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Abstract

Hybridization is observed frequently in birds, but often it is not known whether the hybrids are fertile and if backcrossing occurs.
The breeding ranges of the great reed warbler (Acrocephalus arundinaceus) and the clamorous reed warbler (A. stentoreus)
overlap in southern Kazakhstan and a previous study has documented hybridization in a sympatric population. In the present
study, we first present a large set of novel microsatellite loci isolated and characterised in great reed warblers. Secondly, we
evaluate whether hybridization in the sympatric breeding population has been followed by backcrossing and introgression.
We isolated 181 unique microsatellite loci in great reed warblers. Of 41 loci evaluated, 40 amplified and 30 were polymorphic.
Bayesian clustering analyses based on genotype data from 23 autosomal loci recognised two well-defined genetic clusters
corresponding to the two species. Individuals clustered to a very high extent to either of these clusters (admixture proportions
$0.984) with the exception of four previously suggested arundinaceus–stentoreus hybrid birds that showed mixed ancestry
(admixture proportions 0.495–0.619). Analyses of simulated hybrids and backcrossed individuals showed that the sampled birds
do not correspond to first–fourth-generation backcrosses, and that fifth or higher generation backcrosses to a high extent
resemble ‘pure’ birds at this set of markers. We conclude that these novel microsatellite loci provide a useful molecular
resource for Acrocephalus warblers. The time to reach reproductive isolation is believed to be very long in birds, approximately
5 Myrs, and with an estimated divergence time of 2 Myrs between these warblers, some backcrossing and introgression could
have been expected. However, there was no evidence for backcrossing and introgression suggesting that hybrids are either
infertile or their progeny inviable. Very low levels of introgression cannot be excluded, which still may be an important factor as
a source of new genetic variation.
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Introduction

Hybridization and introgression can lead to the creation of

novel genotypes and phenotypes and are therefore important

processes in the evolution of animals and plants [1,2]. Hybridizing

species and hybrid zones provide excellent opportunities to

examine evolutionary processes such as adaptation, gene flow

and, ultimately, speciation [3–6]. Determining the degree and

pattern of introgressed genetic material between recently diverged

species may be particularly interesting from an evolutionary point

of view, since they typically show incomplete reproductive

isolation.

Studies of hybrid zones have indicated that natural hybridiza-

tion is most likely to take place in intermediate habitats, which are

often found at the ecological limits of the species’ distributional

ranges, and where both taxa are found in close proximity to each

other [4]. If some of the interspecific matings lead to fertile first-

generation (F1) hybrids, then there is a possibility that these will

backcross with at least one of the parental genotypes, with

introgression as a consequence. If the resulting backcrossed

individuals subsequently mate with the most similar parental

genotype, novel genes and gene complexes can be particularly

rapidly introduced into the new genetic background [7]. In some

cases, stable and long-lasting hybrid zones are formed as a

consequence of spatial range overlap between two species [8–10].

However, another possible scenario is that one of the two species,

or possibly even the new hybrid cross, becomes more successful

and displaces one or both of the original taxa [11].

In birds, several well-characterised hybrid zones are known, e.g.

between carrion and hooded crow (Corvus corone ssp.) [12], wood

warblers of the genus Denroica [13], and Darwin’s finches (Geospiza

spp.) [14]. Avian hybridization seems to be quite commonly

occurring when two related species meet and one of them is rare

[15,16]. In such situations, individuals that remain unpaired might

choose heterospecific mates. Alternative hypotheses postulate that

hybridizing females are attracted to heterospecific males when

these are larger in size than the conspecific males, or that

heterospecific song and plumage characteristics sometimes act as

supernormal mate choice stimuli [17]. Hybridization might also

result from general mistakes in mate recognition [17].

The great reed warbler (Acrocephalus arundinaceus) and the

clamorous reed warbler (A. stentoreus) are closely related passerines

in the family Sylvioidea [18]. They are similar in morphology and

behaviour, and have partly overlapping breeding ranges in the
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Middle East and southern Central Asia [19,20]. The great reed

warbler is a long-distance migrant throughout its range, whereas

clamorous reed warblers are either sedentary or perform a short-

distant migration. Morphologically the two species are distin-

guished most easily on differences in wing characters (length and

shape) [19]. In addition, males are easily distinguished by their

song: the great reed warbler has a variable and high-pitched song,

whereas the clamorous reed warbler has a monotone song of low

frequency ([19]; B. Hansson, personal observation). In southern

Central Kazakhstan, great reed warblers (subspecies A. a. zarudnyi)

are at their south-eastern range limit, whereas clamorous reed

warblers (subspecies A. s. brunnescens) are at their northern range

limit [19,20]. In this region, the clamorous reed warbler has

expanded its range northwards during the last three decades, with

increasing numbers in the newly colonized areas [21]. Currently,

the breeding ranges of the two species overlap over a zone

50061400 km wide and several sympatric breeding populations

are known [20,21]. We have previously detected that viable

hybrids between these two species occur in a sympatric breeding

population in Kazakhstan [21]. Birds with intermediate morphol-

ogy were identified as hybrids: four of the examined individuals

had intermediate wing characteristics and, based on one

mitochondrial locus (the control region) and one nuclear

microsatellite locus (Ase50), carried genetic material from both

parental species [21]. It is not known, however, whether the

hybrids were fertile and if backcrossing to either of the parental

population occurs (cf. [22]).

In the present study, we evaluate whether ongoing hybridization

in the sympatric breeding population in Kazakhstan has been

followed by backcrossing and introgression of genetic material

between the great reed warbler and the clamorous reed warbler.

For this purpose, we isolated novel microsatellites in the great reed

warbler, and evaluated a subset of them for amplification success

and degree of polymorphism. We then genotyped a few already

identified hybrids and a larger number of individuals characterised

as either pure great reed warbler or pure clamorous reed warbler

based on morphology, at a set of autosomal microsatellite loci.

Bayesian clustering analyses [23] were applied aiming at

distinguishing hybrids and backcrosses in the population (cf.

[24,25]). Furthermore, we created simulated hybrid and backcross

genotypes to understand the expected genetic signature of

hybridization and introgression. We conclude that our novel

microsatellites provide a useful genetic resource for these warblers,

and that there is no evidence for backcrossing and introgression in

the study population.

Materials and Methods

Study species, field work and DNA extraction
Great reed warblers breed in lakes and marshes throughout the

Eurasia and migrate to spend the winter in Africa south of the

Sahara [19]. Currently, two subspecies are recognised, A. a.

arundinaceus in the western part of the range and A. a. zarudnyi in the

east. The species is facultatively socially polygynous [19,26].

Habitat requirements of the closely related clamorous reed warbler

are similar to those of the great reed warbler, although this species

is also found in less vegetated wetlands. Four subspecies are

distinguished of which A. s. brunnescens occurs in southern Central

Asia. This subspecies performs a short-distance migration mainly

to the Indian sub-continent, whereas other subspecies are

sedentary [19,27]. Great reed warblers and clamorous reed

warblers differ in length and structure of the wings and there

are also measurable differences in bill-head size and tail length

[19,21]. Some plumage differences occur. For example, the great

reed warbler is greyish brown on the mantle, whereas the

clamorous reed warbler is buffish brown.

We studied great reed warblers (A. a. zarudnyi) and clamorous

reed warblers (A. s. brunnescens) at Stone Lake (42u519N, 70u589E)

and Kremenevskyi pond (42u359N, 70u399E), located 39 km apart

in southern Central Kazakhstan, where they co-occur with a total

population size of approximately 500 and 40 territorial males,

respectively [21]. The birds arrive to this region from mid-April to

early May, clamorous reed warblers about a week ahead of the

first great reed warblers [28]. Both species prefer to breed in reed

beds and their territories are found side by side; in dense breeding

populations the territories of con- and heterospecific males are

often less than 10 m wide (B. Hansson, pers. obs.). During the

period 12–19 May 2001, we captured, ringed and measured as

many birds as possible; initially at Kremenevskyi pond and then,

to increase the number of examined birds, also at Stone Lake.

Most individuals were captured in stationary mist nets in the

centre of the breeding localities. A few birds (six great reed

warblers and one hybrid) were captured in mist nets within their

territories using song play back. We examined 30 great reed

warblers, 215 clamorous reed warblers and four putative hybrids.

At examination, a small amount of blood (,25 ml) was taken

from the brachial vein of 56 birds (29 great reed warblers, 23

clamorous reed warblers and 4 putative hybrids). Blood samples

were stored in SET buffer (0.15 m NaCl, 0.05 m Tris, 0.001 m

EDTA). Genomic DNA was extracted using a standard phenol/

chloroform protocol [29]. In a previous study [21], hybrids had

been verified by genotyping at a Z-linked microsatellite marker

(Ase50 [30]), the species identity of the mother had been verified by

sequencing a part of a the mitochondrial control region (using the

primers BCML4 and 12SH1 [31]), and the sex of the birds had

been identified by amplifying a Z- and W-linked locus (CHD1Z/W

using the primers 2550F and 2718R [32]).

Microsatellite isolation
A microsatellite-enriched library was constructed from a single

female ‘pure’ great reed warbler sampled at Lake Kvismaren,

Sweden (see e.g. Hasselquist 1998 [26]). The library was

constructed at NERC Biomolecular Analysis Facility at the

University of Sheffield. The method of Armour et al. [33] was

used and the MboI fragments were enriched separately for the

following di- and tetra-nucleotide microsatellite motifs: (GT)n,

(CT)n, (GTAA)n, (CTAA)n, (TTTC)n and (GATA)n and their

complements, which had been denatured and bound to magnetic

beads following Glenn & Schable [34]. Transformant colonies

were not screened for the presence of a repeat region but were

directly sequenced by the NERC Biomolecular Analysis Facility at

the University of Edinburgh. Clones were sequenced in the

forward and reverse orientation and a consensus sequence created.

A total of 181 unique great reed warbler microsatellite sequences

were isolated (EMBL accession numbers: FM878097–FM878277;

Table S1). The location of these loci on the zebra finch (Taeniopygia

guttata) genome assembly (tgu3.2.4, build 1.1; [35]), based on BLAST

analyses (E-value,1E-10), is provided in Table S1 and illustrated in

Figure S1. PCR primers were successfully designed for most of the

181 loci (Table S2) using PRIMER3 [36], and 41 loci were tested for

amplification and polymorphism in four unrelated great reed warbler

individuals from Lake Kvismaren (Table S2). All loci were PCR-

amplified using Qiagen Multiplex PCR kit (Qiagen, Ltd.). The

following PCR conditions were used: pre-heating for 95uC for

15 min, then 35 cycles at 94uC for 30 s, annealing temperature (Ta)

for 90 s, 72uC for 60 sec, followed by 60uC for 30 min and an

ambient hold temperature (locus specific Ta is given in Table S2).

No Backcross and Introgression in Warblers
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PCR products were separated using an ABI Prism 3730 capillary

Sequencer and analyzed with GENEMAPPER 4.0 (Applied Biosystems).

We genotyped 28 great reed warblers, 15 clamorous reed

warblers and the 4 previously detected hybrids in the Kazakhstan

population, using 19 of the newly isolated loci and four other

published microsatellite loci known to be polymorphic in great

reed warblers (Table S3). The amplification conditions were as

described above and Ta is given in Table S2.

Population genetic analyses
Each locus was tested for deviation from Hardy-Weinberg

equilibrium using the software FSTAT version 2.9.3 [37], and

estimates of null allele frequencies (Oosterhout’s estimate) were

conducted using MICRO-CHECKER [38]. FSTAT was further used to

calculate several basic measures of genetic diversity, including

expected heterozygosity (HEXP), number of alleles and Wright’s

inbreeding coefficient (FIS).

To detect potential hybrids and backcrosses, we performed

‘admixture models’ in STRUCTURE (ver. 2.3.3; [23]). Allele

frequencies were allowed to be ‘correlated’ in the models. We

started each run with a ‘burn-in’ period of 50,000 replicates,

followed by a sampling period of 50,000 replicates. In this study

we were particularly interested in the results from the runs with

two clusters (K = 2), corresponding to the two species. However, we

also tested K from 1 to 5, and as expected these analyses confirmed

that K = 2 is the most likely K in our data (see Results). The

admixture proportion (690% credible intervals) of each individual

to the genetic clusters reflects the degree of genetic similarity to the

two species, and hybrids are expected to show intermediate values

and genetically pure individuals values close to one (cf. [24,25]).

To understand the power to detect hybrids and backcrosses with

our set of markers and degree of divergence of the two species (cf.

[25]), we generated simulated genotypes of hybrids and back-

crosses with the program HYBRID-LAB [39] using the genotypes of

the 28 individual great reed warblers and the 15 clamorous reed

warblers as initial inputs. We generated 100 genotypes of each of

the following crosses: first-generation hybrid (F1), and first to

fourth generation backcross to both paternal species. We then

evaluated the admixture proportions (690% credible intervals) of

these artificial crosses with STRUCTURE using similar admixture

models but this time we used the ‘population flag’ option, which

allows clusters to be based on allele frequencies from pre-specified

reference populations; in our case great reed warblers and

clamorous reed warblers, hence K = 2 (cf. [24,40,41]).

Results

Genetic variation at the loci
Of the 41 novel microsatellite loci tested, 40 (98%) amplified

and 30 (73%) were polymorphic in four unrelated great reed

warbler individuals from Sweden (Table S2).

In the 28 great reed warblers from Kazakhstan categorised as

pure species based on morphology, the number of alleles per locus

ranged from 2 to 26 with a mean of 7.96 at a set of 23 autosomal

loci (19 of the newly isolated loci and four other published

microsatellite loci known to be polymorphic in great reed warblers;

Table S3). Expected heterozygosity ranged from 0.14 to 0.97, and

FIS was low to moderate for all loci (Table S3). Significant

deviation from Hardy-Weinberg equilibrium due to homozygous

excess was found for locus Aar39 (FIS = 0.25; P = 0.016), and the

MICRO-CHECKER analyses suggested the presence of null alleles at

this locus at a frequency 12% (Table S3).

All 23 primer pairs cross-amplified in the clamorous reed

warbler and the number of alleles ranged from one to 12 with a

mean of 5.57, whereas the expected heterozygosity ranged from 0

to 0.97 with a mean of 0.55 (Table S3). Significant deviation from

Hardy-Weinberg equilibrium due to homozygous excess was

found at two loci, Aar33 and Aar57, in clamorous reed warbler

(Table S3).

Bayesian clustering analyses
The STRUCTURE analyses detected strong genetic differentiation

between the two species. The estimated likelihood probability of

the data, LnP(D), for K = 1–5 was as follows: 23494.4, 23064.5,

23509.7, 23175.8, and 23256.8. Thus, K = 2 was the most likely

number of genetic clusters in the group of individuals genotyped.

The individual admixture proportions indicate that there are no

backcrossed individuals present in the sample and there is no

evidence for introgression of genetic material between the species

(Figure 1). The 28 great reed warblers had admixture proportions

$0.984, and for the clamorous reed warblers the corresponding

values were $0.991 (Figure 1). In contrast, the four individuals

that were categorised as hybrids based on intermediate morphol-

ogy (and the genetic signature at one mitochondrial and a single

microsatellite locus [21]) had admixture proportions of between

0.495–0.619 to the cluster corresponding to the great reed warbler

genotypes (Figure 1).

The analyses of the artificial hybrid and backcross genotypes

(Figure 2) suggest that the four hybrids are similar to genotypes

Figure 1. Admixture proportions of great reed warblers, clamorous reed warblers and hybrids in a sympatric breeding population
in Kazakhstan to two genetic clusters generated from admixture models using the Bayesian genetic clustering technique
implemented in STRUCTURE.
doi:10.1371/journal.pone.0031667.g001
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expected for F1 hybrids and less likely to be first or higher

generation backcrosses, and furthermore that the individuals

categorised as pure species based on morphology are genetically as

pure or purer than fifth generation backcrosses (Figure 1; Figure 2).

Discussion

In the present study, we have presented a large set of novel

microsatellite loci isolated from and characterised in the great reed

warbler. In total, 181 loci were isolated and, among 41 tested for

amplification, 73% were polymorphic in a small set of great reed

warbler individuals. Moreover, we used a set of 23 autosomal

microsatellites to evaluate whether ongoing hybridization in a

sympatric breeding population in Kazakhstan has been followed

by backcrossing and led to significant introgression of genetic

material between the species. The clamorous reed warbler has

expanded its range northwards in Kazakhstan during the last three

decades and sympatric breeding populations have been recorded

since 1981 [21]. Within a sympatric locality, the two species show

no or little habitat separation and they take up neighbouring

territories within their preferred reed habitat (B. Hansson, pers.

obs.). Thus, there should have been plenty of opportunities for

backcrossing and introgression in those areas where the two

species overlap.

We used Bayesian clustering analyses in the program STRUC-

TURE to recognise two genetic clusters corresponding to the two

species, and all individuals either clustered to a very high extent to

either of the species cluster (i.e. ‘pure’ species) or showed a mixed

ancestry (i.e. hybrids). There was neither any evidence for

backcrossed individuals nor introgressed genetic material in the

population, suggesting that the hybrids are either infertile or their

progeny inviable. We cannot of course exclude very low levels of

backcrossing and old introgression events in the study populations

(cf. [25]), which still may be an important factor as a source of new

genetic and phenotypic variability [3,42]. Nevertheless, there seem

to be little potential adaptive significance of introgression in these

Acrocephalus warblers.

In vertebrates, hybridization is particularly common in fish,

where several hundred interspecific and intergeneric crosses have

been reported, and in birds with roughly 10% of all species known

to have bred in the wild with another species (e.g. [4,16,43]). As

mentioned above, the breeding ranges of great reed warblers and

clamorous reed warblers overlap in southern Kazakhstan and a

previous study has documented the occurrence of hybrids in a

sympatric population [21]. Occasionally, heterospecific matings

and/or viable hybrids have been documented also between other

Acrocephalus species [19,44], for example, between reed warbler and

marsh warbler, A. scirpaceus and A. palustris [45], and between reed

warbler and great reed warbler [46,47].

Previous work on plants [48,49] and animals [16] has suggested

that directional hybridisation usually occurs between the females

of the rare species and the males of a common species, but not vice

versa. Consequently, under such a condition, the rare species is

usually the maternal parent of the hybrids. This is not the case in

the present study system, where females of both the rarer species

(great reed warbler) and the more common species (clamorous

reed warbler) are known to engage in hybrid matings [21].

Interestingly, three of the four hybrids in the data set were

previously found to carry clamorous reed warbler mitochondria,

and, hence, had clamorous reed warbler mothers [21]. At the

breeding locality, there were about eight times more clamorous

reed warblers than there were great reed warblers, but despite this

both species were common. There was no indication of any

difference in sex-ratio between species (B. Hansson et al.,

unpublished). Therefore, the data from this population neither

support the hypothesis suggesting that females of the rarer sex

should be engaged in hybrid matings, nor the hypothesis

proposing that hybridization happens when either species is rare

[15,16,21].

The cytochrome b sequence divergence between great reed

warbler (GenBank sequence accession record: AJ004784) and

clamorous reed warblers (AJ004788) is approximately 4% which

may correspond to a divergence time of approximately 2 Myrs

[50]. The time to reach complete reproductive isolation, with

Figure 2. Admixture proportions and 90% credible regions to two genetic clusters of simulated hybrids (F1) and first–fifth
generation backcrosses (1-5BC; 100 individuals in each category) between great reed warblers and clamorous reed warblers. The
higher the admixture proportion, the higher the similarity to the genetic cluster corresponding to a ‘pure’ great reed warbler genotype.
doi:10.1371/journal.pone.0031667.g002
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hybrids of both sexes being fully infertile, is very long in birds; it

was recently estimated to be approximately 5 Myrs based on data

from several taxa [43]. Although this estimate should be taken only

as a rough indication in each particular case, with an estimated

divergence time of 2 Myrs between great and clamorous reed

warblers backcrossing and introgression would not have been

unlikely. In some other similar study systems a low degree of

introgression has in fact been detected. For instance, in icterine

and melodious warblers (Hippolais icterina and H. polyglotta), and

between collared and pied flycatchers (Ficedula albicollis and F.

hypoleuca) introgression occurs at low frequencies [10,51].

We conclude that our novel microsatellite markers provide a

useful molecular genetic resource for this group of birds, and that

there is no evidence for backcrossing and introgression in the study

population, which in turn suggests that hybrids between these two

warbler species are either infertile or their progeny inviable. We

cannot however exclude very low levels of introgression, which

could potentially be an important factor as a source of new genetic

variation in the species.
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Table S1 Summary of BLAST analyses of 181 great reed
warbler (Acrocephalus arundinaceus) microsatellite se-
quences and four other avian microsatellite loci used in
the present study against the zebra finch genome
assembly (tgu3.2.4, build 1.1). BLAST hit statistics and

chromosomal locations in the zebra finch genome are included.

(PDF)

Table S2 Characteristics of 181 great reed warbler
(Acrocephalus arundinaceus) microsatellite loci isolated

and characterised in this study. Primer sequences, expected

and observed product size, melting (Tm) and annealing (Ta)

temperatures, 59-fluoro-label, and amplification success in four test

individuals are shown.

(PDF)

Table S3 Number of alleles, range of fragment length
(bp), expected and observed heterozygosity, Wright’s
FIS, and two-tailed P-value for deviations of Hardy-
Weinberg equilibrium (PHW; shown when P,0.1) in
great and clamorous reed warblers. Also given are null

allele frequencies in the great reed warbler.
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Figure S1 Chromosomal locations of great reed warbler
(Acrocephalus arundinaceus) microsatellite loci and four
other avian microsatellite loci included in the present
study (Table S1) on the zebra finch (Taeniopygia guttata)
genome.

(PDF)
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