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M A J O R A R T I C L E

An Outpatient, Ambulant-Design, Controlled
Human Infection Model Using Escalating Doses
of Salmonella Typhi Challenge Delivered in
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Background. Typhoid fever is a major global health problem, the control of which is hindered by lack of a suit-
able animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced
understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge
model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%–75% in typhoid-
naive volunteers when ingested with sodium bicarbonate solution.

Methods. Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely
monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred
(temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated.

Results. Two dose levels (103 or 104 colony-forming units) were required to achieve the primary objective, re-
sulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants
fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and
asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid
infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no
anti-Vi antibody responses were detected.

Conclusions. Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution
can be performed safely using an ambulant-model design to advance understanding of host–pathogen interactions and
immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control.
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Typhoid infection is a major global health problem [1]. Salmo-
nella enterica serovar Typhi (S. Typhi) is a human-restricted
pathogen; in the absence of suitable animal models, many details
of the human response to infection remain unclear [2, 3]. From
1952 to 1974, human typhoid challenge studies were performed
at the University of Maryland to address this critical issue [2, 4–
6]. A successful model was developed in which volunteers ingest-
ed S. Typhi suspended in 45 mL of milk; without buffer, 50% of
participants developed clinical infection following ingestion of
107 colony-forming units (CFU) of wild-type S. Typhi [2, 5].
Data from this model were directly applied to improve under-
standing of antibiotic mechanisms [7] and used in vaccine (a
first step toward eventual licensure of Ty21a vaccine) [8–10]
and diagnostic development [11, 12].

Here we describe the development of a new controlled
human infection model of S. Typhi challenge using outpatient,
ambulant participants. The primary objective of this study was
to ascertain the challenge inoculum (“dose”) of S. Typhi
(Quailes strain) required to produce an attack rate of 60%–

75% in typhoid-naive volunteers when ingested with sodium
bicarbonate buffer solution.

METHODS

Study Design
An observational, dose-escalation study of controlled human in-
fection using S. Typhi (Quailes strain) was performed. The

challenge agent was delivered by oral ingestion of bacteria sus-
pended in sodium bicarbonate solution (NaHCO3[aq]) using a
predetermined dose-escalation strategy (Figure 1). Attack rate
was defined as the proportion of participants diagnosed with in-
fection by day 14 after challenge meeting clinical (temperature
≥38°C sustained for ≥12 hours) and/or microbiological (blood
culture–confirmed S. Typhi bacteremia) endpoints (per protocol
population; “typhoid diagnosis”). An independent data and safe-
ty monitoring committee reviewed participant safety and attack
rate data throughout the study, in particular cumulative data
gathered following the first, fifth, 10th, and 20th challenges per-
formed. Secondary objectives included description of the human
response to and the microbiological dynamics of infection.

The study was approved by Oxfordshire Research Ethics
Committee A (10/H0604/53) and conducted in accordance
with the principles of the International Conference of Harmo-
nisation Good Clinical Practice guidelines.

Setting and Participants
The study was performed at the Centre for Clinical Vaccinology
and Tropical Medicine, Oxford, United Kingdom. The United
Kingdom is nonendemic for typhoid fever; the rate of typhoid
fever notification in Oxfordshire is 0.5 per 100 000, the majority
of which is travel related [13].

Healthy adults aged 18–60 years who had not previously re-
ceived typhoid vaccination or been resident >6 months in
typhoid-endemic areas were eligible to participate. With written

Figure 1. Dose-escalation decision algorithm. Abbreviation: pts, patients.
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informed consent, screening was performed to assess partici-
pant health status. Exclusion criteria were extensive and includ-
ed any significant medical, surgical, or psychiatric illness;
evidence of gallbladder disease (by ultrasound examination);
antibiotic allergy; food-handling occupation; or contact with
susceptible individuals (including healthcare workers and carers
of young children or elderly or immunocompromised persons).
Consent was not obtained from close household contacts, but
participants were required to provide these contacts with writ-
ten information providing details regarding the study and mea-
sures to reduce the risk of infection. After completion of
antibiotics, participant contacts were also offered the opportu-
nity to be screened for infection.

Challenge Strain
Salmonella Typhi Quailes strain was isolated in 1958 from the
gallbladder of a known chronic carrier. Quailes strain can ex-
press the Vi antigen and is fully antibiotic susceptible [2, 5].
A fresh working cell bank was manufactured under Good Man-
ufacturing Practices (GMP) guidelines prior to storage at−80°C.
Whole-genome sequencing was used to determine the phyloge-
netic relationship of the Quailes strain to other S. Typhi (Sup-
plementary Figure 1). These data also confirmed that the
challenge strain encoded the expected repertoire of virulence-
associated determinants.

Inocula and Challenge
Inocula were freshly prepared prior to each challenge by de-
frosting and suspending the required number of bacteria in
30 mL/0.53 g NaHCO3(aq). Participants fasted for 90 minutes
before ingesting 120 mL/2.1 g NaHCO3(aq). Two minutes
later, participants ingested the prepared challenge suspension
and were monitored for 15 minutes. To calculate the actual
challenge dose given, direct plating of aliquots from the chal-
lenge inoculum and remaining working cell bank vials was per-
formed in triplicate using tryptone soya agar (Oxoid) and
culture for 24 hours before colony counting.

Clinical Evaluation of Participants
Participants were reviewed daily for at least 14 days, recording
the duration and severity of all solicited (Supplementary
Table 1) and unsolicited symptoms experienced, and twice-
daily oral temperature readings, using supplied diary cards. Par-
ticipants had 24-hour access to a study physician; additional re-
views were performed if infection was suspected, at medical
discretion, and at participant request.

Indications for antibiotic treatment (ciprofloxacin, 500 mg
twice daily, 14 days) included reaching typhoid diagnosis, un-
manageable symptoms, or clinical necessity. All remaining par-
ticipants received treatment at day 14. Treatment compliance
was ensured by direct observation of antibiotic ingestion at

study visits and daily reminders by telephone contact and/or
text message.

Subsequent visits were performed at 21, 28, and 60 days after
challenge. Clearance of infection after treatment was confirmed
by bacterial culture of ≥2 stool specimens obtained at least 1
week apart, at least 3 weeks after completion of antibiotics.

Assessment of Hematological, Biochemical, and Serological
Response to Challenge
Routine blood hematology and biochemistry were assessed on al-
ternate days after challenge and at typhoid diagnosis; a maximum
of 1110 mL blood was collected from each study participant by
day 28. Serological response to challenge was performed using
blood collected at baseline (day 0) and 14, 28, and 60 days
later. Specific immunoglobulin G (IgG), immunoglobulin M
(IgM), and immunoglobulin A (IgA) responses to Vi polysaccha-
ride (Sanofi Pasteur MSD, Maidenhead), lipopolysaccharide
(LPS) (L2387; Sigma-Aldrich, Dorset), and flagellin (prepared
in-house by shearing and centrifugation of a whole-cell prepara-
tion) were measured in serum by enzyme-linked immunosorbent
assay, using goat antihuman IgG, IgM, and IgA conjugated to
specific horseradish peroxidase (AbD Serotec, UK).

Assessment of Microbiological Dynamics After Challenge
Salmonella Typhi shedding in stool was assessed using daily self-
collected samples, cultured according to national standard
operating procedures [14]. Blood (10 mL or 5 mL at typhoid
diagnosis) was cultured daily by direct inoculation into broth
(BACTEC Plus Aerobic vials, BD) and subsequent automated
growth detection (BACTEC FX System, BD), in accordance
with standard methods [15]. Salmonella Typhi growth and
serotype were confirmed by biochemical profile (API-10S, bio-
Mérieux, France) or slide agglutination according to the Kauff-
man-White classification, respectively [16].

Quantitative blood culture was performed at typhoid diagnosis
by inoculation of 10 mL blood into an ISOLATOR 10 tube (a com-
mercial lysis-centrifugation system;Alere,UK).After centrifugation,
the resulting pellet was directly plated onto XLD agar (Oxoid, UK).
Quantitative stool culture was performed by suspending 1 g of stool
in sodium selenite, followed by subculturing onto XLD agar
(Oxoid). Blood- or stool-inoculated plates were then incubated
(37°C for 24 hours) prior to identification and counting.

Statistical Analyses
An initial challenge dose of 103 CFU was chosen as the highest
dose from the historical studies that did not lead to clinical in-
fection [5, 17, 18].With a final sample size of 20 participants at
each dose level, 95% confidence intervals (CIs) of 36%–81% and
46%–88% for measured attack rates of 60% or 70%, respectively,
were anticipated. Analyses are descriptive and comprise propor-
tions or means with associated 95% CIs. Diagnostic odds ratios
(DORs) (a single indicator describing the ratio of the odds of
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positivity in infection relative to the odds of positivity in the
noninfected; 1 indicating that the test does not discriminate be-
tween infected and uninfected) [19] and 95% CIs were calculat-
ed to assess performance of individual symptoms reported for
typhoid diagnosis to be made.

Clinical, laboratory, microbiological, and immunological
data were collated using a Web-interface database (OpenClinica
Community, version 2.1) and Microsoft Excel (2010 edition).
Data analysis was performed using SPSS (version 16.0, IBM
SPSS) and GraphPad Prism (version 5, GraphPad, Inc).

RESULTS

Participants
From February to October 2011, 41 participants were enrolled
and challenged with 103 or 104 CFU of S. Typhi (Table 1). Forty
participants were included in the per protocol analysis
(Figure 2); 1 participant challenged with 103 CFU was treated
for symptoms related to infection before day 14 without meet-
ing diagnostic criteria and was therefore excluded.

Clinical Safety
Challenge was well tolerated; no participants required hospital
admission, intravenous antibiotics, or fluids. Four participants
fulfilled criteria for severe infection (Table 2). No episodes of
shedding or carriage following the initiation of antibiotics
were identified.

Attack Rates
Typhoid diagnosis was made in 11 of 20 (55% [95% CI, 32%–

77%]) participants challenged with 103 CFU of S. Typhi. Dose
escalation to 104 CFU resulted in 13 of 20 (65% [95% CI, 41%–

84%]) participants developing infection (Table 1). Ten partici-
pants (4 in the 103 CFU group and 6 in the 104 CFU group)

were diagnosed based on blood culture result alone, of whom
4 remained persistently afebrile (temperature <38°C). Two par-
ticipants recorded temperatures ≥38°C and reported mild
symptoms but remained “undiagnosed,” as fever was not sus-
tained for 12 hours and all blood cultures remained negative.

Clinical Response
Overall median interval from challenge to initiation of antibiot-
ic treatment was 12 days (103 CFU, 14 days; 104 CFU, 9 days;
Table 2, Figure 3A). In those participants developing infection,
the median incubation period from challenge to diagnosis was
8 days (103 CFU, 9 days [interquartile range {IQR}, 6.5–13];
104 CFU, 8 days [IQR, 6–9]). In participants fulfilling clinical
diagnostic criteria, no difference was seen in time from chal-
lenge to diagnosis (Table 2, Figure 3B).

Symptoms consistent with typhoid infection were reported
from day 4. The clinical profile of infection varied considerably
between participants, although headache was universally re-
ported by those infected (DOR, 23.4 [95% CI, 1.2–460.7]; Sup-
plementary Figure 2 and Supplementary Table 1). Arthralgia
was the most discriminatory symptom (DOR, 57.0 [95% CI,
6.0–541.5]; Supplementary Figure 2C).

Clinical observations made are summarized in Table 3.
Relative bradycardia was seen at typhoid diagnosis in 4 of 7 par-
ticipants with temperatures ≥38.3°C (ie, recorded heart rate
<110 bpm) or 2 of 2 participants with temperatures ≥38.9°C
(heart rate <120 bpm) [20].

Hematological and Biochemical Response
In participants developing typhoid infection, laboratory abnor-
malities were evident prior to the onset of clinical typhoid
symptoms (Supplementary Figure 3).

Hemoglobin concentrations fell progressively in all groups
after challenge (Supplementary Figure 3E ). An initial fall in

Table 1. Participant Demographic Characteristics and Challenge Dose Data

Characteristic Dose 1 Dose 2 All

Target range S. Typhi challenge dose 1–5 × 103 CFU 10–50 × 103 CFU . . .

No. of participants challenged (per protocol analysis) 21 (20) 20 (20) 41 (40)
Actual S. Typhi challenge dose, median [IQR]

All participants 1.34 × 103 CFU [0.98–1.69] 19.8 × 103 CFU [18.8–21.6] . . .

Typhoid diagnosed subsequently 1.05 × 103 CFU [0.97–1.58] 20.3 × 103 CFU [18.8–20.3) . . .
Typhoid not diagnosed subsequently 1.39 × 103 CFU [1.00–1.79] 19.4 × 103 CFU [18.8–22.8] . . .

Sex, male, No. (%) 17 (81) 12 (60) 29 (71)

Age, y, mean ± SD (range) 29.8 ± 9.4 (19.4–46.5) 30.2 ± 8.8 (19.6–45.1) 30.0 ± 9.0 (19.4–46.5)
Ethnicity, white, No. (%) 20 (95) 19 (95) 39 (95)

Tobacco smoking, yes, No. (%) 5 (24) 8 (40) 13 (32)

Alcohol intake, unitsa, median [IQR] 6 [3–10] 5 [1.25–10] 6 [2–10]

Abbreviations: CFU, colony-forming units; IQR, interquartile range; S. Typhi, Salmonella enterica serovar Typhi; SD, standard deviation.
a 1 unit = 10 mL or 8 g pure alcohol equivalent consumed per week.
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eosinophil fractions was evident in participants subsequently
developing infection (Supplementary Figure 3I). Total white
cell count remained within the normal range until diagnosis,

at which point total white cell count and neutrophil and lym-
phocyte fractions dropped to low levels (Supplementary
Figure 3G, H, and J). Thrombocytopenia was seen in all

Figure 2. Participant recruitment, enrollment, and disposition flow diagram for clinical study OVG 2009/10. Abbreviations: CFU, colony-forming units;
S. Typhi, Salmonella enterica serovar Typhi.
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participants diagnosed with typhoid infection; platelet counts
fell to <150 × 103 cells/µL in 11 of 24 participants (Supplemen-
tary Figure 3F).

Microbiological Dynamics
Salmonella Typhi was cultured from blood in 10 of 11 (90.9%) and
11 of 13 (84.6%) diagnosed participants given 103 or 104 CFU,

respectively (Table 4); however, those participants ingesting
104 CFU had a greater proportion of positive blood cultures prior
to antibiotics being initiated (103 CFU, 6.2%; 104 CFU, 9.6%).
Quantitative blood culture performed at typhoid diagnosis dem-
onstrated median bacterial loads of 0.47 CFU/mL and 1.10
CFU/mL in those challenged with 103 CFU and 104 CFU, respec-
tively (Table 4).

Table 2. Attack Rates and Incubation Periods for the Per Protocol Population

Target Challenge Dose

Outcome Measure 103 CFU (n = 20) 104 CFU (n = 20)

Predefined diagnostic criteria reached for typhoid diagnosis, No. (%)
Clinical (temperature) with blood culture confirmation 6 (30) 5 (25)

Clinical (temperature) only 1 (5) 2 (10)

Blood culture with clinical signs of typhoid fever 1 (5) 5 (25)
Blood culture only 3 (15) 1 (5)

Overall attack rate, No. (%) 11 (55) 13 (65)

Severe typhoid fever, No. (%)
Oral temperature ≥40°C 0 (0) 2 (10)

Grade 3 or higher laboratory abnormality 1 (5)a 1 (5)b

All severe typhoid diagnoses, No. (%) 1 (5) 3 (15)
Incubation periods, d, mean ± SD (No.), median [IQR]

Time to initiation of antibiotic treatment 11.65 ± 3.27 (20)
14 [8.75–14]

9.9 ± 3.35 (20)
9 [4–14]

Typhoid-diagnosed participants only, d, mean ± SD, (No.), median [IQR]

Time to microbiological and/or clinical diagnosis 9.73 ± 3.35 (11)
9 [6.5–13]

7.69 ± 1.65 (13)
8 [6–9]

Time to clinical diagnosis 7.57 ± 1.74 (7)
7.5 [6–8.75]

7.57 ± 1.90 (7)
7 [6–8.5]

Time to microbiological diagnosis 13.5 ± 0.58 (4)
13.5 [13–14]

7.83 ± 1.72 (6)
8 [6.25–9]

Attack rates with alternative diagnostic criteria, all participantsc, No. (%)

Oral temperature measurement ≥37.5°C (any duration) 11 (52) 14 (70)

Oral temperature measurement ≥38°C (any duration) 10 (48) 13 (65)
Oral temperature measurement ≥38.5°C (any duration) 8 (38) 11 (55)

Oral temperature measurement ≥38°C (any duration) or bacteremia 12 (57) 14 (70)

Oral temperature measurement ≥38°C (any duration) and bacteremia 7 (33) 10 (50)
Oral temperature measurement ≥38°C (any duration) and subsequent
bacteremia

5 (24) 8 (40)

Oral temperature measurement ≥38°C (any duration) and subsequent
bacteremia OR positive stool culture

7 (33) 10 (50)

Oral temperature measurement ≥38°C (any duration) OR bacteremia OR
positive stool culture

14 (67) 14 (70)

Symptoms

Average No. of solicited symptoms reported per participant, mean ± SD 20.4 ± 15.9 27.6 ± 2.8

Participants reporting at least 1 severe symptom, grade 3 or higher, No (%) 8 (40) 10 (50)

Predefined criteria for typhoid diagnosis were either clinical (reaching and sustaining an oral temperature of ≥38°C for ≥12 hours) or microbiological (having 1 or more
confirmed positive blood cultures). Criteria for severe typhoid included any of the following: oral temperature measurement ≥40°C, lethargy or confusion,
gastrointestinal bleeding or perforation, or any grade 3 or higher laboratory abnormality (these are described for the 2 individual cases in footnotes a and b below).

Abbreviations: CFU, colony-forming units; IQR, interquartile range; SD, standard deviation.
a Increase in alanine aminotransferase to 10 times the upper limit of normal (45 IU/L): day 10, 90 IU/L; day 12, 483 IU/L; day 14, 667 IU/L; day 31, 46 IU/L.
b Hypokalemia (<3.1 mmol/L): day 6, 3.5 mmol/L; day 7, 3.1 mmol/L; day 8, 3.0 mmol/L; day 12, 3.8 mmol/L.
c Including the participant excluded from the per protocol analysis.
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Figure 3. Kaplan-Meier plots demonstrating time to diagnostic endpoints including all diagnoses (A ), those diagnosed using clinical (B ) and micro-
biological (C) criteria, and time to fever (first temperature ≥38°C; [D] ) and to first positive blood culture (E ), following challenge at 2 dose levels (103

or 104 colony-forming units [CFU]) of Salmonella Typhi (Quailes strain). Shaded gray area, end of 2-week observation period (all remaining participants
started on antibiotic therapy); dotted gray line with circle symbols, participants challenged with 103 CFU; dashed black lines with square symbols, partic-
ipants challenged with 104 CFU.
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Early shedding of S. Typhi (detected within 72 hours of chal-
lenge) was found in 30% of all participants, of whom 10 of 12
(83%) subsequently developed infection (DOR, 5 [95% CI,
.9–27.1]). Salmonella Typhi was subsequently shed by 18 of

24 (75%) of typhoid-diagnosed participants; shedding
preceded typhoid diagnosis in 12 of 18 participants. One other-
wise asymptomatic participant (103 CFU dose) had S. Typhi
cultured from stool specimens taken 13 days after challenge.

Table 3. Overview of Clinical Findings

Clinical Finding

Target Challenge Dose

103 CFU (n = 20) 104 CFU (n = 20)

Radial pulse, bpm, median [IQR]
Screening visit 70 [64–73.5] 64 [58.5–78.5]

Baseline (day 0) 70.5 [63.8–78] 71 [58.8–83.8]

Typhoid diagnosis 91 [80.5–103.5] 95 [87–102]
Day 14 77 [72.3–80] 78.5 [70.3–86.8]

Systolic blood pressure, mm Hg, median [IQR]

Screening visit 126 [119–139] 127 [119–136]
Baseline (day 0) 122 [117–137] 121 [113–139]

Typhoid diagnosis 125 [123–140]a 124 [120–130]b

Day 14 125 [118–135] 121 [115–131]
Oral temperature, °C, median [IQR]

Baseline (day 0) 36.3 [36.1–36.4] 36.3 [36.1–36.6]

Typhoid diagnosis 37.9 [37–38.6] 37.8 [37.4–38.1]
Day 14 36.2 [36–36.5] 36.3 [36–36.5]

Rash, No. (%)c 4 (20) 4 (20)

Abbreviations: bpm, beats per minute; CFU, colony-forming units; IQR, interquartile range; mm Hg, millimeters of mercury.
a Relative bradycardia in 2 of 7 participants with temperature ≥38.9°C (heart rate [HR] <120 bpm) and 3 of 7 participants with temperature ≥38.3°C (HR <110 bpm).
b Relative bradycardia in 0 of 7 participants with temperature ≥38.9°C (HR <120 bpm) and 1 of 7 participants with temperature ≥38.3°C (HR <110 bpm).
c Any rash recorded between challenge and day 21. One of 4 and 2 of 4 participants recording a rash after challenge with 103 or 104 CFU, respectively, were
diagnosed with typhoid infection.

Table 4. Microbiological Dynamics of Bacterial Shedding and Bacteremia in Study Participants

Microbiological Measure

103 CFU Dose 104 CFU Dose

Typhoid
Diagnosed

Typhoid Not
Diagnosed All

Typhoid
Diagnosed

Typhoid Not
Diagnosed All

Blood cultures

S. Typhi–positive cultures, No. (%) 19/305 (6.2) . . . . . . 34/353 (9.6) . . . . . .

Bacteremic participants, No. (%) 10/11 (90.9) . . . . . . 11/13 (84.6) . . . . . .
Mean No. of S. Typhi–positive cultures
per participant with typhoid diagnosis

1.7 . . . . . . 2.6 . . . . . .

Mean No. of S. Typhi–positive cultures
per bacteremic participant

1.9 . . . . . . 3.1 . . . . . .

Quantitative culture (all performed),
CFU/mL, median [IQR]

0.5 [0–1.2] . . . . . . 1.1 [0.4–2.1] . . . . . .

Quantitative culture (positive cultures
only), CFU/mL, median [IQR]

1.1 [0.5–1.4] . . . . . . 1.5 [0.9–2.4] . . . . . .

Stool cultures

S. Typhi–positive cultures (any time
point), No. (%)

22/151 (14.6) 2/116 (1.7) 24/267 (11.2) 29/178 (16.3) 1/96 (1.0) 30/274 (10.9)

S. Typhi–positive cultures (prior to 72 h
postchallenge), No. (%)

5/22 (15) 1/17 (6) 6/39 (15.1) 6/21 (29) 1/13 (8) 7/34 (20.6)

Abbreviations: CFU, colony-forming units; IQR, interquartile range; S. Typhi, Salmonella enterica serovar Typhi.
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Stool quantification data for participants challenged with the
103 CFU dose demonstrated that the median number of bacte-
ria excreted was 32 (IQR, 18–41) CFU/g feces (n = 13).

Serological Response
Low levels of anti-H and anti-Vi antibody were measured in all
participants at baseline (Supplementary Figure 4 and Supple-
mentary Table 2), and did not correlate with subsequent risk
of infection using the study diagnosis definition (data not
shown). In participants developing typhoid infection, increases
in IgG, IgM, and IgA to LPS and H antigens were seen, whereas
anti-Vi levels remained unchanged throughout (Supplementary
Figure 4). Little change was seen in participants not succumbing
to infection after challenge.

DISCUSSION

This is the first investigation of the human pathophysiological
response to S. Typhi challenge in nearly 40 years [2]. We have
demonstrated that human challenge with S. Typhi (Quailes
strain) using an outpatient model is safe and well tolerated,
even in participants developing blood culture–confirmed symp-
tomatic infection. Using coadministered sodium bicarbonate
solution, an almost 4-log10 lower dose of S. Typhi was required
to produce the target attack rate of 65% in comparison to his-
torical challenge studies [5, 17].A target attack rate of 60%–75%
was selected based on historical typhoid challenge data from
Maryland, providing a balance between using a smaller and
therefore more physiological exposure dose while achieving a
moderately high attack rate. A relatively high attack rate is ad-
vantageous in performing vaccine and treatment studies as
smaller sample sizes are required, thereby reducing the number
of individuals exposed and making studies more logistically fea-
sible [18].

For some human challenge models of bacterial enteropatho-
gens, eg, Vibrio cholerae O1, inocula require coadministration
of a buffer agent for clinical infection to ensue. For others,
such as Shigella dysenteriae or enterotoxigenic Escherichia
coli, administration with sodium bicarbonate buffer both reduc-
es the inoculum dose required and results in a more consistent
pattern of clinical infection [21–24]. From this study, Salmonel-
la Typhi challenge appears to fall into the latter category, the
features of which are seen as desirable prerequisites for using
a human challenge approach to assess vaccine and therapeutic
efficacy. In particular, lower levels of pathogen exposure are
thought to more closely replicate natural infection and there
is less chance of overwhelming any infection- or vaccine-
derived protective responses seen, an issue noted previously
in typhoid challenge/vaccine studies [10, 22, 23, 25].

Diagnostic endpoint definitions are critical to determining
the attack rate in human challenge studies, for drawing

conclusions regarding dose response, and for their practical ap-
plication to assessment of diagnostics, vaccines, and therapeu-
tics. The effect of altering the stringency of the diagnostic
criteria to make a diagnosis of typhoid infection was highlighted
retrospectively in a reanalysis of the Maryland studies; the strin-
gent criteria used potentially led to missed cases of milder dis-
ease, thus revealing a dose response when less stringent criteria
were used [17]. We provide some confirmation of this dose re-
sponse with use of bicarbonate, in which a higher challenge
dose produces a higher attack rate (with a variety of definitions)
and a shorter duration to the development of bacteremia. Inter-
estingly, there was no association between dose and severity of
clinical disease or time to onset of symptoms, which was also
noted in the Maryland studies [26]. The reasons for this dispar-
ity remain unclear and are under further investigation. Sensitiv-
ity analysis around the diagnostic definition we used
demonstrates a wide range of resulting attack rates, from 32%
to 68% (Table 2). We suggest that reporting a range of outcomes
in this way is useful for extrapolation to a variety of different
settings; that is, a more relaxed endpoint definition may be
most useful in calculating likely vaccine efficacy in field settings,
whereas strict criteria may be more applicable to the develop-
ment of novel diagnostic assays.

This study has also provided further data regarding the
“milder” end of the typhoid infection spectrum, confirming
that subclinical and asymptomatic infections may be relatively
more common than previously anticipated or measured. Al-
though cases of asymptomatic bacteremia were occasionally
seen in the Maryland studies, these were often complicated by
prior receipt of endotoxin challenge or may have been explained
by previous vaccination or exposure [27]. Here, we demonstrate
that asymptomatic bacteremia is a distinct pattern of infection
after exposure (challenge), which may have implications for as-
sessment of patients in the field, and for transmission modeling
and assessment of vaccine mechanisms.

Whereas the range of symptoms reported by participants in
our study is in keeping with those from previous Maryland
studies and community settings, in general, our participants
were more symptomatic throughout the challenge period
[28–33].Reasons for this may include heightened symptom re-
porting (and solicitation) due to perceived study risk profile,
lower levels of preexisting immunity, or the relatively high
exposure dose used in this artificial setting. This range and se-
verity of symptoms may also be more in keeping with the true
early, untreated (both antibiotic, analgesic, and anti-inflam-
matory) clinical presentation of typhoid infection, however
[34, 35], and are more compatible with those noted among
ill returning travellers, rather than patients in endemic settings
or children [30–33].

Important laboratory findings in this study include further
detail regarding the development of hematological changes

1238 • CID 2014:58 (1 May) • Waddington et al

 at R
oyal H

allam
shire H

ospital on June 10, 2015
http://cid.oxfordjournals.org/

D
ow

nloaded from
 

http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu078/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu078/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu078/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu078/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu078/-/DC1
http://cid.oxfordjournals.org/


prior to and following the development of clinical typhoid in-
fection. A gradual fall in hemoglobin and hematocrit was seen
in all participants, likely as a result of the venesections per-
formed, but for which there may be additional explanations in-
cluding bacterial suppression of bone marrow function (a fall in
platelets was also seen in typhoid-diagnosed participants). Early
and almost complete loss of eosinophils from peripheral blood
was observed in all participants subsequently developing infec-
tion. There are few previous reports regarding this phenome-
non, but these include observations made in returning
travelers [36]; although not specific for typhoid fever diagnosis,
this finding may be useful in predicting likely outcome in the
highly controlled challenge setting.

Although the number of bacteria required to cause natural
typhoid infection remains to be elucidated, microbiological
blood quantification data provide indirect support for the
doses used here. We found very low numbers of bacteria to
be present in the peripheral blood at the time of clinical diagno-
sis, a finding supported by field data, albeit in an endemic set-
ting [37]. These very low numbers reiterate the complexity of
developing useful sensitive diagnostics for typhoid. Many par-
ticipants were stool culture positive in the days preceding the
development of bacteremia and fever, a period that did coincide
with the initial onset of symptoms (headache, abdominal dis-
comfort, etc). This prepatent period may represent a period of
heightened transmission risk, for example, to household con-
tacts caring for a sick relative, and supports renewed national
recommendations for contact screening [38].

Longitudinal sample collection during the course of bacterial
challenge provides unique insight into the kinetics of antibody
response following pathogen exposure. In agreement with pre-
vious studies, we found relatively high baseline levels of
S. Typhi–specific LPS antibody in nonexposed/nonvaccinated
study participants [39]. Contrary to the findings from Mary-
land, these baseline titers did not correlate with subsequent in-
fection risk. Similarly, those participants not developing
typhoid fever consistently demonstrated scant response to the
surface-expressed antigens studied [28].Although the use of dif-
ferent antigen preparations in various studies may be partially
responsible, the reasons for this discrepancy remain unclear.
In participants diagnosed with typhoid, most developed mea-
surable LPS and H antibody responses by day 14 or day 28;
among those who did not were several individuals with blood
culture–confirmed infection. This finding underscores a key
central limitation in using serology to sensitively detect acute
infection. Interestingly, no change in Vi antibody titer was
seen in study participants, supporting previous findings from
Maryland and those from studies of engineered Vi+ Ty21a vac-
cine strains [28, 40]. One reason for initially choosing the
Quailes strain for challenge was its consistent Vi expression; in-
deed, all S. Typhi isolates retrieved from blood in this study

demonstrated Vi positivity. Failure to mount an antibody re-
sponse to the Vi antigen in acute infection has not been ade-
quately explained and requires further investigation; these
data do, however, suggest that natural infection–derived immu-
nity is unlikely to be Vi mediated.

Limitations to the interpretation of data derived from this ty-
phoid challenge model include logistic, ethical, and financial
factors restricting the feasible challenge observation period to
2 weeks. The usual incubation period following exposure to nat-
ural infection is 7–14 days (range, 3–60 days) [41]; hence, treat-
ment of all participants with antibiotics at day 14 may have
curtailed or prevented infections that would otherwise have oc-
curred had observation been extended. Furthermore, it is possi-
ble that the Quailes strain is not truly representative of currently
circulating virulent strains; however, we demonstrate close phy-
logenetic relatedness to known disease-causing strains (Supple-
mentary Figure 1).

In summary, we report the successful development of a new
controlled human infection model of S. Typhi using healthy
community volunteers. In addition to enabling detailed investi-
gation of host–pathogen interactions and providing data to in-
form transmission modeling, use of this new challenge model
will facilitate and expedite the development of new diagnostics,
vaccines, and therapeutics, which are much needed for im-
proved global control and ultimate eradication of this human
blight.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org/). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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