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Abstract

Reliable predictive accident models (PAMs) are misskto design and maintain safe road
networks however, ongoing changes in road and leliesign coupled with road safety
initiatives, mean that these models can quicklyobee dated. Unfortunately, because the
fitting of sophisticated PAMs including a wide rangf explanatory variables is not a trivial
task, available models tend to be based on daectead many years ago and seem unlikely to
give reliable estimates of current accidents. easxpensive studies to produce new models
are likely to be, at best, only a temporary solutioThis paper thus seeks to develop a practical
and efficient methodology to allow currently availa PAMs to be updated to give unbiased
estimates of accident frequencies at any pointriga.t Two principal issues are examined: the
extent to which the temporal transferability of giotive accident models varies with model
complexity; and the practicality and efficiency fo alternative updating strategies. The
models used to illustrate these issues are thessait models developed for rural dual and
single carriageway roads in the UK. These are lyidsed in several software packages in
spite of being based on data collected during 8&04. It was found that increased model
complexity by no means ensures better temporakfeeability and that calibration of the
models using a scale factor can be a practicahaltize to fitting new models.

Keywords: Predictive Accident Model.
1. Introduction

Reliable predictive accident models (PAMs) are @sakto provide and maintain safe road
networks. Designers can, for example, use PAMdiénappraisal of the safety impacts of
alternative design decisions, with PAMs essentafdrecast accidents with and without
possible interventions. Genuine high risk locasican be identified by comparing observed
accidents with those predicted by PAMs given theetpf site and level of traffic flow.
Whereas scheme appraisal takes place prior to mgsleation using predicted outcomes,
evaluation takes place after the event, normailygusbserved data. In the evaluation of safety
impacts, however, simple comparisons of observddréeand after accidents are known to
exaggerate the effectiveness of treatments beadube regression-to-the-mean effect. This
problem can be overcome using an empirical Bay®) é@pproach but its use relies on the
availability of suitable PAMs (Mountain et al., ZPersaud and Lyon, 2007; Elvik, 2008).
While the importance of PAMs is clear the qualifyagailable models is rather less certain.

PAMs are derived by fitting regression models ttadzbtained from a large number of road
sections or junctions. In their simplest form,lsuwdels relate expected accident frequencies
to some measure of exposure (traffic flow). In ensophisticated models, additional variables
describing the design features or geometry of s @re also included. However, model
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fitting is by no means straightforward. High qtyaldata are required for a large enough
number of locations and accidents. The relevata oy not always be readily available and
typically requires the interlinking of separatelyaimained databases for accidents, traffic
flows and design features. There is no acceptedryhto indicate how accident frequency
should increase with traffic flow or, indeed, witlther characteristics such as hilliness or
bendiness. There is now a general recognitiorhefrteed to allow for overdispersion in
accident modelling and the assumption of a negaiivemial error structure is commonly used
(see, for example, Maher and Summersgill, 199@wéiser, this is primarily for mathematical
convenience, with recent research suggesting tteaihative forms of error structure are now
not only feasible but may also be more approprigtaher and Mountain, 2009, Lord and
Mannering, 2010, Connors et al., 2012). Perhapsribst serious difficulty arises, however,
because, over time, there will inevitably be chanigeroad, vehicle and driver characteristics
such that the relationship between the dependehtnaiependent variables may also tend to
change. While some models include a term to altmiong-term trends in accident risk (see,
for example, Walmsley and Summersgill, 1998; Waéystt al., 1998a; Walmsley et al.,
1998b) it is by no means clear that the patterchahge will remain stable over time (Elvik,
2010). The temporal transferability of PAMs is shquestionable, particularly when the
elapsed time is large.

Unfortunately, because the fitting of sophistica®&Ms including a wide range of explanatory
variables is not a trivial task, available modelsd to be based on data collected many years
ago. Inthe case of UK roads, for example, then3part Research Laboratory (TRL) carried
out a comprehensive series of accident studiesgluhe 1980s and 1990s. TRL developed
models for various junction and link types at vasdevels of detail and were, indeed, amongst
the first to recognise the need to model overdsparand to propose the use of a negative
binomial error structure. However, the earliesthefse studies used accident data for 1974-79
to fit models for 4-arm roundabouts (Maycock andl,HE984) while the most recent used
accident data for 1979-92 to fit models for ruraatcarriageways (Walmsley et al. 1998a).
These models remain the industry standard. Theyirarorporated into several standard
software packages and widely used in design anenselappraisal in the UK in spite of the
age of the modelled data. However, given thahenUK, annual personal injury accidents fell
by 30% between 1985 and 2009 while annual tot#ldracreased by 61% (DfT 2010a, DfT
2010b) it seems unlikely that PAMs derived usingadeom some 20 to 30 years ago could
provide accurate estimates of current accidentind-new models for the whole range of link
and junction types would be both time-consuming exgknsive because of the size and level
of detail of the database required. In any casw, models would only provide a temporary
solution since the new models themselves would become outdated. A more sensible long-
term solution would appear to be to develop an tipglatrategy so that updated versions of
the existing models can be used, not only now lsat ia the future. That is the objective of
the present research study, of which this papapart.

This research study has two principal objectivEsstly to establish the extent to which the
temporal transferability of predictive accident ratsdvaries with model complexity and, in
particular, the extent to which the inclusion ofsidg@ variables in more complex models
increases temporal stability. Secondly to developapproach that will allow currently
available predictive accident models to be readriyg reliably updated to any point in time.
Although new predictive accident models have beevelbped in the last few years (for
example Hashim and Bird, 2005) the updating stsate@pplied to the TRL models as they
remain the industry standard. To allow the objedief the study to be achieved a database
has been compiled containing accident data, flow dad geometric design parameters for six
site categories; modern rural single carriagewawp#ds, modern rural dual carriageway A-
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roads, urban single carriageways, urban 3-arm ksghjunctions, urban 4-arm signalised
junctions and 4-arm roundabouts. The aim was tludeca range of link and junction types,
and a range of model ages.

1.1  Aimsof thispaper

In an earlier paper, the authors addressed theipainmethodological issues that arise in
seeking practical and efficient ways to update PA®snnors et al., 2012). These issues were
illustrated by application to a basic model foradwsingle carriageway roads, and include: the
choice of distributional assumption for overdispansthe choice of goodness of fit measures;
guestions of independence between observationbeasdme site in different years, and
between links on the same scheme; the estimatitreads in the models; the uncertainty of
predictions; the most efficient and convenient waydit the required models, given the
considerable advances that have been seen irtistdtcmputing software in recent years.
The focus of this paper is to apply this methodpltg establish the extent to which the
temporal transferability of currently available PAMaries with model complexity and to
assess how best to update existing models.

Two site categories are assessed, namely, modataiid single carriageway A-roads in rural
areas which are amongst the most recent of the MBdels (Walmsley and Summersgill,
1998; Walmsley et al., 1998a; Walmsley et al., 1998The accident data used to fit these
models were for the period 1979-90 for single egeways and for 1979-92 for dual
carriageways, although accident data were not abdailin every year for all schemes. A-
roads are principal roads, designed to carry laxgjemes of long-distance traffic and here
‘modern’ refers to roads that meet post-1960 destigndards. A rural road is defined here as
a road which is not in a built up area. The higleslity dual carriageways are near motorway
standard, while the lowest quality roads of botpety can have sharper corners, steeper
gradients and larger numbers of intersections withdeceleration lanes. Initially, the
goodness-of-fit of the existing suite of TRL mod@<urrent data was determined. The suite
of TRL models for these roads covers a range ddl¢ewf detail: in the basic model, total
accidents are simply related to a measure of¢rfléfw; in the most detailed models, accidents
are disaggregated by type and for each type thdextdrequency is related to traffic flow and
a range of geometric parameters. Since the méadetemodels can take account of the effects
of improvements in highway design on the frequesfqyarticular types of accidents, it seemed
likely that they could offer better temporal tragrsibility than the basic models, albeit at the
expense of more input data. Two main updatingeggras were trialled. The first re-estimated
the TRL parameter values (while keeping the modehét unchanged), thus both adjusting
for trend and allowing the relationship between diependent and independent variables to
vary. The second used the TRL models but with lngcactor to adjust for the trend between
the time of the TRL study and the current study.

2. Database

The database compiled for this analysis contair&d rhinor links distributed amongst 54
schemes for dual carriageways, and 341 minor hitsibuted amongst 73 schemes for single
carriageways. Ascheme refers to the largest feature studied, and iscioseof road with
similar flow characteristics, normally between twiajor junctions (defined as any junction
where traffic on the scheme has to give way). daity any given road number (e.g. Al14)
appeared only once in the database. Within a selibere are typically a number mwinor
junctions (defined as any other junction properly markechvatgive way or stop line and a
centre line on at least one junction arm) amdor links (the section of road between any two
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junctions commencing 20 m from the extended keeblinThese definitions are illustrated in
Figure 1. On average, a dual carriageway scheoheded 10.6 minor links (range: 2 to 45)
and 8.0 minor junctions (range: 0 to 43); singleriageway schemes included an average of
4.7 minor links (range: 1 to 18) and 3.3 minor jimes (range: 0 to 17).

Minor
Minor Link Junction Minor Link
Major Major
Junction 20m 20m 20m 20m Junction

Scheme

Figure 1 — Outline of scheme definitions.

Most of the schemes were analysed across a fivepged (2005-2009): the exceptions were
two single carriageway schemes which had undergmajer changes in 2008 and 2009 and
for these only data prior to the changes were usedur study, accident data were obtained
from the UK national STATS19 database or local arities, and annual flow data were

obtained from the UK Department for Transport (DéF)local authorities. Table 1 compares
the key features of our database with that usebRiy.

Table 1: Summary of key database parameters

Summary variables Dual Carriageway Single Carriageway
TRL LL TRL LL

Scheme

Total length of schemes (km) 1244.0 1063.9 540.5 323.5

Accidents

Total number of accidents 7819 3477 2111 1494
Minor link 5712 2474 1295 996
Minor junction 2107 1008 816 498
Location ratio? 0.37 0.41 0.63 0.50

Flow (AADT)
Mean 13819 30867 10309 13878
Minimum 3099 9463 2883 2887
Maximum 38785 67470 35904 31812

Accident rate (annual accidents / 100MVehkm)

Mean 12.4 11.8 19.7 19.0
Max 42.4 334 68.7 56.6
Min 5.1 2.4 2.0 0.0
Standard error 0.8 1.3

aThe location ratio is the number of accidents at minor junctions divided by the number of accidents on minor links.

Note: The TRL accident data were recorded between 1979 and 1992 (dual carriageways) and 1979 and 1990 (single
carriageways). The TRL flow data were measured between 1983 and 1992 (dual carriageways) and between 1983 and 1990
(single carriageways). The TRL accident rates were calculated for 1988 and 1992 (dual carriageways) and 1986 and 1990
(single carriageways).
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It can be seen in Table 1 that the current stuayuded some 86 % of the road length used by
TRL in the case of dual carriageways, and 60 %éndase of single carriageways. The total
number of accidents included in the current studyensome 44% of those used in the TRL
study in the case of dual carriageways, and 71fertase of single carriageways. The mean
annual average daily traffic (AADT) on dual careaays has more than doubled between the
two studies, whilst on single carriageways it ir@ed by a third (Table 1). It is, however,
worth noting that the accident rates (annual actgl@er 100 million veh-km) were not
significantly different in either of the studiestivian annual rate of some 12 accidents per 100
million veh-km on dual carriageways and some 1%dacetts per 100 million veh-km on single
carriageways. The breakdown of accidents betwdearninks and minor junctions on dual
carriageways was broadly similar in both studies, lmn single carriageways, a higher
proportion of accidents took place at minor jungsiin the TRL study than in the present study.
A possible explanation was the higher minor junctdensity in the TRL study: with 2.7 (0.1)
minor junctions per km in the TRL study comparethwli.0 (0.1) minor junctions per km in
the present study. (The errors quoted in brackets and elsewhere in this paper are the
standard error of the sample mean or estimatee)ldvirer minor junction density in the present
study may reflect design improvements over therwat@ng years.

Table 2: Summary of accident typeson dual carriageway links.

. TRL study LL study
Accident Type
Acc. % of acc. Acc. % of acc.

1. Pedestrian accident 263 4.6% 41 1.7%
2. Accidents at accesses 90 1.6% 52 2.1%
3. 1 vehicle, left carriageway nearside on bend 139 2.4% 72 2.9%
4. 1 vehicle, left carriageway nearside elsewhere 909 15.9% 500 20.2%
5. 1 vehicle, left carriageway offside on bend 72 1.3% 31 1.3%
6. 1 vehicle, left carriageway offside elsewhere 495 8.7% 194 7.8%
7. 1 vehicle, other manoeuvre 437 7.7% 127 5.1%
8. 2+ vehicles, one parked 481 8.4% 142 5.7%
9. 2+ vehicle, one overtaking or changing lane 943 16.5% 398 16.1%
10. 2+ vehicle, one stopped on carriageway 548 9.6% 398 16.1%
11. 2+ vehicle, one turning or waiting to turn 135 2.4% 10 0.4%
12. 2+ vehicle, one crossed central reservation 249 4.4% 14 0.6%
13. 2+ vehicle, going ahead on bend 52 0.9% 39 1.6%
14. 2+ vehicle, other manoeuvre 891 15.6% 456 18.4%

In order to test the full range of TRL models itsn@ecessary to disaggregate the accidents
which occurred on minor links by type. Tables 2 8rebmpare the number and proportion of
each type of accident in the TRL study and our ystad dual and single carriageways
respectively. The percentage of total accidentisneo does not add up to 100% in the case of
single carriageways as not all link accidents cdiddassigned to a category. It will be noted
that the proportion of some types of accident hasiged between the two studies, for example
on dual carriageways (Table 2), the proportiongpediestrian accidents (type 1) and the
proportion of accidents involving two or more vedaiof types 11 and 12 more than halved
between the two studies. On single carriagewagbl€r3) the proportion of most types of
accident were similar. However, it is notabletttiee proportions of two types of accident
have shown a statistically significant increaseQ(P5), both more than doubling between the
two studies. These are accidents at accesses\yp® shunts (type 9).
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Table 3: Summary of accident typeson single carriageway links.

Accident Type

TRL study

Acc.

% of
acc.

LL study

% of

Acc.

acc.

1. Pedestrian accidents 60 4.6% 17 1.7%
2. Accidents at accesses 51 3.9% 84 8.4%
?c.)aS;ngIe vehicle, left carriageway on nearside on a straight 134 10.3% 65 6.5%
f(.)as(;ngle vehicle, left carriageway on offside on a straight 80 6.2% 43 4.3%
5. Single vehicle, did not leave carriageway 59 4.6% 23 2.3%
6. Accident involving a parked vehicle 37 2.9% 32 3.2%
7. 2+ vehicles, overtaking, same direction 83 6.4% 57 5.7%
82. 2+ vehicles, overtaking, opposite direction 264 20.4% 67 6.7%
9. 2+ vehicles, no overtaking, same direction 182 14.1% 301 30.2%
10. 2+ vehicles, no overtaking, opposite direction 279 21.5% 183 18.4%

a As the current STATS19 fields meant that the ‘overtake, head on’ and ‘overtake, other collision’ accident types used by TRL could not
be reliably separated these were combined into one group called ‘overtake, opposite direction’.

TRL obtained details of a range of design featares geometry for each minor link. In the
present study only those parameters which TRL fdork significant in the models at the 5
% level were recorded in the database. For dughgaways these parameters were:

Presence or absence of hardstrip on the minomwlirdcheme.
Presence or absence of kerb on the minor link.
Proportion of the minor link with a kerb.

Presence or absence of a safety fence on the tmkor
Proportion of the scheme with a safety fence.

Proportion of the minor link with a continuous abstion on the offside other than a
safety fence.

Quality of scheme, classified as a two level fachogher quality for schemes of near
motorway standard with mostly grade separated ijpmgtand few roundabouts and
lower quality for schemes with smaller and more frequenhdabouts and more minor
junctions.

Quiality of link, classified as a four level factbest quality for roads of near motorway
standard with mostly grade separated junctionsrentbundaboutsgjood quality for
roads of near motorway standard with some largadalbouts|ower quality for roads
with T-junctions or crossroads with short deceleratanesurban bypass for modern
roads in semi-urban areas.

Bendiness (sum of the angles turned, divided byethgth (degrees k).
Hilliness (sum of the height gain and loss, divithgdhe length (m knh).

Mean density of offside accesses (accessey.km
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For single carriageways these parameters were:

» Width of scheme, classified as a two level factoraading to whether the road was
closer to 7.3 m wide (i.e. a normal 2-lane singleiageway) or 10 m wide (i.e. a wide
2-lane single carriageway).

* Presence or absence of hardstrip on the minomlirdcheme.
« Bendiness (sum of the angles turned, divided byethgth (degrees k).
+ Hilliness (sum of the height gain & loss, dividegithe length (m kn)).

* Net gradient on the minor link (single carriagewawpsdy, height difference between the
end points of a link, divided by the link lengtBo)).

« Mean density of accesses on the scheme (acces3gs km

TRL used a specially adapted van to make measutsroéthe geometric parameters. In the
present study hilliness was obtained from the Bidilevation Maps (DEM) in Google Earth
and the bendiness was obtained from Ordnance Sumegg. Other geometric parameters
were established using Google Street View. If ddia¢such as presence or absence of
hardstrip) changed over a minor link or scheme thevas allocated to whichever category
was appropriate to the greatest length of road.

3. Methods
3.1 TRL models

To assess how well, or otherwise, the TRL suitenoflels fit current data, the models were
used to predict the number of accidents in ourtidsa TRL developed models for rural roads
at three units ofize and at foullevels of detail and these are summarised in Table 4. Models
were not fitted for all combinations of size angieleof detail. So, for example, Level 1A
models (models of total accidents without geomegtaiameters) were available for all units of
size. If the addition of geometric parametersh® model improved the fit then TRL also
presented a Level 1B model (models of total aceglerth geometric parameters). Level 2
and 3 models (models for particular types of aadideithout and with geometric parameters
respectively) were only available for accidentsiodividual minor links (size 1). Size 1
models give estimates of accidentsiondividual minor links while size 2 link models give
estimates of the total accidentsahminor links within a scheme. Total scheme accislean

be estimated directly using a size 3 model or graing separate estimates of link accidents
(size 1 or size 2 link) and junction accidentsgstzunction).

The first step was to establish to what extent ékisting TRL models represent current
conditions. The models for links and schemesditig TRL are of the general form;

u, =k IL," 0,7 I:Exp(Junctioni +Ge0mi)|]3xp(Trend) [1]

where 4, is the expected number of accidents at site yeart, L, is length (in km),Q; is
the two-way AADT (in thousand veh/dayjlunction, describes the details of the minor
junctions,Geom, are various relevant geometric design featunesd describes the year-on-

year trend in accident risk and, « and A are constants. In many of the modglss unity
(i.e. predicted accidents are proportional to lekgth). Although accidents at major junctions
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are not included in these models, the numbers tf b@jor and minor junctions were found
to be significant in many of the models, effectyvatcounting for angpillover effects from

the junctions. (Thepillover effect arises because, in the UK, junction accelan¢ defined as
accidents occurring within 20m of the extended Karbe of a junction (see Figure 1). In
practice accidents may be assigned to links evaungtihthey arise because of the presence of
a junction more than 20m from the accident.)

TRL presented a total of 70 models relating toIrAraoads. These are fully documented in
Walmsley and Summersgill (1998), Walmsley et a@98a) and Walmsley et al. (1998b).
Space prohibits giving the detail of each of thesmels however, as an example, the dual
carriageway level 1B, size 2 model (the model dvaltaccidents on all of the minor links of a
dual carriageway scheme with geometric features) is

My =0.0393 Q" (L, Cexp(Junction ; +Geom ; )exp(Trend ) [2]

In this modelJunction ; and Geom; are defined as:

_ N N,
Junction ; =0.120 —- +0.210 — [3]
Ls; Ls;

Geom,; =-0.255 s, + 0.082 Gys;, — 0.23100¢ +0.025(p
+0.089y, +0.0710,, —0.030Qs [4]

where N, is the number of major junctions on the scheme,
N, is the number of minor junctions on the scheme,
L, is the total length of the links on the schemecligding the length of the minor

junctions),
L¢ is the total length of the scheme (including #egkh of the minor junctionsy,s,

is a factor set to unity if hardstrips are presamboth the nearside and the offside and
set to zero otherwise;
gus: IS @ factor set to unity if hardstrips are preseneither the nearside or the offside

(but not both) and set to zero otherwise;

dois a two level factor describing the quality of theheme set to unity for lower
guality roads and zero for higher quality roadsdefined in Section 2);

gs is the bendiness (degreesRm

g, is the hilliness (m knY;

gy IS the offside access density (accessed)kend

g IS a factor set to unity if a safety fence is présand set to zero otherwise.

In this examplelunction ; did not separate minor junctions by type (ine, is simply a count

of the total number of minor junctions within theheme). In the various TRL models up to
four categories of minor junction were included,hwsteparate counts of minor junctions in
each category. The categories were:
* Dual carriageways with four types of minor junctiograde-separatedy,; other
junctions with no access across the central reBenvep the opposite carriageway,,
; staggered junctions with access across the dergs@rvation to the opposite
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carriageway, N,; other junctions with access across the centrsgruvation to the
opposite carriagewaw, .

» Dual carriageways with two types of minor junctioumngtions with no access across
the central reservation to the opposite carriageway, ; junctions with access across

the central reservation to the opposite carriageway, .

* Single carriageways with two types of minor juncti@arm junctions,N,; 4-arm
junctions, N, .

The termexp(Trend) allows for trend, wherdrend = £(t. In these mode}s is the annual

rate of change in accident risk ahds the number of years since 1990 (the base pedhé
TRL models). TRL estimated three valuesptliepending on carriageway type and the road

element modelled: -2.25xfCor size 1 models of dual carriageways, 0 for ¢izaodels of
single carriageways and -2.0x4®r all other models. (This suggests a redudtioaccident
risk over the 17 years from 1990 to the midpoinbof study period (2007) of 100@<* )%

or 32% for size 1 models of dual carriageways, nangk for size 1 models of single
carriageways and 29% for all other models.) Tha daed to estimate these trend values were,
as previously noted, for the years 1979-90 and 27 %or single and dual carriageways
respectively.

The goodness of fit of each of these models (viiéhexception of some level 3 models which
relied on geometric factors that could not be dgadeasured such as maximum visibility on
a link) was established. In each case the modelused to predict accidents in each year
(2005 to 2009, withh = 15 to 19). These predictions were summed and amsdpo the total
number of accidents observed during this five yearod. In the case of the level 2 and 3
models (Table 4) which predict accidents by typedmtions were summed and compared to
the total number of observed accidents. If a I&/alodel was not available for a particular
type of accident then a level 2 model was substitute

3.2 New parameter estimates

It is not unreasonable to expect that the valuboblfi parameter estimates and the trend may
have changed over time. Clearly the ageing of PAlls arise from a variety of sources,
including: improvements in highway design and tcaffontrol; changes in driver training,
culture and attitudes; changes in legislation anfbreement strategies; improvements in
vehicle design; changes in vehicle fleet mix andso Whereas improvements in highway
design features might be expected to primarily ichma risk (k), many recent road safety
interventions have targeted driver behaviour: suelasures might reasonably be expected to
impact on the way in which flow affects accident® (fower of flow termq)). The form of

the relationship between accidents and other exfrdaneariables may thus change over time.

The next step was therefore to obtain new paramstenaes by re-fitting the TRL models
using our database. These models had the sameeimilent variables, factors and form as
those given by TRL. Connors et al. (2012) teststdimptions about the distributional form of
the model and recommended a method in which theehweas considered in two linked parts.
In the first part the aggregated data across alisy2005-2009) was used to estimate the model
parameters using a Poisson distribution for thédaot distribution at each site and a Variable
Shaped Gamma (VS-G) distribution for the overdispergi®. the between site variation).
The second part was to disaggregate the data byagdanodel the distribution of the accidents
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at each site across the five years 2005-2009 wsimyltinomial distribution to estimate the
trend within the data. This will be referred to the recent trend and denoted bys'to

distinguish it from théong termtrend (i.e. from the base year of the TRL models (196Q@he
mid-point of our study period (2007)). Estimatitige parameters involved an iterative
approach in which the new parameter estimates wektosupdate the recent trend and then
this trend was used to update the new parameterateirand so on. lterations continued until
none of the new parameter estimates varied signtficgat the 5 % level) from one iteration
to the next. This gave a model of the form:

i, =k ;" ,? rexp(Junction; +Geomi)E9xp(,H' EII') (5]

As the recent trend was estimated using data frord 202009,t' is the number of years after

2007 (for 2005 to 2009 =-2...+2 ). The revised estimate of the long term trer@d(lto
2007) is effectively incorporated in the estimaté& o the re-fitted model.

3.3 Calibration of TRL models

An alternative approach to model updating is calibraof the TRL models using scale
factor. In this approach it is assumed that the relatign between accidents and the
explanatory variables has not changed over timdlaatdhe discrepancies between the model
predictions and the data are simply due to changé®e trend in risk over time. The TRL
model was used to predict accidents in each yetregbresent study (2005 to 2009) with the
Trend term set to zero. These predictions were summed &iivwgears and all sites) and a scale
factor, o, calculated as the ratio of total observed to ipted accidents during this five year

period i.e.sf = Zyj/z,uj . The reduction in accident risk over the 17 gdeom 1990 (the

base year of the TRL models) to the midpoint ofstudy period (2007) can thus be estimated
100(1sf)%.

There were several alternative possibilities for dptimal scaling factor depending on the
choice of measure of goodness-of-fit. Possibditieclude: minimising the absolute mean
error; minimising root mean square error (RMSE)nimising the mean absolute deviation
(MAD); or maximising the log likelihood. There i®runique, best way of determining the
scaling factor as all of the goodness-of-fit cideare sensible and desirable. These issues are
discussed in more detail in Connors et al. (201®)e chose to estimate the scaling factor as

st =>"y; /> u; which minimises the absolute value of the mean eamthis is simple,

intuitive and minimises bias. In this study th@ick of scaling factor was shown not to affect
the choice of best-fitting model.

3.4 Goodness-of-fit

The same considerations apply when we wish to caengese performance of alternative
models: which is the best fitting model will be luénced by the criterion used to measure
goodness of fit. Three goodness-of-fit statistiosre selected. These were: the Akaike
information criterion (AIC) which allows an assessmefwhether the model fit is improved
by the inclusion of additional variables; the rom¢an square error (RMSE) which measures
the precision of the model; the mean error (ME) Whizeasures bias. As the purpose of the
study was to establish how well the models representednt conditions, AIC was chosen as
the principle criterion to select the best fittimpdel. However, as users of these models wish
to know the uncertainty in the predictions, the RM&id the ME were also stated.

3.5 Comparison with simple rate models
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The TRL models are relatively sophisticated modekhat, even in their simplest form, they
do not assume that accidents are proportionalow. fl The simplest PAMs are, however,
accident rate models in which accidents are assumed to be proportionigdw and length. It
was decided to compare the fit of the TRL modelfwitmple accident rate models. In the
UK, while the TRL models are used in standard sofwaackages such as ARCADY,
PICADY and OSCADY, simple accident rate models are use@ost Benefit Analysis
(COBA) software (DfT, 2006). The COBA models are desdjto be used to value the
accident savings associated with alternative schemposals. Although junction and link
accidents can be modelled separately in COBA, thetipn models require traffic counts on
all arms of the junctions, and thus could not bgied to the minor junctions in our data since
only the major road flows were available. Sufficidata were available, however, to allow
the COBA models to be used to predict accidentdldimks of a scheme and accidents on all
links and junctions of a scheme. The COBA model®mbase year of 2000 but incorporate
a correction for trend in accident risk in the foofran accident rate change coefficient raised
to a power equal to the number of years after 2@0.rural single and dual carriageways the
annual change coefficient is 0.973 suggestingdaiateon in accident risk over the 7 years from
2000 to the midpoint of our study period (200713% (i.e. 100(1-0.97%%) on all schemes.

4. Resultsand discussion
4.1 Rural dual carriageways

Initially the 5—year accidents on each of the 5dldarriageway schemes were estimated using
each size 2 and 3 model with the methods outlinesection 3 and the results are shown in
Table 5. In Table 5, the column headdgL contains the results using the unadjusted TRL
models, the column headbléw Parameter contains the results for the re-fitted models tned
column heade&cale Factor contains the results for the calibrated model® frodels have
been numbered (D1 to D15) for ease of reference.

4.1.1 Trend in accident risk

Table 5 shows the various estimates of trend indacotirisk: the original TRL estimate of
trend, the recent trend (for 2005 to 2009) estich@tere-fitting the models, and the long term
trend (1990 to 2007) estimated by the scale facldre TRL estimate of long term trend for
all of these models was exp(-0tPgiving an estimated total reduction in accidesk over the

17 years 1990-2007 of 29% (i.e. tol 7, exp(-0.09 = 0.71). From Table 5 it is clear that, for
junctions, the TRL estimate of the reduction inident risk over these 17 years is reasonably
close to that estimated by the scale factor, pdatity for model D8 (the best fitting junction
model) which has a scale factor of 0.70. Howefegrthe link models, the scale factors are
larger suggesting that the TRL models overestitteectual long term trend in risk on links.
Comparison of the estimates of recent trend (2@ Robtained by re-fitting the models with
the TRL estimates suggest larger trends in riskeicent years and the differences are
statistically significant in the case of the sizEnR models and the size 3 models. Clearly the
estimates of scale factor represent the averageyeha risk over the 17-year period. While
the data suggest that, on average, the trendskiratijunctions were similar to those reported
by TRL, there may have been periods of higher welotrends in the intervening years.. For
links the estimates of trend are much more variald&ven the potential for such variability it
seems preferable to avoid applying a trend estinater a particular time period to a different
time period.

4.1.2 The goodness-of-fit of the models
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The best fitting models are highlighted in Table Based on the AIC values, the best fitting
unadjusted TRL models are D3, D8 and D15 for sizenk, Isize 2 junction and size 3
respectively. The best fitting re-fitted models evéd4, D8 and D13 while the best fitting
calibrated models were D6, D8 and D15. With the exgcemtf the size 2 junction models (for
which there are no models including geometric defagtures) and the unadjusted size 2 link
model (D3), the best fitting models include geoneatigsign features suggesting that increased
model complexity improves the fit.

Comparison of the AIC values in Table 5 shows thatliest fit is achieved using the re-fitted
models. Not unexpectedly, the least good fits amegdly for the unadjusted TRL models
although, for the junction models, the calibrateddels give similar AIC values to the
unadjusted models and indeed for models D7 and D8Atleis actually lower for the
unadjusted TRL model. This is perhaps not surgigjiven that the TRL estimates of long
term trend in accident risk at these junctions wadlar to the scale factor estimates whereas,
for the links and whole schemes, the TRL models termmverestimate the reductions due to
trend and thus to underestimate accidents. This isireflected in the overall mean errors
(ME): for the link and whole scheme models the yustéd TRL models result in large
negative values of ME. The values of ME for thébcated models are zero: recall that the
scale factor used here minimises the mean errevalues of ME for the re-fitted models for
links and junctions are generally close to zeragssgng little bias in the estimates although
for the size 3 models the mean errors are ratingeda This is probably because the size 3
models effectively use an average value of tremdbddh links and junctions whereas the size
2 models suggest that this may not be appropriate ghe trends differ. Interms of the RMSE,
the re-fitted models tend to perform slightly bettban the calibrated models but the
differences are generally small. Both the re-itteodels and the calibrated models generally
give smaller RMSE than the unadjusted TRL modéls:exception is for the calibrated size 3
models where the RMSEs are slightly larger usimgsitale factor than the unadjusted model.

4.1.3 Parameter estimates in the re-fitted models

The re-fitted models take exactly the same forrthasequivalent unadjusted model although
some variables/factors were not significant in ghéitted model, possibly as a consequence of
improved design standards. For example, bendinassot significant and the mean value of
bendiness was smaller in the present study (250) (&grees k) than in the TRL study
(35.1 degrees kW) suggesting improvements in horizontal alignmeimces the 1980s.
Nevertheless non-significant parameters were retansdtle purpose of the present study was
to update existing models rather than to develaop medels.

Comparison of the parameter estimates for thettedfimodels with the unadjusted TRL
models suggests that relatively few of these haemged significantly. Most notably, there
was no significant difference in the estimates efibwer of flow term for the link and scheme
models. In the best fitting junction model (D8), prewer of flow was 1.20 (standard error not
given) in the unadjusted TRL model as compared Wi®22(0.18) in the re-fitted model

suggesting that the influence of increasing trdibevs on accident frequencies at junctions
may be less now than in the 1980s: doubling the fleould increase expected junction
accidents by a factor of 2.29 using the unadju3tet model and by 1.77 using the re-fitted
model.

4.1.4 Modelling accidents on individual minor links

The relatively poor performance of the calibratézk 3 models suggests that it may be
preferable to estimate accidents on a scheme layaefy estimating accidents on links and
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junctions and summing the resulting estimates.s hiais the advantage of allowing separate
estimates of trends in accident risk to be madérfks and junctions. Recall that accidents on
links can be estimated in two ways: modelling acdsl@em all links on a scheme (size 2 link
models) or modelling accidents on individual mitioks (size 1 models). These size 1 models
are available at all four levels of detail (Tab)e All link accidents on a scheme can thus either
be estimated directly using a size 2 model or byraing the estimates for individual minor
links obtained using a size 1 model. Before act®le®on schemes are estimated it was
necessary to establish which of these approackies the best estimates.

To establish the best fitting size 1 model, estewvaif accidents on individual links in the
current data set were made using the unadjustedm®tels, re-fitted models and calibrated
models and the goodness-of-fit of these modelssaremarised in Table 6. (There were
insufficient data to fit new parameter estimatestii@r accident type models (levels 2 and 3).)
Consideration of the goodness-of-fit of the unaidjdsTRL models suggests that increasing
model complexity does give some improvement intémeporal transferability of the models:
the best fitting unadjusted model (D17) includesmetic design features although modelling
accidents by type (D18 and D19) does not improventbeel fit. Comparison of the AIC
values suggest that refitting the models givestbst than calibration and, not unexpectedly,
the least good fits are for the unadjusted TRL n®dehe best fitting model for accidents on
individual links is the refitted level 1B model (D17

(Insert Table 6 about here.)

The next step was to compare the estimates of adsida all links on the schemes obtained
by summing the estimates obtained using the sim®dels with the estimates obtained using
the size 2 models. In the case of the scale fagiproach, the best fitting calibrated size 1
model for individual minor links (D16, Table 6) wappdied to each minor link and the
predictions summed and compared to the observerk.valrhis gave a RMSE of 17.0 and a
ME of 0.0. The best fitting calibrated size 2 miod@6, Table 5) gave a better fit to the data
with a RMSE of 14.0 and a ME of 0.0. A similar pedure was tried for the re-fitted model.
The best fitting re-fitted size 1 model for indiual minor links (D17, Table 6) gave a RMSE
of 13.9 and a ME of +0.1. The best fitting reefdtsize 2 model (D4, Table 5) gave a better fit
to the data with a RMSE of 12.8 and a ME of +0.4.

Having determined that the use of size 2 links n®ded preferable to size 1 models, estimates
of accidents on whole schemes were obtained by sugnthen estimates obtained using the
best fitting size 2 models for links and juncticar these were compared with the estimates
obtained using size 3 models. In the case of éibrated models, the best fit was achieved
using size 2 models: the best fitting size 2 modPB and D8, Table 5) gave estimates of
scheme accidents with a RMSE of 21.7 and a ME®iMhich compares favourably with the
best fitting calibrated size 3 model (D15, Tablevhjch had a RMSE of 30.7 and a ME of 0.0.
A similar procedure was used with the re-fitted medbeit for these a marginally better fit was
achieved using the size 3 model. The best fittaftted size 2 models for links and junctions
(D4 and D8, Table 5) gave estimates of scheme adsidath a RMSE of 19.8 and the ME
was +2.0 while the best fitting re-fitted size 3 midd@®L3, Table 5) had a RMSE of 18.5 and
a ME of +1.9.

Thus, while the comparison of size 1 and 2 modalgate that it is preferable to estimate
accidents using a model based on the largest bpedie (size 2), the comparison of the size 2
and 3 models is less clear cut. With the re-fittextiels, accidents on a scheme are marginally
better estimated using a model based on the laspasial scale (size 3 model) but with the
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calibrated models, the best estimates are obtamse@d) size 2 models. This is a likely

consequence of the different long-term trends émidsent risk on links and junctions. When

a scale factor is applied to a size 3 model thed tatmber of accidents predicted by the model
matches the observations, however the proportioms@éients predicted to occur on links or
at junctions does not match the observations. Witb-fitted model a new estimate is made
of the proportion of accidents occurring on linksabjunctions. Overall these results indicate
that accidents are best estimated using a modehélargest spatial size provided that the
trend in accident risk is the same in all of thenponent parts.
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Figure 2 — Plot of observed versus predicted amadstrdised residuals versus predicted for
best fitting calibrated model for dual carriagewégs individual sites and in bins of 9 sites).

Predictions and observations for the best fittirgpels are shown in Figure 2 (for the
calibrated size 2 models D6 and D8) and Figure 3réfited size 3 model D13). In each of
these figures the top left panel shows the obseswaehr accident frequency plotted against
the predicted accident frequency. The residuaés dtfierence between the predicted and
observed accident frequencies) versus the predietieés are shown in the top right panel.
These panels show a strong relationship betweengbeddand observed accidents, albeit
with a certain amount of scatter. The large nunabeites with small numbers of accidents
meant that numerous points were plotted in a smadl.& 0 enhance the clarity of these plots
the data were “binned”: the predicted values wertedan ascending order of the predicted
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value and grouped into bins of nine sites (choseagive 6 bins of equal size for the 54
schemes). The lower plots in Figures 2 and 3 ar#éasito the upper plots but for the binned
data. In the lower left-hand plot, the mean ofdbheerved values in each bin is plotted
against the mean of the predictions, and in theefawght-hand plot the mean of the residuals
is plotted against the mean of the predictions.aggregating the data, a lot of the variability
is removed and this permits a more informative vid\the data and any systematic
variations (Connors et al., 2012). These lower mslebw that there are no systematic
variations across the data.
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Figure 3 — Plot of observed versus predicted amadstrdised residuals versus predicted for
best fitting re-fitted model for dual carriagewafar (ndividual sites and in bins of 9 sites).

4.1.5 Data requirements for different methods

In seeking a practical updating strategy, it isom@nt to consider the data input requirements
of alternative strategies. At the extremes areuteof an unadjusted outdated model and the
fitting of a new model. When an outdated modebkisdito predict expected accidents at a site,
the only input data required are the traffic floarsd relevant design features for the site of
interest. Fitting a reliable new model will requane extensive database and specialist statistical
expertise. Updating outdated models, both by neditthe model or calibration using a scale
factor, requires traffic flows and relevant desigattires for a group of suitable sites. Clearly
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if these data are needed for a large number afthies the benefits of updating existing models
rather than simply fitting a new model could be lo# theory it is only necessary to have
more observations than parameters to be estim&tedcalibration of the model using a scale
factor there is only one parameter to be estimatezteas with the re-fitted models there may
be several, depending on the model used: in thidysthere are typically around a dozen
parameters. In re-fitting the models we also reggitiess with variation across the data set (for
example, factors taking values of both 0/1 showimgpresence/absence of particular design
features). This is a particular problem when, @® hthe models contain several categorical
variables since, for each significant design featwe need sites with the full range of
combinations of other features. For example, tads with and without hardstrips, it is
necessary to include both lower and higher quatiads and, for each of these combinations,
roads with and without safety fences. In princigen, calibrating models can be achieved
with less data than is needed for re-fitting, altfio better estimates are likely to be achieved
with larger data sets: uncertainty measures likestandard error of the parameter estimates
and goodness-of-fit statistics such as RMSE or Etle expected to be inversely proportional
to the square root of the sample size. In orddfustrate how the accuracy of the estimates
varies with the number of sites used, model D6 wdttesl and calibrated using a range of
sample sizes of randomly selected schemes. The&eymeters and their standard errors,
together with goodness-of-fit statistics are showable 7. These data confirm that the
models can only be updated using a scale factor wiemumber of available sites with
appropriate data becomes small (in this case less about 40 sites). In the case of the
calibrated model, the estimates of the scale faditbnot vary significantly as progressively
smaller samples were used although, as expectestahéard errors increased. Inthe case of
the re-fitted model, when less than 40 sites weegl usew parameter estimates could not be
made because there was an inadequate range of @imb#of the categorical variables.

(Insert Table 7 about here.)
4.1.6 SUmmary

The fit of the outdated models can be improvedeeitly re-fitting the models or by using a
scale factor. Although the re-fitted models sugdlest the value of the parameter estimates
have changed somewhat over time, the main isseetelf the model fit appears to be the
variation in the trend in accident risk over tim@utdated models which correctly estimate
long term trend (e.g. size 2 junction model D8, €ah) can give good estimates of current
accidents but, when the trend is incorrectly esemde.g. size 2 link model D3, Table 5), the
bias can be large. Because changes in accid&rtoim year to year can vary unpredictably,
estimates of trend based on data for one time gg&an be no means guaranteed to give good
estimates for another time period. Thus PAMs thebrporate estimates of trend do not
necessarily give good estimates of current accenhe use of current data to either re-fit the
model or estimate a scale factor give better estisndower RMSE) and less biased estimates
(lower ME) than the unadjusted models essentialbabse the trend in accident risk between
the modelled period and the current period is edtoh from the data rather than predicted
using data from an earlier time period. The tengefor the re-fitted models to give a
somewhat better fit than the calibrated models ssiggthat the form of the relationship
between accidents and other explanatory variableshenged somewhat over time but this is
much less important than the variations in thednarmaccident risk over time.

The best fitting re-fitted models (D4, D8 and D13) sihewn in the appendix. Since the re-
fitting process allows for changes in the propariof accidents on links and at junctions, the
best fitting re-fitted model is a whole schemeds3) model. With the calibrated models these
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proportions are fixed in the size 3 model and, beedrends on links and at junctions differ,
better estimates are obtained by summing the estifeom separate calibrated models for
links and junctions (size 2). For dual carriagewaysreased model complexity improves the
temporal transferability the models somewhat, withinclusion of design features improving
the fit of the link and whole scheme models for btté re-fitted and calibrated models.
However, modelling accidents by type does not impitreefit of the models. Although the
re-fitted model gives slightly better estimatesmgos RMSE) than the calibrated model, the
calibrated model minimises bias (ME=0), can be iadplising data for fewer sites and does
not rely on specialist statistical knowledge. Olabee the calibration of models using a scale
factor appears to be the most practical approaatottel updating.

4.2  Rural single carriageways

The models for rural single carriageways were tegsiag the same procedures as outlined in
Section 4.1 for the rural dual carriageways. Tkeds for each model are shown in Table 8
along with the goodness-of-fit estimated the sameet ways as for dual carriageways. As in
the case of dual carriageways, the fit of the oettlamodels was improved by both re-fitting

and by calibration: the re-fitted models providededter fit to the data than the calibrated
models, but did not offer a substantial improvemerihe model predictions compared to the
calibrated models. The best fitting re-fitted madekre S4, S5 and S10 and the best fitting
calibrated models were S2, S5 and S7 for links,tjans and schemes respectively.

(Insert Table 8 about here.)

As with dual carriageways, in addition to the modelsaccidents on all minor links or all
minor junctions on a scheme (size 2 models), TR &tted models for individual minor links
(size 1 models). As inthe dual carriageways daseindividual minor links models were tried
but again the best estimates were obtained usinigetefitting model for all minor links (size

2 models) rather than summing estimates for ind&idninor links. As for dual carriageways,
estimates of accidents on whole schemes were obthinedmming the estimates from the
best fitting size 2 link and junction models ands® were compared with those obtained using
the best fitting size 3 model. The results weralambo those for the dual carriageways, with
the slightly better estimates for the calibratedials obtained by summing the estimates from
the size 2 models; for the re-fitted models thees wothing to choose between the size 2 or
size 3 models. The estimates from the calibrateel 2imodels (Table 8, S2 and S5) gave a
RMSE of 8.6 and a ME of -0.2 while the best fittrajibrated size 3 model (Table 8, S7) gave
a RMSE of 9.2 and a ME of -0.1 . With the re-fitt@odels, the summed predictions from the
size 2 models (Table 8, S4 and S5) gave a RMSEBand a ME of -0.2 while the best fitting
size 3 model (Table 8, S10) gave a RMSE of 8.0MBEdof +0.1 . The best fitting re-fitted
models (S4, S5 and S10) are given in the appendix.

It is perhaps surprising that the best fitting meder single carriageways did not always
include geometric features. This result does remthat the geometric parameters have no
effect upon the number of accidents, but it mathlaé improvements in design since the 1980s
mean that the most dangerous geometric featuré&mger arise.

4.3  Comparison with COBA models

The simple rate models for rural dual and singtei@geway links and schemes used in COBA
were tested using the same procedures as outlirgetiion 4.1. The trends and the goodness-
of-fit for each model are shown in Table 9. Ashe tase of the TRL models, the re-fitted
models gave the best fit to the data (lowest AlT)e calibrated models gave a better fit than
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the unadjusted models, although for links the improent was marginal. This suggests that
the trend in accident risk currently used in COBAappropriate for links. Comparing the re-
fitted COBA links models with the TRL size 2 link aels indicates that, for both single and
dual carriageway links, the best fitting re-fitte®LT models (S4, Table 8 and D4, Table 5)
gave only marginally better estimates than theittesf COBA models. For schemes, the
unadjusted COBA models over-estimate accidentsicptatly for dual carriageway schemes,
suggesting that the trend in accident risk is wadtimated in the models. However,
comparing the re-fitted COBA scheme models withTR size 3 models indicates that, for
both single and dual carriageway schemes, thefiiesg re-fitted TRL models (S10, Table 8
and D13, Table 5) again gave only marginally begttimates than the re-fitted COBA models.

These results confirm that increased model comyld®i no means ensures better temporal
transferability and that the main issue affecting tmodel fit is the variation in the trend in
accident risk over time. Outdated models which atlyreestimate the trend between the
modelled period and the current period can givedgestimates of current accidents but,
because trends in risk can vary over time, it efgmable to estimate trend from the data (by re-
fitting or calibration) rather using estimates lthea data from an earlier time period.

(Insert Table 9 about here.)
5. Conclusions

Reliable predictive accident models (PAMs) are dssleto design and maintain safe road
networks but on going changes in road and vehid&gdecoupled with a range of road safety
initiatives, mean that these models can quicklyobee dated. While it is quite possible to fit
new models, reliable new models would require an siten(and thus expensive) database
which includes high quality data concerning accidetraffic flows and design characteristics
for a large sample of links and/or junctions. tdiéion, and perhaps more importantly, the
fitting of new models is likely to provide only anporary solution since they will in turn also
become outdated. Certainly the difficulties in eleping PAMs mean that many widely used
models are based on data collected many years\&pde some available models do include
a term to adjust for trends in accidents it is bymeans certain that accident trends remain
constant over time.

This paper has examined two principal issues inigtigd accident modelling. Firstly, it has
examined the extent to which the temporal transfinabf predictive accident models varies
with model complexity and, in particular, the extenwhich the inclusion of design variables,
and modelling by accident type and different roladhents in more complex models, increases
temporal stability. Secondly, it has investigatbed teliability and practicality of updating
strategies based both on re-fittitige outdated model and calibrating the model uaisgale
factor that could allow currently available PAMslie readily updated to any point in time.
The models used to illustrate these issues arsuites of models developed by TRL for rural
dual and single carriageway roads in the UK and whiehwidely used in several software
packages in spite of being fitted using data froen1980s. Some simple accident rate models
were also used. The database used to test thesnodeeldes data for the 5 years 2005-20009.

On the issue of model complexity, it was found thateased model complexity by no means
ensured better temporal transferability. Modellecridents by type did not improve the
goodness-of-fit and, although the inclusion of dadeatures improved the goodness-of-fit of
some models (particularly re-fitted models), thissvey no means universal. Indeed simple
accident rate models could be updated to give astisrthat were almost as good as those from
models which included a range of design featusdthough the re-fitted models suggest that
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the value of the parameter estimates have changedvshat over time, the main issue
affecting the model fit is the variation in thertdein accident risk over time. While some more
complex models include a term to allow for long-téramds in accident risk, our data show
that it is by no means clear that the pattern ahge will remain stable over time and this can
lead to significant bias in the estimates. Simptedels, with trend estimated from the data
(by re-fitting or calibration), give better estireatthan more complex models with trend
predicted using data from an earlier time period.

The fit of the outdated models can be improvedeeilly re-fitting the models or by calibrating
the models using a scale factor. Both methodsin@dgss data than fitting new models and,
because they can be applied at any point in timaidathe possibility of becoming outdated.
Slightly better estimates (lower RMSE) were obtainsithg re-fitted models but the calibrated
models minimise bias (ME=0), can be applied usiatador fewer sites and do not rely on
specialist statistical knowledge. On balance tHéoredion of models using a scale factor
appears to be the most practical, cost-effectitexradtive to developing new models.
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Appendix:

The best fitting re-fitted models for dual carriaggs (highlighted in Table 5) were:
* Size 2, link: Model D4

[-0.034{N, /Ls)+ 052[{N, /L) - 0.017{N, /L)

- 078[{N,/Lg)+ 015[(N, /L) - 024D, ,

+0.0200y 5 — 017[, + 70010 [,
| +0.01408,, +0.081[t),, — 0.050[

A=0.0480Q%° [1, [&xp [exp(— 0.06711)

» Size 2, junction: Model D8

A=0.025[0Q%? [N, [exg- 026N, /Ls)+ 037{N,.,/L,)+ 096{L, /N, )| @xp(- 0.0380)

e Size 3: Model D13

- 021[{N, /L) + 079{N, /L. )+ 017C{N,/L,)

- 039N, /Lg)+ 056L{N, /L) - 01108, + 0118,
- 00670, - 15x10° [g, +0.0120D,, — 22x10°° [hyy
- 044[h4

A= 0.0500Q* [14 [&x [exp(— 0.060(1)

The best fitting re-fitted models for single cageavays (highlighted in Table 8) were:
* Size 2, link: Model S4
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- 0170{N,,/Ls)- 043N, /L) - 016g,

A=00520Q°% [, [&x §
~ 0090, , + 9.1X107* [y, +0.02103,, +0.0310H),,

[exp(— 0.05911)

» Size 2, junction: Model S5
A= 025[Q% [N, [exg- 060L{N, /Ls)- 096L{N, /L, )] &xp(- 0.065L1)
» Size 3: Model S10

- 026[{N,,/Ls)-0.019{N, /L. ) - 016[hq,
A=0.087[Q%° [ [exp - 0110%,,, - 9.7X10™ [§, + 0.0170H,, [exp(— 0.060L1)
+0.01008)

Where, Q is the two way AADT (in thousand veh/day)

N, isthe number of major junctions on the scheme,
N, is the number of minor junctions on the scheme,
N;, N, ... are the numbers of minor junctions of type® 1,

L, is the total length of the links on the schemecligding the length of the minor
junctions),

Ls is the total length of the scheme (including #wgkh of the minor junctions),

duse IS afactor setto unity if hardstrips are presamboth the nearside and the offside
and set to zero otherwise;

gus IS @ factor set to unity if hardstrips are preseneither the nearside or the offside
(but not both) and set to zero otherwise;

do is a factor describing the quality of the schemetgainity for lower quality roads
and zero for higher quality roads (as defined ictiSa 2);

gs is the bendiness (degreesRm

g, is the hilliness (m knY;

gy IS the offside access density (accesse$)km

g IS the access density on both sides of the razmbéaes km);

gow IS @ factor describing the width of the schemetgeinity for wide roads (10 m)
and zero for normal width roads (7.3 m); and

g IS a factor set to unity if a safety fence is présand set to zero otherwise; and
tis the number of years since 2007.

Wood et al. Updating Outdated Predictive Accident Models Page 21/ 19



Model Size 1 Size 27, link Size 2%, junction Size 3°
. T . . . . . Accidents on all links and
Leve _ Accidents on an individual | Accidents on all minor links Accidents at all minor . . .
Description . . . . minor junctions of a
| minor link of a scheme junctions of a scheme
scheme
Predicts total accidents without
1A . Yes Yes Yes Yes
geometric parameters
Predicts total accidents with
1B . Yes Yes Yes
geometric parameters
) Predicts accidents disaggregated by Ves
type without geometric parameters
3 Predicts accidents disaggregated by Ves?
type without geometric parameters

2 Size 2 and 3 models were also given where minor junctions were disaggregated by type
b Level 3 models were not provided for all types of accident

Table 4: Typesof TRL model.
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Model Model Mean TRL New Parameter Scale factor

Size Geom? Tjgeb Number | Acc® |[Trend RMSE ME AIC | Trend StErr RMSE ME AIC | SF¢ StErrd RMSE ME AIC

4 D1 45.8 -0.02 195 -8.7 452 | -0.066 0.014 15.9 1.0 417 ] 0.88 0.17 16.4 0.0 437

No 2 D2 45.8 -0.02 195 -8.8 448 | -0.066 0.014 15.8 1.0 416 | 0.88 0.17 16.2 0.0 432

Size 2, 1 D3 45.8 -0.02 19.6 -9.1 447 | -0.066 0.014 16.2 1.2 415 0.89 0.17 16.0 0.0 430

Link 4 D4 45.8 -0.02 214 -11.2 459 | -0.067 0.014 128 0.4 406 | 0.94 0.18 149 0.0 440

Yes 2 D5 45.8 -0.02 209 -11.0 453 | -0.067 0.014 125 0.2 409 | 0.94 0.18 143 00 433

1 D6 45.8 -0.02 206 -11.0 450 | -0.067 0.014 129 0.3 407 | 0.94 0.18 140 00 429

4 D7 22.8 -0.02 17.9 24 321 | -0.039 0.022 11.9 1.0 303 ]| 0.64 0.12 158 0.0 325

No 2 D8 22.8 -0.02 14.1 0.4 306 | -0.038 0.022 115 0.8 302 ]| 0.70 0.12 13.8 0.0 307

Size 2, 1 D9 22.8 -0.02 105 -2.6 315 | -0.037 0.022 11.2 05 305 0.80 0.13 108 0.0 309
Junction 4 22.8 No model
Yes 2 22.8 No model
1 22.8 No model

4 D10 64.4 -0.02 25.6 -2.3 476 -0.059 0.012 239 34 430|074 015 26.2 0.0 472

No 2 D11 64.4 -0.02 238 -4.0 467 -0.059 0.012 233 2.8 436 |0.76 0.15 243 0.0 462

_ 1 D12 64.4 -0.02 22.0 -8.1 470 -0.058 0.012 227 24 435|081 0.16 207 0.0 460

Size 3 4 D13 64.4 -0.02 271 -4.7 473 -0.060 0.012 185 19 426 |0.77 0.16 28.1 0.0 468

Yes 2 D14 64.4 -0.02 26.5 -4.1 460 -0.060 0.012 175 1.0 433|0.76 0.15 27.6 0.0 455

1 D15 64.4 -0.02 29.0 -3.9 459 -0.059 0.012 170 0.8 432|0.76 0.16 30.7 0.0 453

aGeom: With or without geometric factors in the model.

Jn Type: Number of types of minor junctions in model (see Section 3 for a full explanation).

°‘Mean Acc: The mean number of accidents per site.
dStErr: The standard error in the trend/scale factor.
€SF: Scale factor.

Table 5: Goodness of fit of the models for dual carriageway schemes.
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Model Mean TRL New parameter estimate Scale factor

Model Scale

Number Acct Trend RMSE ME AIC Trend StErr RMSE ME AIC factor StErr RMSE ME AIC

Level 1A: Total accidents,

) D16 4.4 -0.025 3.78 1.5 2562 | -0.16 0.01 341 0.0 2468 | 0.51 0.03 3.38 0.0 2469
no geometric factors
Level 1B: Total accidents,
. ) D17 4.4 -0.025 3.32 0.7 2502 | -0.06 0.01 325 0.0 2447 | 0.59 0.04 3.29 0.0 2472
with geometric factors
Level 2: Accident type,
) D18 4.4 -0.025 4.11 1.9 2594 0.51 0.03 3.40 0.3 2470
no geometric factors
Level 3: Accident type,
D19 4.4 -0.025 4.67 1.4 2573 0.59 0.04 4.24 -0.8 2530

with geometric factors

Table 6: Goodness of fit of the models for individual dual carriageway links

Number New Parameter Estimates Scale Factor

of sites Trend StErr Alpha StErr AIC RMSE ME SF StErr AIC RMSE ME
54 -0.067 0.014 1.00 0.10 407 12.9 0.3 0.94 0.18 429 14.0 0.0
40 -0.059 0.016 1.00 0.15 416 14.1 2.0 0.98 0.23 430 13.8 1.0
30 No model fitted 0.96 0.27 430 13.7 0.0
20 No model fitted 0.89 0.25 430 14.5 -3.1
10 No model fitted 0.96 0.41 430 13.7 0.2

Table 7: Effect of sample size on updated models.
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Model Model Mean TRL New parameter Scale factor
Type Geom? Ty::esb Number Acct Trend RMSE ME AIC | Trend StErr® RMSE ME AIC SF¢ StErr RMSE ME AIC
No 2 S1 13.6 -0.02 8.6 -5.7 535 -0.061 0.023 5.6 -0.1 430 | 1.22 0.17 6.1 -0.1 461
Size 2, 1 S2 13.6 -0.02 8.6 -5.6 531 | -0.061 0.023 5.6 -0.1 428 | 1.21 0.19 6.1 -0.1 460
Link Yes 2 S3 13.6 -0.02 7.8 -4.8 539 | -0.059 0.023 4.9 0.0 420 | 1.09 0.18 7.1 -0.1 479
1 S4 13.6 -0.02 7.7 -4.7 534 | -0.059 0.023 4.9 0.0 418 | 1.08 0.18 7.0 0.0 477
No 2 S5 9.4 -0.02 7.1 -2.5 315 | -0.065 0.032 6.2 0.0 301 | 0.97 0.14 6.2 0.0 308
Size 2, 1 S6 9.4 -0.02 7.2 -2.2 315 | -0.065 0.032 6.4 0.0 305 ]| 0.92 0.13 6.4 0.0 311
Junction Yes 2 9.4
1 9.4
2 S7 20.5 -0.02 12.9 -7.9 563 | -0.060 0.019 8.5 0.2 469 | 1.16 0.24 9.2 -0.1 500
Size 3 No 1 S8 20.5 -0.02 12.8 -7.5 555 | -0.060 0.019 8.5 0.2 468 | 1.12 0.22 8.8 0.0 501
'€ 2 S9 20.5 -0.02 11.7 -6.5 566 | -0.060 0.019 7.8 0.1 468 | 1.04 0.22 9.9 0.0 516
Yes 1 S10 20.5 -0.02 11.6 -6.1 556 | -0.060 0.019 8.0 0.1 467 | 1.01 0.20 9.6 0.0 516
2Geom: With or without geometric factors in the model.
bJn Type: Number of types of minor junctions in model (see Section 3 for a full explanation).
‘Mean Acc: The mean number of accidents per site.
dStErr: The standard error in the trend.
°SF: Scale factor.
Table 8: Goodness-of-fit of the models for single carriageway schemes.
Mean COBA New parameter Scale factor
Model Acc® | A.C.C.> RMSE ME AIC Trend  StErr RMSE ME AIC SFd StErr RMSE ME AIC
Dual Carriageway: Links 45.8 0.973 22.2 1.1 428 -0.07 0.01 15.6 1.0 410 0.98 0.20 21.7 0.0 427
Dual Carriageway: Schemes 64.4 0.973 52.9 21.1 456 -0.06 0.01 22.1 2.2 437 0.75 0.16 314 0.0 445
Single Carriageway: Links 13.6 0.973 5.8 -0.5 462 -0.06 0.02 6.4 1.2 459 1.04 0.16 5.9 0.0 458
Single Carriageway: Schemes 20.5 0.973 10.2 2.7 542 -0.06 0.02 9.3 0.6 499 0.88 0.15 9.1 0.0 496

Mean Acc: The mean number of accidents per site.
bA.C.C.: Annual Change coefficient. This is of the form ACCN where N is the number of years since 2000.

°StErr: The standard error in the trend / scale factor.

d4SF: Scale factor

Table 9: Goodness of fit of the simple accident rate models.
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