioinformatics.leeds.ac.uk/labpages/
softwares/ or on github https://github.com/Sharlene/BDC.
Background
Gene expression patterns represent an attractive mo-
lecular phenotype for the classification of cancer [1–4]:
they represent the functional state of the cancer cell that
results from the perturbation of cellular processes such
as signal transduction and genetic regulation, and whose
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underlying cause may be mutations or other changes in
the cancer cell genome [4]. DNA microarrays have made
gene expression measurements at the whole genome
scale affordable for routine clinical diagnostics, and this
has led to the development of gene expression signatures
that may inform prognosis or treatment [5–8]. Blood cell
cancers, leukaemia and lymphoma, are particularly at-
tractive targets for gene expression signatures since they
result from cells undergoing a complex pathway of dif-
ferentiation, where cellular identity is largely defined by
le distributed under the terms of the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium,
. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-015-0187-6&domain=pdf
http://www.bioinformatics.leeds.ac.uk/labpages/softwares/
http://www.bioinformatics.leeds.ac.uk/labpages/softwares/
https://github.com/Sharlene/BDC
mailto:D.R.Westhead@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Sha et al. Genome Medicine  (2015) 7:64 Page 2 of 13
the pattern of gene expression, and where errors in dif-
ferentiation or maturation are reproducibly manifest in
cancers as aberrant patterns of gene expression [9]. Des-
pite this, transfer of gene expression signatures into clin-
ical practice has not proved straightforward [10, 11].
Different measurement technologies have emerged (e.g.
microarrays, RT-PCR and RNA-seq) but, until recently,
these have not been applicable to routine samples that
are mainly formalin fixed and paraffin embedded (FFPE)
in most centres. Furthermore, reproducibility between
laboratories has proved challenging [12]. Equally, contin-
ual improvements in methodology, although welcome,
raise the issue of transferability of signatures to newer
platforms and can frustrate the clinical need for robust
and fixed standards [13, 14]. Here we present a case
study in the transfer of gene expression classifiers from
the research literature into clinical practice.
We have adopted the example of Burkitt lymphoma

(BL). This is a highly proliferative neoplasm that occurs
sporadically in North America and European countries,
but also has a variant associated with HIV infection and
an endemic form common in Africa which is associated
with Epstein–Barr virus (EBV) [15]. The criteria used to
establish a diagnosis of BL have varied since its original
description based on morphologic grounds in the en-
demic form, but it is now accepted that it is associated
with translocation between the MYC oncogene and im-
munoglobulin gene [16], normally in the absence of
chromosomal translocations involving oncogenes associ-
ated with diffuse large B cell lymphoma (DLBCL)
[17, 18], and more recent studies have revealed further
commonly associated mutations [19–21]. This is a case
study of high clinical relevance, since treatment of BL
requires intense chemotherapy [e.g. R-CODOX-M/
IVAC; rituximab, cyclophosphamide, vincristine (known
as Oncovin), doxorubicin methotrexate, ifosfamide, eto-
poside (known as Vepesid) and cytarabine ( known as
Ara-C) [22], while in contrast DLBCL outcome is not im-
proved by intensification of chemotherapy and is treated
with a milder regime as first line therapy (e.g. R-CHOP;
rituximab, cyclophosphamide, doxorubicin (known as
hydroxydaunomycin), vincristine (known as Oncovin),
prednisolone) [23]. However, a group of cases which are in-
troduced as “B cell lymphoma, unclassifiable, with features
intermediate between diffuse large B cell lymphoma and
Burkitt lymphoma” [24] has received increased attention.
These are likely to share some but not all pathogenetic
features of classic BL, or arise as a result of alternative
primary molecular events that nonetheless deregulate
the common oncogenic pathways [25, 26]. This group
appears to respond poorly to either intensive treatment or
R-CHOP-like regimes [27–29], and the underlying mech-
anism remains largely unknown and the appropriate treat-
ment still needs to be established.
Two seminal studies [30, 31] introduced gene
expression-based classifiers to distinguish cases of BL and
DLBCL based on data sets from different array platforms.
Hummel and co-workers [31] adopted an approach
whereby the set of classic BL samples was systematically
extended on the basis of overall similarity in gene expres-
sion patterns to less clear cases. This semi-supervised ap-
proach using 58 genes effectively defined a new class
called ‘molecular Burkitt lymphoma’. On the other hand,
Dave and coworkers [30] based their supervised Bayesian
method on independent expert pathology assignment of
cases to the BL/DLBCL classes, and created a classifier
based on 217 genes. The two classifiers are thus different
in nature: they depend on relatively large gene sets with
limited overlap and can be viewed as different gene
expression-based definitions of BL.
Here, starting from the above work, we investigate op-

timal classification algorithms and gene lists to recapitu-
late the original classifiers, and by examining the
transferability of the optimal classifiers between data sets
we effectively compare the definitions of BL applied in
each data set and classifier. Our own clinical data are
based on RNA extraction from FFPE samples using the
Illumina DASL (cDNA-mediated Annealing, Selection,
extension and Ligation) technology, while the above
classifiers were based on RNA extracted from fresh-
frozen samples and different Affymetrix arrays. RNA in
FFPE samples is more degraded, and although experi-
mental protocols are improving, the data from this
source remain significantly more noisy, and the change
of measurement platform could have an equally signifi-
cant effect. Nevertheless, FFPE data are likely to be the
clinical reality for the foreseeable future, particularly in
diagnostic laboratories responsible for large geographical
areas with many hospitals. We investigate the produc-
tion of a classifier based on a reduced gene set that can
be effectively transferred between different gene expres-
sion measurement platforms in publicly available data
sets and our own clinical data, and make a preliminary
assessment of its likely clinical utility.

Methods
Data sets
The data sets used in this study are summarized in Table 1.
Five public data sets were downloaded from the Gene Ex-
pression Omnibus [32]. GSE4732 was split into two sub-
sets derived from different array platforms, here referred
to as GSE4732_p1 and GSE4732_p2. Classifier develop-
ment employed GSE4732_p1 and GSE4475, and the other
data sets were used in testing transferability of classifiers.
We also included 249 FFPE samples (GSE32918) from

a previous study [33], together with 93 samples from the
same platform Illumina DASL version 3 array and 250
samples from version 4 arrays in this study. Technical



Table 1 Data sets summary

GEO accession Group Samples Probes Platform

GSE4732_p1 Dave et al. [30] 54 BL, 249 DLBCL 2745 Custom Affymetrix
Lympho-Chip

GSE4732_p2 Dave et al. [30] 33 BL, 66 DLBCL 54,675 Affymetrix HG-U133
plus2.0

GSE4475 Hummel et al. [31] 44 mBL, 48 intermediate,
129 non-mBL

22,283 Affymetrix HG-U133A

GSE10172 Klapper et al. [56] 13 mBL, 9 intermediate,
14 non-mBL

22,283 Affymetrix HG-U133A

GSE26673 Piccaluga et al. [57] 13 eBL, 2 HIV-BL 54,675 Affymetrix HG-U133
plus2.0

GSE17189 Deffenbacher et al. [58] 4 HIV-BL, 13 HIV-DLBCL 54,675 Affymetrix HG-U133
plus2.0

HMDS 41 BL, 206 DLBCL clinically
diagnosed

24,526 Illumina WG-DASL
Version_3

HMDS 70 BL, 169 DLBCL clinically
diagnosed

29,377 Illumina WG-DASL
Version_4

eBL endemic BL, GEO Gene Expression Omnibus, HMDS Haematological Malignancy Diagnostic Service, HIV-BL HIV-related Burkitt lymphoma HIV-DLBCL HIV-related
diffuse large B cell lymphoma mBL molecular BL defined in corresponding paper
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replicates were assessed both within each platform and
between two platforms to examine reproducibility and
consistency. The quality of each sample was checked be-
fore further analysis and the details are described in
Additional file 1. The new samples analyzed have been
submitted to the Gene Expression Omnibus with acces-
sion number GSE69053.

Ethical approval
This study is covered by standard NRES (National Research
Ethics Service) ethics approval for Haematological
Malignancy Diagnostic Service (HMDS; St James Hospital,
Leeds) local cases and treatment was not modified as a con-
sequence of the study. The re-analyses of data from the
LY10 and RCHOP14/21 clinical trials are separately cov-
ered by each trial’s ethical approval. This research is fully
compatible with the Helsinki declaration.

Data preparation
Preparation was done in R. All Affymetrix data sets except
GSE4732_p1 were processed with the affy package [34]
from raw data, and expression summarization was done
with the rma algorithm [35] with quantile normalization.
Gene identifiers were mapped with hgu133a.db [36] and
hgu133plus2.db [37] packages. GSE4732_p1 was gener-
ated by an older custom array format and for this we used
normalized expression data and gene identifiers provided
by the authors. Pre-processing (including quality control)
and expression summarization for the Illumina data sets
was done with the lumi package [38] applying a vst trans-
formation [39] and quantile normalization. Where mul-
tiple probes represented the same gene, the expression
for the gene was summarized with the average value.
All gene symbols were then checked with HGNChelper
package [40] and updated to the latest approved symbol
if necessary.

Classifier performance assessment
Performance of classifiers was assessed using standard
measures (overall error rate, overall accuracy, precision
and recall within each class). Unless otherwise stated, per-
formance was assessed by tenfold cross-validation when
considering performance within a particular data set. We
also assessed transferability of classifiers by training on
one data set and testing on another. Further detail of these
processes is provided in the "Results" section.

Classification algorithms
We tested a total of ten algorithms, Bayes Net, Naïve Bayes,
libSVM, SMO, Neural Network, Random Forest, Function
Tree, LMT (logistic model tree), REP Tree and J48 pruned
tree within GSE4732_p1 and GSE4472, respectively, using
the Weka [41] machine learning tool. Our aim was not to
compare methods, but rather to find a method able to re-
capitulate to an acceptable level of accuracy the classifica-
tions within these data sets. All algorithms were thus given
default parameters (except to use 100 trees for the Random
Forest), and parameters were then subsequently optimized
just for the algorithm chosen for the remainder of the work.
Initial investigations of different algorithms were carried
out separately within each of GSE4732_p1 and GSE4475.
Both of these data sets are associated with a classifier
developed by the authors, and we used the gene lists from
these classifiers as initial feature sets for algorithms above.

Parameter optimization
We optimized parameters for one classification method,
the support vector machine (SVM) implemented in
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libSVM [42]. Four common kernels are implemented in
libSVM and we chose the most commonly used and rec-
ommended, the radial basis function (RBF). In this case
parameter optimization involves the kernel parameter γ
and the trade-off parameter c. We used the automatic
script easy.py provided in the libSVM for a parameter
grid search to select the model parameters: the search
range of c value was 2−5 to 215 with a step of 22, the
range of γ values was 23 to 2−15 with a step of 2−2 and
the cross-validation fold was 5 [43]. Note that parameter
optimization was carried out by cross-validation within
the training data, avoiding potential over-fitting that
could result from using the complete data set.

Probability calculation
In the case of the SVM classifier applied to our Illumina
data set, the BL probability is a posterior class probabil-
ity obtained from libSVM, employing an improved im-
plementation of Platt’s posterior probability function for
binary classification [44].

Classifier gene set comparison
Subsequent development of classifiers involved a num-
ber of gene lists derived from those used in the authors’
classifiers for GSE4732_p1 and GSE4475 by consider-
ation of issues such as availability of a gene expression
measure for the gene on all platforms, robustness to
over-fitting, and transferability to unknown data derived
from different measurement platforms, as detailed in
"Results" and "Discussion". In addition, we also tested
the ten genes [45] used in a recent classifier that em-
ploys data from the NanoString [46] platform.

Cross-platform normalization
Z-score, rank and two more sophisticated methods, XPN
and DWD [47, 48] implemented in the CONOR package
[49], were used to examine the effect of different cross-
platform normalization methods. Z-score normalization
operates for each gene independently, producing a nor-
malized expression value in each sample as z = (x − m)/s,
where x is the un-normalized expression value of the gene
Table 2 Numbers of genes in data sets and used in existing
classifiers

GSE4732_p1 GSE4475 Overlap

HGNC approved genes on platform 2411 12495 1913

Genes used in authors’ classifier 217 58 21

Classifier genes located in dataa 214 58 21

Classifier genes available in other data
setb

172 28 -

aWe were unable to locate all reported classifier genes in GSE4732_p1
bDave et al. [30] classifier genes available in GSE4475 and Hummel classifier
genes in GSE4732_p1
HGNC: HUGO Gene Nomenclature Committee, gene symbols from previous
studies are checked and updated by HGNChelper package
and m and s are the mean and standard deviation of x
over all samples. For rank normalization, r = R/N − 0.5 is
the normalized value, where R is the rank of the sample
with respect to the N other samples on the basis of the ex-
pression of the gene concerned. Z-score and rank
normalization have potential deficiencies, but also have
the advantage of being applicable to data from methods
such as RT-PCR and NanoString, which are designed to
measure the expression of only relatively small gene sets.

Software implementation
The developed classifier was implemented in the BDC
package using the R package mechanism [50], and is avail-
able from the authors. The package provides a list of op-
tions for classifier gene set, cross-platform normalization
method and data set to train the model along with reason-
able default settings.

Results
Comparison of data sets and existing classifiers
The two existing classifiers were developed within
GSE4732_p1 and GSE4475, respectively. Table 2 sum-
marizes the gene sets used in these classifiers, the total
numbers of genes measured on the corresponding plat-
forms and the overlaps of these gene sets. The two classi-
fiers use substantially different gene sets, with limited
overlap, and in neither case are expression measurements
of all classifier genes available on the other platform. It is
impossible, therefore, to test a straightforward re-
implementation of either classifier on the data sets that
were not used in its development. Our aim, therefore, was
to construct new classifiers and gene sets, based on those
already existing, which adequately recapitulate the results
of existing classifiers but are applicable to all data sets.

Recapitulation of existing classifications
We developed classifiers using feature sets correspond-
ing to the 214 gene list from the original classifier in
GSE4732_p1, and the 58 gene list from the original clas-
sifier in GSE4475. Figure 1 shows the performance of a
range of machine learning methods in both data sets
(for detailed figures see Table S1 in Additional file 2). In
GSE4732_p1 it is possible to achieve very low overall
error rates of around 1 %. In GSE4475 we investigated
two definitions of BL: BL probability assigned by the au-
thors as >0.95 (strict) and >0.5 (wide), assigning other
samples as DLBCL. Using the strict definition again very
low error rates are possible (<2 %). On the other hand
errors are larger with the wider definition, indicating
that the classes are less well defined in terms of gene ex-
pression when this approach is adopted, and arguing in
favour of using the stricter definition. Overall, given the
level of uncertainty in the actual classification of inter-
mediate cases, we consider that these results reproduce
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Fig. 1 Performance of different machine learning algorithms with two previous data sets. Overall error rates (tenfold cross-validation within the
data set GSE4732_p1, GSE4475_strict and GSE4475_wide, respectively) for the binary classification problem using a range of machine learning
methods (LibSVM, SMO, MultilayerPerceptron, Random Forest, Function Tree, LMT, BayesNet, NaiveBayes, J48 and REP Tree, all implemented in
Weka machine learning tool) with default parameters. In GSE4475 we consider two possible definitions of BL, strict (cases for which the authors
give a BL probability of >0.95) and wide (BL probability >0.5). Classifiers are tested with the gene sets employed in the original papers for these
data sets (214 genes for GSE4732_p1, 58 genes for GSE4475 strict and wide definition)
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the previous work at a level sufficient to support further
investigations. Based on relative performance, we chose
to use SVMs as implemented in libSVM [42] as our clas-
sifier method.

Optimization of SVM parameters and classifier gene list
selection
Motivated by the fact that no platform has gene expres-
sion measurements for all the genes used in either ori-
ginal classifier, and aiming to reduce gene lists where
possible because classifiers based on fewer features are
less complex and less susceptible to over-fitting, we next
sought to optimize the gene list for our classifier. At the
same time we investigated the effect of optimizing SVM
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Fig. 2 Performance of different gene sets built with libSVM algorithms.
GSE4732_p1, GSE4475strict and GSE4475wide, respectively) for binary cl
original refers to the gene sets used in Fig. 1; 21 genes are those used
are available in GSE4732_p1 and are part of the classifier used in GSE4
GSE4732_p1 and available in GSE4475; and 60 newly identified genes i
optimized parameters, respectively
parameters. We considered further gene lists based on
the existing classifiers: the 21 genes common to both ori-
ginal classifiers; the 28 genes for which measurements are
available in GSE4732_p1 and are part of the classifier used
in GSE4475; and the 172 genes that are part of the classi-
fier genes used in GSE4732_p1 and available in GSE4475.
A further list of 60 genes was newly identified by compar-
ing the differentially expressed genes of the high confidence
cases in each data set (which is 45 BL against 232 DLBCL
in GSE4732_p1, and 44 mBL (molecular BL defined by the
author)against 129 non-mBL in GSE4475; further details
are given in Additional file 1).
The results presented in Fig. 2 show that optimization of

SVM parameters results in a modest (up to around 1 %)
ide GSE4732_p1
optimized

GSE4475strict
optimized

GSE4475wide
optimized

-gene 60-gene 172-gene

Overall error rates (tenfold cross-validation within the data sets
assification problems using the gene sets described in the text:
in both previous classifiers; the 28 genes for which measurements

475; the 172 genes that are part of the classifier genes used in
n this article. Classifiers were built with libSVM under default and
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increase of accuracy over the use of default parameters.
More importantly they show conclusively that classifiers
based on small gene lists perform at least as well as their
larger counterparts. The 28 gene list matches the perform-
ance of the full list in both data sets with only insignificant
reductions in accuracy and was selected for future work.
We also tested a recently published list of ten genes [45]
developed with NanoString data. This list is insufficiently
represented on the platform used in GSE4732_p1 with only
six genes. We found it to perform similarly to our 21/28
gene lists in GSE4475 (Table S2 in Additional file 2), but in
the absence of applicability to other test data sets we did
not consider this gene list further and the five gene lists
used to test the classifiers are provided in Additional file 3.

Transfer of classifiers between data sets
Normalization of data to produce an expression measure
that is comparable between platforms is an essential first
step in producing transferable classifiers. We compared
four cross-platform normalization methods, Z-score, Rank,
XPN and DWD. The Z-score and Rank methods are the
least sophisticated, but could be applied to data for small
numbers of genes measured by most technologies. The
other methods are more sophisticated and there is evidence
that they perform better in some applications [32, 49], but
they require measurements of many genes, such as those
Table 3 Error rates for classifiers trained on one data set and tested

BL error ratea

Normalization Z-score Rank XP

Train GSE4732_p1: test on other data sets below

GSE4475 (strict)b 0.09 0.09 0.0

GSE4732_p2 0.182 0.212 0.1

GSE10172 (strict)b 0.231 0.308 0.3

GSE26673 eBL 0.615 0.692 0.8

GSE26673 and GSE17189 HIV-related 0.833 1 1

Train GSE4475 strict BL definition: test on other data sets below

GSE4732_p1 0.04 0.04 0.0

GSE4732_p2 0.303 0.333 0.2

GSE10172 (strict) 0.154 0.154 0.3

GSE26673 eBL 0.615 0.538 0.7

GSE26673 and GSE17189 HIV-related 0.833 0.833 1

Train GSE4475 wide BL definition: test on other data sets below

GSE4732_p1 0.02 0.02 0.0

GSE4732_p2 0.06 0.03 0.0

GSE10172 (strict) 0.078 0.078 0

GSE26673 eBL 0.154 0.154 0.3

GSE26673 and GSE17189 HIV-related 0.5 0.333 0.8
aError rate is (1 − Recall) value for the indicated class [Recall = True positives/(True
bThe sample in this data set is assigned to mBL, intermediate, non-mBL categories;
non-mBL together as the DLBCL class. eBL endemic BL, mBL molecular BL
typically produced by microarrays. Table 3 shows the re-
sults of training a 28 gene SVM classifier on either
GSE4732_p1 or GSE4475 and testing it on other data sets
using different data normalization methods. All methods
give similar results under the same training and test condi-
tions, indicating that it is of no disadvantage to adopt one
of the less sophisticated methods.
First of all we considered the simple comparison of clas-

sifiers trained on one data set (GSE4732_p1 or GSE4475)
and tested on the other. Table 3 shows that a classifier
trained on GSE4732_p1 performs reasonably when tested
on GSE4475 with the strict BL definition in the latter data
set, giving error rates (recall) around 9 % for BL and <2 %
for DLBCL. Conversely, training on GSE4475 (strict)
and testing on GSE4732_p1 again gives good perform-
ance (errors around 4 % for BL and 1 % for DLBCL),
indicating the classifier adopted on GSE4732_p1 corre-
sponds to a BL criterion similar to the GSE4475 strict
stratification. As would be expected, training with the
wide definition of BL in GSE4475 reduces the BL error
rate observed when testing on GSE4732_p1 to 2 % with
a corresponding increase of the DLBCL error rate to
around 5 %.
The performance of the above classifiers on other avail-

able data sets is also reported in Table 3. GSE4732_p2 is
formed from a subset of the samples in GSE4732_p1 but
on other public data sets

DLBCL error ratea

N DWD Z-score Rank XPN DWD

9 0.09 0.017 0.017 0.006 0

52 0.152 0 0 0 0

85 0.308 0 0 0 0

46 0.384

0.667 0 0 0 0

4 0.04 0.012 0.008 0.012 0.012

73 0.273 0 0 0 0

08 0.154 0 0 0 0

69 0.538

0.833 0 0 0 0

2 0.02 0.04 0.05 0.06 0.07

3 0.03 0.015 0.015 0.015 0.015

0.078 0.043 0.043 0 0.043

08 0.154

33 0.5 0 0 0 0

positives + False negatives)]
here we set the strict BL definition as the standard which put intermediate and
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with measurements from a different array platform
(Table 1). It is surprising, therefore, that the classifier
trained on GSE4732_p1 performs relatively poorly on this
data set (BL error rates 15–21 % depending on
normalization method), and the classifier trained on
GSE4475 performs worse (BL error rates of 27–33 %).
This effect is explored more thoroughly in Fig. 3 (top
panel), which illustrates how different definitions of BL in
the training data (GSE4475) affect the classifier. It is clear
that with respect to this data set, the two consistent classi-
fiers developed above adopt a narrower definition of BL,
assigning cases with a weaker BL signal to the DLBCL
Fig. 3 Performance of the classifier trained with different BL definitions with a
Classification results of GSE4732_p2, GSE10172, GSE17189 and GSE26673 whe
the 28 classifier genes showing the Z-score normalized expression values. The
class probability given to each sample by the original classifier; for example, tr
over 0.9 in GSE4475 to train the classifier, and Strict and Wide refer to the stric
bar shows both the class label and BL probability from the original data set fo
strict data set, the classifier has a strict definition of BL similar to with GSE4732
endemic BL (eBL) and HIV-related BL cases (HIV-BL GEO Gene Expression Omn
category, and that a better classification result can be ob-
tained by using a wider BL definition in the training set.
GSE10172 is a smaller data set generated by the

group (Klapper, Molecular Mechanisms in Malignant
Lymphomas Network Project of the Deutsche Krebshilfe)
who produced GSE4475. Classifiers trained on either
GSE4475 (strict) or GSE4732_p1 produce zero error rate
for DLBCL cases but higher errors for BL: however, this is
a relatively small data set and these findings may not be
significant. Nevertheless, it is again the case that the clas-
sifier trained on the wide definition of BL in GSE4475
does produce a more accurate classification in GSE10172
heatmap of Z-score normalized 28 classifier gene expression values.
n the classifier was trained by a variety of thresholds, with a heatmap of
training set threshold is adjusted according to data set GSE4475 and the
aining set Th = 0.9 means only include the samples with a confidence
t and wide definition used previously. In test set GSE10172, the GEO-Class
r each sample. The figure shows that when trained with the GSE4475
_p1 but not very effective in recognizing BLs in GSE4732_p2 nor
ibus
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(Fig. 3, bottom left panel), according to the classification
given in that data set.
GSE17189 and GSE26673 are different in character,

containing endemic BL (eBL) and HIV-related BL cases
in contrast to the sporadic cases from the other data
sets. Table 3 shows that the two classifiers trained with
strict definitions of BL perform poorly with this data (BL
error rate > 50 %). The lower right panel of Fig. 3 shows
that cases of eBL have a similar gene expression pattern
to the sporadic cases but generally with a weaker signal,
explaining the high error rates from the strictly trained
classifiers and the improvement in this when a wider
definition is adopted. Many HIV-related BL cases on the
other hand appear to have gene expression patterns re-
lated at least as strongly to DLBCL cases as they are to
sporadic BLs and do not classify as BL with any choice
of training data. Although sharing many pathologic fea-
tures with sporadic BL, the eBL and HIV-related BL
cases do have a distinct pathogenesis and gene expres-
sion. Some classifiers can recognize eBL seemingly well,
but we suggest that training these classifiers on data for
sporadic BL and applying it to eBL or HIV-related BL
would not be advised. Given the distinct clinical settings
of these disease variants, this does not pose a significant
issue in relation to development of an applied gene
expression-based classification tool.
Fig. 4 Classification consistency of the replicates from different platforms. T
the data are normalized by Z score, Rank, DWD, and XPN methods, respect
in only one version or has replicates in each version) of the corresponding
data, orange dots refer to micro-dissected tissue, and green dots are norm
To conclude, these studies show that despite using
substantially different methods and genes, classifications
within GSE4732_p1 or GSE4475 represent a largely con-
sistent definition of BL that can be used as a basis for a
classifier that uses fewer genes and transfers well be-
tween the two data sets. While this classifier does not
apparently perform as well on other smaller and more
diverse data sets, inconsistencies are largely related to
intermediate cases and depend on where the boundary
between classes is placed in a spectrum of cases in the
training data. A similar test of the training set effect on
GSE4475_p1 is shown in Additional file 4.

Illumina DASL data sets
Following the above investigations, we trained a 28
gene-based SVM, the BL and DLBCL classifier BDC, on
the GSE4475 data set with a BL probability threshold of
0.95, and applied it to our Illumina data sets (Table 1)
using several cross-platform normalization methods.
Despite the results on the smaller data sets above indi-
cating some advantage to a wider definition of BL, we
preferred in this case the stricter definition (p = 0.95)
because of its stronger consistency within and between
the two larger data sets that were used in training stud-
ies. Of 592 samples in the version 3 and version 4 data
together, 556 (93.9 %) have the same classification
op: the variance of all replicate samples from the same patient when
ively. Bottom: the BL probability of each replicate (either has replicates
patient: bigger dots indicate version 4 data, smaller dots version 3
al dissected tissue
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independent of normalization methods. For some cases
the data sets contain replicates; 124 cases have a repli-
cate on version 3 and version 4 together (including cases
replicated within each version and some cases that are
not replicated within a version but that have data from
both versions). The variance of the BL probability of the
total 124 replicates is given in Fig. 4 (top). Again this
shows that if replicates show large variability, this is largely
independent of normalization method. The Z-score
normalization produces the smallest overall variance, and
this was used subsequently.
The detailed results for all replicated cases are shown

in Fig. 4 (bottom). This shows that the cases where the
BL probability is most variable between replicates tend
to be intermediate cases with BL probabilities closer to
0.5. It is also clear that version 4 data (with improved
initial mRNA reverse transcription) generally give a
stronger BL signal (BL probabilities closer to 1.0), prob-
ably reflecting better experimental treatment of BL sam-
ples, which, by their very nature, are more prone to
significant degradation. Finally, it is clear that some of
the larger variability between replicates occurs when one
replicate is a tissue micro-dissection. Micro-dissection
was performed on a subset of tumours following mor-
phological inspection, with the aim of enriching for
tumour content/and or the most adequately fixed area
of the tissue. This would be expected to give stronger
tumour-specific expression, as shown from previous ex-
periments [33], and leads to a clearer classification of BL
in the majority of cases.

Comparison of original clinical diagnosis with gene
expression-based classification
Our final BDC classification was based on reducing the
Illumina data set to a single replicate for each case,
choosing version 4 data in preference to version 3,
micro-dissected tissue in preference to usual sampling,
and otherwise choosing the newest array data. This gave
a classification for 403 samples. The current clinical
diagnosis of these samples is based on a range of immu-
nophenotypic and molecular (fluorescent in situ
hybridization, FISH) data as previously reported [28]
and the agreement of this with the gene expression-
based classification is shown in Table 4, where DLBCL
diagnosed cases with a known chromosomal re-
arrangement of the MYC gene are considered separately.
Table 4 Classification correlation with current clinical diagnosis

Classified by BDC

BL DLBCL All

Diagnosed BL 61 (85 %) 11 (15 %) 72

DLBCL(MYC-rearranged) 13 (28 %) 34 (72 %) 47

DLBCL 10 (4 %) 274 (96 %) 284
Generally there is a high level of agreement between the
two diagnoses (85 % of clinically diagnosed BL cases clas-
sified as BL, and 96 % of clinically diagnosed DLBCL cases
classified as DLBCL). Of the 11 clinical BL cases classified
as DLBCL by BDC, three had classic BL characteristics,
indistinguishable on conventional criteria from BL, but
the remainder of the group included a high level of aber-
rant cases, with non-classic MYC rearrangement and/or
discrepancies in immunophenotype. Of the ten diagnosed
DLBCL cases predicted as BL, three showed a BL pheno-
type without MYC rearrangement. We also looked further
at the small group diagnosed as DLBCL but with MYC
rearrangement detected. This is a group of particular
interest, many of which are now classified as “lymphoma
with features intermediate between BL and DLBCL”, and
though many studies have reported a poor prognosis,
currently there is no specific treatment for this group
[51–53]. In our data set (Table 5), 35 R-CHOP-treated
cases in this group were classified into ten BL plus 25
DLBCL by BDC: the survival rate (remained alive or a
complete remission from the treatment; for details see
Table 5) of each class was 30 % and 68 %, respectively. Al-
though these numbers are small, the survival difference
observed suggests some advantage to gene expression
classification that might eventually be examined in more
detail in future trials. We note also that the survival rate
(68 %) observed for intermediate cases classified as
DLBCL by BDC is not significantly different from that
for DLBCL as a whole (Kaplan-Meier, p = 0.4 compared
with the R-CHOP-treated DLBCLs without MYC re-
arrangement. Full information is provided in the Gene
Expression Omnibus data set).

Discussion
The work presented here provides an important step in
establishing an optimized, parsimonious and open access
gene expression-based classifier for BL. By using the re-
sults of one classifier and its associated data set for
training, and the other as test data, we have shown that
two substantially different classifiers in the research lit-
erature have a high degree of concordance and that their
results can be recapitulated, at least within the level of
uncertainty associated with intermediate cases. We have
also shown that this unified classifier can be successfully
applied to other public data sets and to data from rou-
tine clinical samples. In the context of our own clinical
data, the classifier shows a high degree of concordance
with the original diagnosis.
At a technical level, the reduction of the gene set com-

pared with the original classifiers is a substantial advan-
tage, making the classifier simpler and opening the
possibility of using other measurement technologies
such as quantitative PCR or NanoString in clinical appli-
cations. In addition, our detailed exploration of different



Table 5 Detailed clinical information of 47 MYC-rearranged DLBCL cases

Sample IDa BL probb Treatmentc Survival (years)/
responsed

BCL2, BCL6
rearrangement

13 cases with MYC-rearrangement classified as BL by BDC

HMRN_52_v3_old 0.52 R-CHOP Alive (4.46) BCL2 rearranged

HMRN_30_v4_new 0.617 R-CHOP Alive (1.9) BCL2, BCL6 rearranged

RCH_125_v4_new 0.75 R-CHOP Complete remission BCL2, BCL6 rearranged

RCH_93_v4_new 0.665 R-CHOP Persistent disease BCL2 rearranged

HMRN_64_v4_old 0.716 R-CHOP Died (2.14) BCL2 rearranged

LY_43_v4_rep 0.662 R-CHOP Died (0.45) BCL2, BCL6 rearranged

HMRN_107_v4_old 0.745 R-CHOP Died (0.63) BCL2 rearranged

HMRN_34_v4_new 0.738 R-CHOP Died (0.35) BCL2 rearranged

HMRN_8_v4_old 0.561 R-CHOP Died (0.95) BCL2 rearranged

HMRN_74_v4_old 0.552 R-CHOP Died (6.19) BCL2 rearranged

LY_3_v4_new 0.777 CODOX-M/IVAC Died (0.08) BCL2 rearranged,
BCL6 normal

HMRN_45_v4_rep 0.674 Unknown Unknown BCL2 rearranged

HMRN_56_v4_rep_2 0.711 Unknown Unknown BCL2, BCL6 rearranged

34 cases with MYC-rearrangement classified as DLBCL by BDC

HMRN_49_v4_new 0.029 R-CHOP Alive (1.08) BCL6 rearranged

HMRN_47_v4_old 0.017 R-CHOP Alive (6.40) BCL6 rearranged

HMRN_112_v4_old 0.07 R-CHOP Alive (6.31) BCL6 rearranged

HMRN_52_v4_new 0.126 R-CHOP Alive (1.22) BCL2 amplified

HMRN_35_v4_new 0.168 R-CHOP Alive (1.25) BCL2 rearranged

HMRN_37_v4_new 0.008 R-CHOP Alive (4.59) BCL2 rearranged

HMRN_53_v4_old 0.032 R-CHOP Alive (4.85) BCL2 rearranged

HMRN_55_v4_new 0.136 R-CHOP Alive (3.9) BCL2 rearranged

HMRN_49_v4_old 0.01 R-CHOP Alive (6.06) BCL2 rearranged

HMRN_132_v3_old 0.023 R-CHOP Alive (6.86) BCL2, BCL6 normal

LY_35_v4_rep 0.016 R-CHOP Alive (1.55) BCL2 normal, BCL6
rearranged

LY_40_v4_rep 0.037 R-CHOP Alive (1.59) BCL2 normal, BCL6
rearranged

RCH_134_v4_new 0.086 R-CHOP Complete remission BCL6 rearranged

RCH_133_v4_new 0.148 R-CHOP Complete remission BCL2 rearranged

RCH_122_v4_new 0.19 R-CHOP Complete remission BCL2 rearranged

RCH_76_v4_new 0.162 R-CHOP Complete remission BCL2, BCL6 normal

RCH_120_v4_new 0.375 R-CHOP Complete remission BCL2, BCL6 normal

RCH_109_v4_new 0.008 R-CHOP Persistent disease (died) BCL6 rearranged

LY_37_v4_rep 0.071 R-CHOP Died (0.95) BCL2 rearranged,
BCL6 normal

LY_17_v4_rep 0.15 R-CHOP Died (1.04) BCL2, BCL6 normal

HMRN_46_v4_rep 0.245 R-CHOP Died (0.49) BCL2 rearranged

HMRN_104_v3_old 0.009 R-CHOP Died (0.39) BCL2, BCL6 normal

HMRN_76_v4_old 0.195 R-CHOP Died (0.66) BCL2, BCL6 normal

HMRN_42_v4_new 0.088 R-CHOP Died (1.81) BCL2, BCL6 normal

HMRN_129_v4_old 0.02 R-CHOP Died (0.37) BCL2, BCL6 normal
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Table 5 Detailed clinical information of 47 MYC-rearranged DLBCL cases (Continued)

LY_21_v4_rep 0.5 CODOX-M/IVAC Died (0.14) BCL2 rearranged,
BCL6 normal

HMRN_172_v4_old 0.034 No active treatment Died (0.02) BCL2 rearranged

HMRN_48_v4_rep 0.015 No active treatment Died (1.8) BCL2 rearranged

HMRN_5_v3_old 0.082 No active treatment Died (0.18) BCL6 rearranged,
BCL2 amplified

HMRN_23_v4_new 0.015 No active treatment Died (0.09) BCL2, BCL6 normal

HMRN_44_v4_rep 0.313 Died before treatment Died (0.04) BCL2 rearranged

HMRN_54_v4_rep 0.216 Died before treatment Died (0.03) BCL2 rearranged

HMRN_70_v4_rep 0.111 R-CHOP Unknown BCL6 rearranged

HMRN_18_v4_new 0.093 Unknown Unknown BCL2, BCL6 rearranged
aSamples are collected from two clinical trails as well as local cases in the Haematological Malignancy Diagnostic Service (HMDS; St James Hospital, Leeds). Sample
IDs starting with RCH are records from R-CHOP-treated trials and those starting with LY [28] are records from a dose-modified CODOX-M/IVAC trial. The rest of the
samples starting with HMRN are local patients from the HMDS database. Samples labelled with the _old suffix are cases submitted to the Gene Expression
Omnibus (GEO) in previous studies, and those labeled with the _new suffix are cases not in the GEO database yet
bBL prob is the Burkitt lymphoma probability generated by BDC (Burkitt lymphoma and diffuse large B cell lymphoma classifier developed in our work)
cR-CHOP is usually used to treat DLBCL; CODOX-M/IVAC is a treatment usually for BL or BL-like patients
dIn R-CHOP trials, all patients are evaluated with treatment response and this is used in the study
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training sets is noteworthy, since classifiers developed so
far have largely been trained and tested within single
data sets. Clearly the output of a classifier for borderline
cases is critically dependent on the labelling of similar
cases in the training data: our study maps the effect of
changing training classification criteria in detail, and
highlights differences in the classification of borderline
cases between different data sets when examined in the
context of gene expression criteria. Our final decision
was to train the classifier on a two-way definition of BL
based on the original class of GSE4475, but this never-
theless assigns fewer cases as BL than indicated in some
other public data sets.
Other recent work in the field has also highlighted the

possibility of using reduced gene sets [45, 54] for classifi-
cation and also paraffin embedded samples, in these cases
using data from the NanoString platform, which measures
expression of a user-defined gene panel. It is an open
question whether clinical use is better served by genome
scale measurements (e.g. Affymetrix or Illumina arrays,
RNA-seq) for each case, or possibly more precise mea-
surements of just those genes needed for classification.
However, the work reported here relies on genome scale
measurements provided in publicly available data sets: this
enabled our detailed comparison of different classifiers
and their transferability, and the production of a consen-
sus. This is not possible in general with NanoString data
sets, since they seldom contain all the genes required by
other classifiers. Our approach has been to leverage as
much value as possible from existing data sets and previ-
ous classification work. We would support genome scale
data generation from clinical samples in the future be-
cause it is of much greater utility in research and in the
detailed comparison of competing methodologies.
Dependence on training data highlights the underlying
difficulty in this and many similar studies, which is the
lack of a ‘gold standard’ against which to evaluate new
classifiers. Even though disease categories like BL and
DLBCL have developed over many years with a variety
of phenotypic and molecular diagnostic criteria, there
are still a significant number of cases which are complex
and neither expert pathological assessors nor recent mo-
lecular classifiers can effectively distinguish them. An al-
ternative evaluation is to examine survival separation or
treatment response, which is the primary clinical con-
cern, and we used our own clinical data to examine out-
come on the same treatment for cases where gene
expression classification disagreed with the original diag-
nosis. Such discordant cases are relatively few even in a
large data set, and the next step will be to make this
evaluation in more cases as they become available. How-
ever, it is important to note that the treatment options
in the setting of B-cell malignancies are likely to evolve
at a high rate in the near future, and thus the use of clin-
ical outcome with currently conventional therapy is
likely to be an unstable parameter against which to as-
sess the value of classification.
Our decision to develop a binary classifier for BL ver-

sus DLBCL, instead of introducing a third intermediate
class, is related to the issues described above. Since there
are only two main treatment regimes, a third class is not
clinically useful. We prefer a classifier that makes a deci-
sion one way or the other on intermediate cases, bearing
in mind that uncertainty is reflected in the associated
class probabilities. It would be naïve to suggest that such
a classifier could be the sole basis for treatment deci-
sions, but it can effectively add to the weight of evidence
a clinician might consider.
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More recent findings have indicated new genetic dis-
tinctions between BL and DLBCL [20, 21, 55]. It remains
an open question whether the diseases are better distin-
guished by these or a gene expression phenotype. How-
ever, it seems likely that a combination of both information
sources as the basis of future classifiers could lead to in-
creased robustness in the context of heterogeneous diseases
and the inevitable noise associated with all measurements
on clinical samples.
We have previously developed an applied gene

expression-based classifier for the separation of DLBCL
cases into so-called “cell of origin” classes in samples
derived from FFPE material [33]. This tool is cur-
rently being applied in a routine clinical setting in
the context of a phase 3 clinical trial, and the BDC
tool developed in this work could be applied with
this to provide a more complete diagnostic pathway
in routine clinical practice.

Conclusions
The identification of cases of BL is clinically critical.
Classic cases of this disease are treated effectively with
intense regimens but not with the standard treatment
for DLBCL. However, an intense regimen is more costly,
less convenient and unsuitable for weaker patients who
may not withstand the toxic challenge. Intermediate
cases therefore represent a significant difficulty. Our
data show that it would be naïve to suggest that gene
expression-based classification can solve this problem,
but that it does have a potential role to play. We suggest
that in cases with a standard diagnosis of DLBCL, gene
expression could be used alongside other evidence and
phenotypic features in deciding whether to treat with
more intensive therapy. Future work should evaluate this
suggestion, alongside the incorporation of genetic data
in classification.

Additional files

Additional file 1: Additional methods on gene selection and quality
checking.

Additional file 2: Additional tables of tested classifier results.

Additional file 3: Gene sets tested in different classifiers.

Additional file 4: Performance of the classifier trained with
different BL definitions tested on GSE4732_p1 with a heatmap
of Z-score normalized 28 classifier gene-expression values. The
training set threshold is adjusted according to data set GSE4475 and
the class probability given to each sample by the original classifier;
for example, training set Th=0.9 means only include the samples that
have a confidence over 0.9 in GSE4475 to train the classifier, and
Strict and Wide refer to the strict and wide definition used previously.
The GSE4475 (strict) trained classifier classifies cases similar to the
original category in the paper, while other training sets would
classify a small group of DLBCL cases as BL. However, the heatmaps
of those cases exhibit similar expression patterns as classic BL,
suggesting these are intermediate cases with less confidence for
which class they belong to.
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