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Abstract 

Geomechanical models are often used to predict the impact on land surface of fluid 

withdrawal from deep reservoirs, as well as investigating measures for mitigation. The ability 

to accurately simulate surface displacements, however, is often impaired by limited 

information on the geomechanical parameters characterizing the geological formations of 

interest. In this study, we employ an Ensemble Smoother (ES), a data assimilation algorithm, 

to provide improved estimates of reservoir parameters through assimilation of measurements 

of both horizontal and vertical surface displacement into geomechanical model results. The 

method leverages the demonstrated potential of remote sensing techniques developed in the 

last decade to provide accurate displacement data for large areas of the land surface. 

For evaluation purposes, the methodology is applied to the case of a disk-shaped reservoir 

embedded in a homogeneous, isotropic and linearly elastic half space, subject to a uniform 

change in fluid pressure. Multiple sources of uncertainty are investigated, including the 

radius, R, the thickness, h, and the depth, c, of the reservoir, the pore pressure change, Δp, 

porous medium’s vertical uniaxial compressibility, cM, and Poisson’s ratio, ν, and the ratio, s, 

between the compressibilities of the medium during loading and unloading cycles. Results 

from all simulations show that the ES has the capability to effectively reduce the uncertainty 

associated with those parameters to which the variability, and the spatial distribution of land 

surface displacements are most sensitive, namely R, c, cM and s. These analyses demonstrate 

that the estimation of these parameters values depends on the number of measurements 

assimilated and the error assigned to the measurement values. 
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1 Introduction 

 
It is widely acknowledged that anthropogenic activities involving the fluid extraction from 

or injection into the subsurface cause a change of pore pressure followed by a volumetric 

deformation of the geological formations, which may be transferred up to the land surface. A 

well-known consequence is land subsidence due to oil or gas production from deep 

reservoirs, as observed, for example, in Long Beach, California [1-3], in Venezuela [4], over 

the North Sea Ekofisk Field, Norway [5], and in the Northern Adriatic Sea, Italy [6-10]. 

Groundwater withdrawals from shallow aquifers have long been recognized as another most 

frequent cause of land subsidence, as documented in References [11-13]. 

Other examples include, but are not limited to, vapor or carbon dioxide (CO2) injection in 

oil-bearing geological formations to enhance oil recovery [14-17], underground water 

injection to mitigate man-induced land subsidence [18], or CO2 geological sequestration as a 

means to reduce greenhouse gas emissions in the atmosphere [19-21]. Of related interest is 

gas storage and recovery (GSR), in which natural gas transported long-distance from 

producing countries is stored in depleted reservoirs during periods of low demand, typically 

warm seasons, and recovered for consumption during periods of higher demand, such as cold 

seasons [22-24]. In this case, the alternation of gas injection and gas extraction produces a 

corresponding sequence of expansion and compaction of the reservoir, which may be 

observed on the land surface as a periodic-type time series.  

In several of the examples above, the land surface displacement has raised serious 

concerns in terms of human health, structural safety of buildings, economic risk, as well as 

environmental and hydrologic impact. For these reasons, geomechanical models are 

increasingly used to assess and predict the impact of fluid extraction or injection on the 

ground surface. In this work, we investigate the feasibility of an inverse modeling technique 
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to calibrate reservoir parameters by assimilation of surface displacement data. This technique 

is based on an ensemble smoother (ES) algorithm, a derivate of the classic Kalman Filter 

(KF) [25]. The ES is a Bayesian data assimilation method that, by minimizing the variance of 

the estimation error, merges “prior” information from a theoretical system, i.e., the 

mathematical model, and field data collected from the actual system in order to produce a 

corrected “posterior” estimate. The ES relies upon a stochastic, or Monte Carlo, simulation, 

in which the system uncertainty is represented by an ensemble of realizations of surface 

displacements obtained by “forecast” simulations using a corresponding ensemble of 

reservoir parameters [26]. The update of the displacement ensemble is performed by 

assimilating surface displacement data collected over time. The system parameters can be 

simultaneously updated by incorporating them into the ensemble. Doing so allows for the 

local displacement data to correct not only the displacement ensemble, but also the system 

parameters by leveraging the displacement–parameter cross-covariance estimated in the 

forecast simulation.  

Stochastic simulation approaches based on the KF include the ES, the Ensemble Kalman 

Smoother (EnKS), and the Ensemble Kalman Filter (EnKF) [27] and were originally 

developed in oceanographic and meteorological modeling [26, 28, 29]. In the last decade, 

these methods have been successfully applied to hydrologic studies [30-33] and proved to be 

an appealing alternative to traditional optimization-based inverse modeling approaches for 

the estimation of system parameters [34-39], as they typically require a lower computational 

effort [40]. An extensive review on the use of the EnKF in reservoir engineering applications 

was presented by Aanonsen et al. [41]. Of related interest to this paper are the works of 

Chang et al. [42], Wilschut et al. [43], Iglesias and McLaughlin [44] and Emerick and 

Reynolds [45]. In References [42] and [43], assimilation of land subsidence data into coupled 

flow and geomechanical models was performed via the EnKF method, in order to assess 
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reservoir parameters, such as bulk compressibility [42] and fault transmissibility [43]. 

Iglesias and McLaughlin [44] developed a deterministic inverse method for calibrating 

petrophysical and poro-elastic parameters of a coupled subsurface flow-geomechanical model 

using surface deformation and pore pressure data. Emerick and Reynolds [45] compared the 

performances of the EnKF and the ES when applied to reservoir history-matching problems, 

and developed an iterative ES algorithm where pressure data are assimilated multiple times 

with decreasing measurement error.   

In contrast to the EnKF, which incorporates measurements to provide an updated system 

state at the current time only, the ES used in this work incorporates all previous 

measurements and model states to compute updated displacement fields at all previous 

measurement times, using the spatial and temporal covariance of model results [27,46]. Since 

in the EnKS and EnKF schemes system updates are made sequentially, that is, at each time 

measurements are collected, the update algorithm must be nested into the modeling code. On 

the contrary, in the ES scheme the update algorithm is run only once, using all measurement 

data and model states at all data collection times. As such, the ES can be applied “offline” of 

the model simulation, which makes it a very convenient approach for estimation of system 

parameters [38]. 

Here, the applicability of the ES scheme is investigated to provide reliable estimates of the 

uncertain parameters characterizing, for example, the geometry of the reservoir, its 

geomechanical properties, and the change in pore pressure, through assimilation of sets of 

horizontal and vertical surface displacement data. To analyze its potential, the methodology is 

applied using Geertsma’s analytical solution for a disk-shaped reservoir [47] in a semi-

infinite homogeneous porous medium. The low computational cost associated with this 

solution makes it ideal to test the capabilities of the ES as a reservoir parameter estimator. To 

do so, we perform and present a series of preliminary tests that anticipate the future 
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application of the methodology to an actual reservoir system situated within the Po plain 

sedimentary basin, Italy, where Interferometric Synthetic Aperture Radar (InSAR) data were 

collected from 2003 to 2008 [24]. Note that this system will require the use of a complex 3D 

poro-elasto-plastic deformation model that can account for condition of spatial heterogeneity 

and orthotropy of key geomechanical reservoir parameters characterizing basin-scale 

constitutive laws. 

In view of this application, the availability of surface displacement data is here 

hypothesized according to the characteristics and the typical errors associated with InSAR 

measurement surveys. In one case, we assume that surface displacement measurements from 

a reference reservoir system are made at a single collection time, for example, at reservoir 

depletion; in another, two measurements collection times are considered, at reservoir 

depletion, when gas pressure is at its minimum, and after gas pressure has partially recovered. 

In each test, the ensemble of geomechanical simulations is rerun to determine if the updated 

ensemble of reservoir parameters provides a parameter structure that produces results in 

agreement with the measurements from the reference state, i.e., to verify if the ES scheme has 

been successful in calibrating the model to a reasonable degree. In addition, sensitivity 

analyses are performed to gain insights into the influence of (i) displacement measurement 

errors, and (ii) number of measurements. 

2 Conceptual model of land subsidence due to gas extraction 

The simulation models typically used to calculate the deformation of porous media subject 

to a pore pressure change stem from the theory of poro-elasticity formulated by Biot [48], 

who studied the stress-strain relations of permeable fluid-saturated materials by coupling 

together the flow equation and the Cauchy equations of equilibrium applied to the solid 

porous skeleton. In many instances, these equations are decoupled with the flow equation 
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solved first and the results transferred as a strength source to the equilibrium equations. An 

analytical solution to the latter for a disk-shaped reservoir embedded in a homogeneous 

elastic half space undergoing a uniform pore pressure decline was developed by Geertsma 

[47]. Although this solution refers to a highly idealized setting, it is valuable for first-hand 

and computationally inexpensive estimates of the impact that fluid extraction or injection can 

exert on land surface levels. 

In realistic geological settings, however, a reliable prediction of land subsidence requires 

appropriate numerical models able to account for the three-dimensional (3-D) geometry of 

the reservoir and the overburden, medium heterogeneity and anisotropy, hydro-mechanical 

coupling, if relevant, and the elasto-plastic behavior of porous media. The application of 

these sophisticated tools has often been limited by the uncertainty in the poro-mechanical 

parameters necessary to accurately simulate or forecast the change in ground surface levels 

caused by fluid injection and/or extraction. Resolving these uncertainties is of paramount 

importance in order to increase the reliability of results obtained with these models. 

Typically, one of the most important and uncertain parameters in land subsidence 

modeling is the vertical uniaxial compressibility, cM. Compressibility is traditionally 

estimated through either laboratory tests or in-situ measurements of the deformation of 

compacting fluid-bearing formations. Laboratory tests rely on tri-axial or oedometric 

experiments carried out on rock samples extracted from boreholes completed into the 

geological formation of interest. The cM values obtained with these tests often overestimate 

the real medium properties due to the alteration occurring in the coring and transportation of 

the samples [49-53]. On the other hand, more reliable cM values are obtained through in-situ 

measurements of the reservoir compaction, which can be monitored, for example, with the 

“radioactive marker” technique [54-56]. 
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In this work, we use Geertsma’s solution [47] as the direct model to predict land 

subsidence. This model (Figure 1) considers a cylindrical reference system [𝑟,𝜃,  𝑧] with the 

vertical axis 𝑧 oriented upwards, 𝑟 = 𝑥! + 𝑦!, and 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑦 𝑥 , where a disk-shaped 

horizontal reservoir with radius 𝑅 and thickness ℎ, is centered at 𝑟 = 0 and embedded at 

average depth 𝑐 within a semi-infinite elastic and isotropic porous medium. The reservoir is 

assumed to be subject to a uniform change in pore fluid pressure, 𝛥𝑝. According to 

Geertsma’s solution, the radial-symmetric horizontal and vertical displacement fields, 𝑢! and 

𝑢! at any generic location [𝑟,𝜃,  𝑧] are expressed as: 

𝑢! 𝑟, 𝑧 = 𝐼! 𝑟, 𝜀 ∙ 𝑐 + 𝑧 + 3− 4 ∙ 𝜈 ∙ 𝐼! 𝑟, 𝜀 ∙ 𝑐 − 𝑧 + 2 ∙ 𝑧 ∙ 𝐼! 𝑟, 𝑐 − 𝑧

∙
𝑅 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝

2
 

(1) 

𝑢! 𝑟, 𝑧 = 𝜀 ∙ 𝐼! 𝑟, 𝜀 ∙ 𝑐 + 𝑧 + 3− 4 ∙ 𝜈 ∙ 𝐼! 𝑟, 𝜀 ∙ 𝑐 − 𝑧 − 2 ∙ 𝑧 ∙ 𝐼! 𝑟, 𝑐 − 𝑧

∙
𝑅 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝

2
 

(2) 

In Equations (1-2), 𝜈 is the Poisson ratio of the porous medium, and 𝜀 an integer equal to 1 if 

𝑧 < 𝑐 and equal to -1 otherwise. The functions 𝐼!, 𝐼!, 𝐼!, and 𝐼! consist of the following 

Hankel integrals:  

𝐼! 𝑟, 𝑞 =    𝑒
!!∙!

   ∙ J!   𝜏 ∙ 𝑅 ∙ J!   𝜏 ∙ 𝑟 ∙ 𝑑𝜏

!

!

 

𝐼! 𝑟, 𝑞 =    𝑒
!!∙!

   ∙ τ ∙ J!   𝜏 ∙ 𝑅 ∙ J!   𝜏 ∙ 𝑟 ∙ 𝑑𝜏

!

!

 

𝐼! 𝑟, 𝑞 =    𝑒
!!∙!

   ∙ J!   𝜏 ∙ 𝑅 ∙ J!   𝜏 ∙ 𝑟 ∙ 𝑑𝜏

!

!

 

𝐼! 𝑟, 𝑞 =    𝑒
!!∙!

   ∙ τ ∙ J!   𝜏 ∙ 𝑅 ∙ J!   𝜏 ∙ 𝑟 ∙ 𝑑𝜏

!

!

 

(3)  
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where J! is the generic first-type Bessel function of order α (0 or 1). From Equations (1-2), 

the surface (𝑧 = 0) displacement components (𝑢!, 𝑢!) as a function of the radial distance, r, 

are given by: 

𝑢! 𝑟, 0 = 2 ∙ 1− 𝜈 ∙ 𝑅 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝 ∙ 𝐼! 𝑟, 𝑐  (4) 

𝑢! 𝑟, 0 = 2 ∙ 1− 𝜈 ∙ 𝑅 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝 ∙ 𝐼! 𝑟, 𝑐  (5) 

Equations (4-5) show that the surface displacement components depend on the six 

independent parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈, and are linearly proportional to the product 

1− 𝜈 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝. 

3 Estimation of Geomechanical Parameters using the Ensemble Smoother 

The ES algorithm adopted in this work follows a two-step forecast-update process. The 

forecast, or prediction, is obtained with a Monte Carlo simulation of the system state. The 

update, or correction, of the system occurs when available measurements are assimilated into 

the forecast model results. 

3.1 Forecast step 

The forecast step involves simulating an ensemble of model state 𝑼𝒇 based on the 

solution to the mathematical model, 𝚽, which generally depends upon uncertain system 

parameters, 𝑷, forcing terms, 𝒑, initial conditions, 𝑼!, and boundary conditions, 𝒃: 

𝑼
!

!
=   𝚽 𝑷;𝑼!;𝒑;𝒃  (6)  

The parameters 𝑷 are assumed to be time-independent, whereas both 𝒑 and 𝒃 can be time-

dependent. The system state 𝑼
!

! represents the ensemble of systems states at a generic time 𝑡 

generated through stochastic simulation of the model 𝚽, using a corresponding ensemble of 

uncertain parameters and variables generated according to pre-established statistical 
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distributions. Typically, 𝑼
!

! can be represented by a 𝑛!×𝑛!"  matrix, where 𝑛! denotes the 

number of degrees of freedom used to characterized the system state and 𝑛!"  the number of 

realizations in the ensemble.  

For the ideal subsurface system described in Section 2, system parameters 𝑷 include the 

radius 𝑅, the thickness ℎ and the depth 𝑐 of the disk-shaped reservoir, and the geomechanical 

parameters 𝑐! and 𝜈; forcing terms 𝒑 include the change in pore fluid pressure, 𝛥𝑝, within 

the reservoir. The solution to the mathematical model 𝚽 is obtained by employing Equations 

(4-5) to calculate the surface displacements, 𝑢! 𝑟, 0  and 𝑢! 𝑟, 0 , over a regular grid made 

up by 𝑛 nodes. Note that 𝑛! = 2 ∙ 𝑛 since the displacement at each node is characterized by 

two components. The horizontal and vertical surface displacement fields are denoted by the 

vectors 𝒖! and 𝒖!. Uncertainty in the model state may be established by providing random 

values to 𝑷, 𝑼!, 𝒑, and 𝒃 for each member in the surface displacement simulation ensemble. 

In this work, the only random variables taken into consideration are the six reservoir 

parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈. 

3.2 Update Step 

In this step, the forecasted ensemble 𝑼
!

! established through Equation (6) is corrected, or 

updated, using m field measurement data through the following algorithm: 

𝑼!
!
=   𝑼

!

!
+𝑲! ∙ 𝑫! −   𝑯 ∙ 𝑼

!

!  (7)  

where 𝑼!
! [𝑛!×𝑛!"] is the updated ensemble, and 𝑯 [𝑚×𝑛!] is a matrix that maps 

measurement locations into the model grid, so that the product 𝑯 ∙ 𝑼
!

! [𝑚×𝑛!"] holds the 

ensemble of model results at measurement locations. The matrix 𝑫! [𝑚×𝑛!"] holds the 

measurement data perturbed using an ensemble of Gaussian noises, stored in a matrix E 
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[𝑚×𝑛!"] representing the measurement random error. If the measurements are error-free, all 

𝑛!"  columns of 𝑫! are equal to the data. 

At the right-hand side of Equation (7), the residual 𝑫! −   𝑯 ∙ 𝑼
!

! defines the deviation 

between the forecasted state and the true state at measurement locations. This residual forms 

the basis for correcting the forecast ensemble. The degree of this correction depends upon the 

uncertainty of both the forecast ensemble and the measurement data, which is contained in 

the Kalman Gain matrix 𝑲!  [𝑛!×𝑚]: 

  𝑲! =   𝑪
!
𝑯
!
𝑯𝑪

!
𝑯
𝑻
+   𝑹

!! (8)  

where 𝑪! [𝑛!×𝑛!] is the forecast error covariance matrix and 𝑹 [𝑚×𝑚] is the measurement 

error covariance matrix. These two matrices are defined as: 

(a) 𝑪
!
=   

𝑼
!

!
− 𝑼 𝑼

!

!
− 𝑼

!

𝑛!" − 1
 (b) 𝑹 =   

𝑬𝑬
!

𝑛!" − 1
   (9) 

where each column of  𝑼 [𝑛!×𝑛!"] holds the average value of the ensemble of each node 

displacement. Hence the matrices 𝑪! and 𝑹 contain the spread of the model values and the 

measurement values, respectively. 

It may be shown that, in Equation (7), if the spread of the measurement values (𝑹) is 

small compared to the spread of the model values (𝑯𝑪!𝑯𝑻), i.e., the measurement value is 

“trusted” more, then the values contained in the Kalman Gain 𝑲! approach 1.0, and the 

residual between the model values and the measurement values, 𝑫! −   𝑯 ∙ 𝑼
!

!, is weighted 

more heavily in correcting the model value to approach the measurement value. Conversely, 

if the spread of the measurements is large with respect to the spread of the model values, then 

the residual receives little weight in correcting the model value, which remains similar to the 

forecast estimate. It must be observed that, since the coefficients of 𝑪! quantify the spatial 

correlation between displacements at distinct node locations, the ES algorithm has the effect 
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of spreading information on the system from measurement locations to non-measurement 

locations [39]. In this study, 𝑫!  contains the perturbed measurements of the surface 

displacement vector (𝑢! ,𝑢!) at a number of pre-established locations. 

3.3 Coupled Update of Surface Displacement and Reservoir Parameters 

Since the surface displacement distributions 𝒖! and 𝒖!  are dependent on the uncertain 

reservoir parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈, field measurements of displacement may be 

“inverted” to provide improved information about these parameters. Within the ES 

framework, this is accomplished by including the ensemble of the reservoir parameters into 

the forecast matrix 𝑼
!

!. With this approach, the 𝑗-th column of 𝑼
!

! will have the 

structure 𝒖
!

(!)
,𝒖

!

(!)
,𝑅(!), 𝑐(!), ℎ(!),𝛥𝑝(!), 𝑐

!

(!)
, 𝜈(!)  

!

𝑗 = 1,2,… ,𝑛!" . The size of 𝑼
!

! is thus 

𝑛! + 𝑛! ×𝑛!" , where 𝑛! is the number of uncertain reservoir parameters (equal to six in 

this case). 

By using forecast simulations, this approach yields a matrix 𝑪! 𝑛! + 𝑛! × 𝑛! + 𝑛!  

that contains not only the spatial covariance between displacements at different locations, but 

also the spatial cross-covariance sub-matrices between displacement distributions ur and uz 

and the five reservoir parameters, 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈, which ultimately allows field 

measurements to correct the forecast parameter values as well as the forecast displacement 

ensembles. 

In contrast to other sequential filtering methods, such as the EnKF and the EnKS [27], the 

ES has the ability of including all displacement distributions and measurement data up until 

the final measurement collection time 𝑡!, at which the ES update algorithm is run to provide 

updated system states at all previous collection times. This allows the update algorithm to be 

run only once when the model simulation has ended, rather than embedding a sequential 
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update algorithm into the modeling code [27]. At time 𝑡!, the forecast matrix 𝑼!!
!
 thus 

includes the ensemble of displacements at all collection times and the ensemble of reservoir 

parameters: 

𝑼
!!

!
=    𝑼

!!!

!
,𝑼

!!!

!
,… ,𝑼

!!

! !

                       𝑛!!
∙ 𝑛! + 𝑛! ×𝑛!"    (10)  

where 𝑛!! is the number of times at which measurements are collected. The forecast 

covariance matrix 𝑪!!
!
, obtained by substituting 𝑼

!

! with 𝑼!!
!
 in Equation (9a), now 

contains both spatial covariance terms and temporal covariance terms between grid nodes at 

different data collection times. 

The measurement matrix 𝑫!!
 holds perturbed measurements from all data collection 

times: 

𝑫!!
=    𝑫!!!

,𝑫!!!
,… ,𝑫!!

𝑻

                     𝑛!!
∙𝑚   ×𝑛!"  (11)  

The measurement error covariance matrix 𝑹!! is also established using the perturbations for 

each of the measurement values for each of the 𝑛!!collection times (see Equation (9b)). By 

inserting 𝑼
!!

!  and 𝑫!!
 into Equation (7) and 𝑪

!!

! and 𝑹!! into Equation (8), the updated system 

state matrix 𝑼!!
!  contains updated model states for each measurement time and also updated 

system parameters if these are included in the forecast matrix 𝑼
!!

! . 

Note that from a Bayesian perspective, the ES algorithm aims at estimating the joint  

“posterior” probability distribution function (PDF), PDF 𝒖! ,𝒖! ,𝑅, 𝑐, ℎ,𝛥𝑝, 𝑐! , 𝜈 | 𝑫, 𝑰 , of 

the augmented model states (i.e., the displacement fields 𝒖! and 𝒖! at all measurement times, 

and the reservoir parameters 𝑅, 𝑐, ℎ,𝛥𝑝, 𝑐!, and 𝜈) conditional to the collected surface 

displacement data 𝑫 and to the prior information 𝑰 hypothesized for the reservoir parameters. 
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In summary, the data assimilation procedure developed is based on the following 

sequence of steps: 

a. Generate the forecast ensemble of reservoir parameters 

𝑅
(!), 𝑐(!), ℎ(!),𝛥𝑝(!), 𝑐

!

(!)
, 𝜈(!)      𝑗 = 1,2,… ,𝑛!"  according to prescribed 

independent prior statistics for each parameter. 

b. Run the geomechanical model (Equation 4-5) for each realization of the forecast 

parameter ensemble generated in a., to obtain the forecast displacement ensemble 

𝒖
!

(!)
,𝒖

!

(!)
   𝑗 = 1,2,… ,𝑛!"  at each of the data collection times 𝑡!!, 𝑡!!,… , 𝑡!. 

c. Assemble the forecast matrix  𝑼
!!

!  according to Equation (10), and the measurement 

matrix	
  𝑫!!   according to Equation (11). 

d. Calculate the update matrix 𝑼!!
!  using Equations (7-9). 

The algorithm used to solve Equation (7) within the ES framework is based on the 

procedure presented in Reference [57], which provides an efficient numerical strategy for 

updating the system state. 

3.4 Ensemble Smoothing Performance 

In order to quantify the effectiveness of the ES algorithm in updating the forecasted 

model states, a procedure is followed whereby “synthetic” measurement data are collected 

from the “true” reference state. The reference state is obtained with the land subsidence 

model using the “true” parameter values. Doing so allows for computing the deviation from 

the “true” system state on a node-by-node basis for both the forecasted and updated system 

states, which quantifies the degree to which the forecasted state is corrected. This correction 
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is analyzed by the two associated global parameters AE (absolute error) and AEP (average 

ensemble precision) [39]: 

𝐴𝐸(𝑼) =   
1

𝑛!" ∙ 𝑛
∙ 𝑈!,! − 𝑈!,!"#$

!

!!!

!!"

!!!

 (12)  

𝐴𝐸𝑃(𝑼) =   
1

𝑛!" ∙ 𝑛
∙ 𝑈!,! − 𝑈!

!

!!!

!!"

!!!

 (13) 

where 𝑈! is the ensemble mean at the 𝑖-th node, 𝑈!,!"#$ is the “true” value at the 𝑖-th node 

node, and 𝑈!,! is the variable value at the 𝑖-th node in the 𝑗-th realization of the ensemble. 

Equation (12) provides a measure of the deviation between the model state and the reference 

state, whereas Equation (13) provides a measure of the spread of the values around the 

ensemble mean of the model state. Lower values of 𝐴𝐸 correspond to a model state that is 

approaching the reference state, whereas lower values of 𝐴𝐸𝑃 signify reduced uncertainty in 

the model state. Calculating the difference between performance parameters of the forecasted 

and updated model states assesses the performance of the update algorithm. 

4 Results 

Equations (4-5) indicate that the distribution and the magnitude of the surface 

displacements, 𝑢! 𝑟, 0  and 𝑢! 𝑟, 0  is strongly related to the value of reservoir parameters 

𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈. Consequently, the uncertainty on these parameters inevitably affects 

the reliability of the displacement simulation. In this section, we analyze quantitatively 

several aspects of the performance of the ES in reducing parameter uncertainty based on 

measurements of land surface displacement. 
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4.1 Forecast Ensemble of Model States 

We consider the reference case of a disk-shaped reservoir characterized by the uncertain 

parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈. In addition, we assume that the “prior” uncertainty on 

these parameters can be modeled using a stochastic conceptual model, according to which 

each parameter is represented as a statistical variable characterized by a predefined PDF. The 

PDFs of 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈 are given in Table 1. Gaussian-normal PDFs are hypothesized 

for the radius 𝑅, the depth 𝑐, and the thickness ℎ of the reservoir, as well as for the fluid 

pressure change 𝛥𝑝; a log-normal distribution is assumed for the medium compressibility 𝑐!; 

and a uniform distribution is adopted for Poisson’s ratio 𝜈.  

INSERT TABLE 1 HERE 

Although the assumption of these statistical distributions is somewhat arbitrary, the 

prescribed degrees of uncertainty are reasonably realistic. For example, current exploration 

methods allow for identifying the geometry of a gas reservoir with a relatively good 

accuracy. Gas pressure change values can be also measured with some fairly good level of 

reliability. By contrast, the porous medium compressibility and Poisson’s ratio in the 

reservoir are typically the most uncertain parameters, given the technical challenges 

associated with both in-situ and lab tests [53, 54, 56]. On this basis, 𝑐! is here characterized 

by a large variability, over a few orders of magnitude, thus justifying the choice of a log-

normal distribution with a log-standard deviation 𝜎!"#!! equal to 1 (Table 1). A similar 

assumption was made by Ferronato et al. [58]. 

On the other hand, the variability of 𝜈 is much more restricted. While thermodynamic 

conditions for linearly elastic and isotropic materials require 𝜈 to be between -1 and 0.5 [59], 

its value is strictly positive in typical porous media [60]. Therefore, 𝜈 is here simulated as a 

uniformly distributed random variable spanning the interval (0,0.5) (Table 1).   
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Using the statistics of Table 1, an ensemble of 𝑛!" =1,000 realizations of the reservoir 

parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈 is generated. No correlation, or statistical dependence, is 

assumed among these parameters. The size of this ensemble is chosen based on preliminary 

analyses (not shown here), which indicated that the ES results do not vary significantly 

beyond this value of 𝑛!" . 

The generated ensemble is then used in a stochastic Monte Carlo simulation to obtain the 

corresponding forecast ensemble of the surface displacements, 𝑢! 𝑟, 0  and 𝑢! 𝑟, 0 . Figure 2 

shows the semi-log plots of the forecast ensembles for horizontal (Figure 2a) and vertical 

(Figure 2b) surface displacement vs. the radial distance from the center of the reservoir. 

INSERT FIGURE 2 HERE 

The results of this stochastic simulation are used to establish the forecast ensemble of 

model states, 𝒖
!

(!)
,𝒖

!

(!)
,𝑅(!), 𝑐(!), ℎ(!),𝛥𝑝(!), 𝑐

!

(!)
, 𝜈(!)  

!

   𝑗 = 1,2,… ,𝑛!" , assembled into 

the forecast matrix 𝑼
!

!. Both horizontal and vertical displacements are computed on 𝑛 = 301 

nodes, with a uniform spacing of 10 m. Since 𝑛! = 2 ∙ 𝑛, in the case of assimilation of data 

collected at one single time (𝑛!! = 1) the size of 𝑼
!

! is   𝑛!!
∙ 𝑛! + 𝑛! ×𝑛!" = 1 ∙ 2 ∙

301+ 6 ×1,000 = 608×1,000. 

Note that ensemble based algorithms, such as the ES, are developed as an extension of the 

classic KF to non-linear models. The KF constitutes a best linear unbiased estimator (BLUE) 

if applied to linear systems with model and measurement errors unbiased, uncorrelated and 

normal-distributed. Under these hypotheses, Equation (7) provides the “maximum-

likelihood” solution, which maximizes the posterior probability of the model states 

conditional to all measurements collected [28] and the hypothesized prior information on 

system parameters. Since in this case the model (Equations 4-5) is generally non-linear, the 

ES solution can be sub-optimal. However, this sub-optimality may be reduced if all 
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requirements of the KF other than model linearity are met. It is thus suitable to require that: 

(i) all components of the model state vector [𝒖! ,𝒖! ,𝑅, 𝑐, ℎ,𝛥𝑝, 𝑐! , 𝜈] be Gaussian stochastic 

variables; (ii) all measurement errors for 𝒖! and 𝒖! be standard-normal distributed (see 

Section 4.3). To meet these conditions, adequate transformations must be applied to the state 

variables that are not Gaussian. In the present case, the reservoir parameters 𝑅, 𝑐, ℎ and 𝛥𝑝 

are already normal-distributed and thus require no transformation. Instead, 𝑐!   is log-

transformed, whereas 𝜈 is first scaled to a standard uniform distribution, 𝑈 0,1 , and then 

transformed by using the inverse function, denoted Ψ!!, of the standard normal CDF [61]. 

In order to identify the statistical distributions of 𝒖! and 𝒖! a fit analysis is carried out 

(Figure 3), consisting of a linear regression of the dataset 𝑓Φ 𝑢! ;Φ
!! !!!.!

!!"

   𝑗 =

1,2,… ,𝑛!"  where 𝑢! is the surface displacement sampled by stochastic simulation, i.e., 

either  𝑢! or 𝑢!, Φ!!  is the inverse of the theoretical CDF, numerically computed, and 𝑓Φ is a 

function of 𝑢! that depends on the type of CDF under consideration. The fit analysis is 

conducted by testing different types of CDF. The “goodness” of fit for the sampled 

distribution is assessed based on the accuracy with which the regression line approximates 

the sample. In Figure 3, the statistical distribution that provides the best fit is log-normal for 

both 𝑢! and 𝑢!. In practice, this shows that the forecast ensemble of the displacements must 

be log-transformed to meet the theoretical conditions required by the ES. 

INSERT FIGURE 3 HERE 

4.2 Reference State and Measurement Collection 

In addition to the 𝑛!"  realizations of [𝒖! ,𝒖! ,𝑅, 𝑐, ℎ,𝛥𝑝, 𝑐! , 𝜈] forming the forecast 

ensemble, another random realization is created to establish a “true” reference state of the 

system. The reference state is created to: (a) provide a displacement spatial distribution from 

which measurements can be collected; (b) provide a system state against which both the 
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forecasted and updated ensemble of model states can be compared, in order to assess the 

performance of the ES update algorithm (Equation 12). 

The reservoir parameters for the reference system are indicated in the rightmost column 

of Table 1. These parameters are used to obtain the “true” reference fields for 𝒖! and 𝒖!  from 

which measurements of surface displacement are collected. The “true” reference fields are 

represented by the solid-black profiles plotted in Figure 2. Since the 𝒖! and 𝒖!  fields are log-

normally distributed (Figure 3), the measurements data are log-transformed before use in the 

ES update algorithm. Each of the measurement log-values is then perturbed using a 

prescribed standard deviation, 𝜎. Note that the logarithmic transformation has also the effect 

of producing an ensemble of perturbed measurements that maintains the same sign as the 

measurement values being considered. The perturbed measurements are used to populate the 

error matrix 𝑬 and, through Equation (9b), calculate the measurement error covariance matrix 

𝑹. The effects on the ES performance of the number of measurements collected and of the 

intensity of measurement errors are investigated in Section 4.4. 

4.3 Analysis of Updated Ensembles 

The basic set of data assimilation scenarios consists of updating the forecast ensembles of 

log 𝒖!  and log 𝒖! , 𝑅, 𝑐, ℎ, 𝛥𝑝, log 𝑐! , and Ψ!!
𝜈  using measurements of surface 

horizontal and vertical displacement collected from the five locations shown in Figure 2. 

Observe that, since two measurements are collected at each location, 𝑢! and 𝑢!, the total 

number of data, 𝑚, is equal to 10. We assume the log-transformed measurements to be 

affected by an error corresponding to a standard deviation 𝜎 = 0.05. The results obtained 

after applying the ES algorithm (Equation 7) are summarized in Figures 4 and 5. 

INSERT FIGURE 4 AND 5 HERE 
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The subpanels in Figure 4 show the profiles of the sampled CDFs of the six reservoir 

parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈 obtained before and after the ES update. Each CDF profile 

is obtained by sorting the ensemble of the 𝑛!"  values of the considered reservoir parameter, 

for example 𝑐!, in ascending order,  𝑐!,! ≤ 𝑐!,! ≤ ⋯ ≤ 𝑐!,!!"
. The CDF value associated to 

𝑐!,!    𝑗 = 1,2,… ,𝑛!"  is then calculated as [62]: 

CDF(𝑐!,!) =   
𝑗 − 0.5

𝑛!"

 (12)  

In each subpanel of Figure 4, the “true” reference value of the corresponding reservoir 

parameter is also shown. The spread of the CDF profiles around the reference value gives a 

straightforward assessment of the uncertainty associated with the parameter estimation before 

and after assimilation of the displacement data. One may observe that the ES produces a 

strong reduction in uncertainty for 𝑐! (Figure 4e) and a low - yet non-negligible - reduction 

in uncertainty for 𝑅 and 𝑐 (Figure 4c). However, no improvement is observed for all other 

parameters. 

The primary cause of this effect may be explained by the influence that the uncertainty in 

the reservoir parameters has on the intensity of the land surface displacements. A sensitivity 

analysis conducted on the five parameters 𝑅, 𝑐, ℎ, 𝛥𝑝, 𝑐!, and 𝜈, whose results are not shown 

here, reveals that the intensity of the ground surface displacements is mostly sensitive to the 

porous medium compressibility 𝑐! since this is the parameter with the largest degree of prior 

uncertainty (see Table 1). On the other hand, the radius 𝑅  and the depth 𝑐 of the reservoir 

have a direct effect on the shape of the displacement profile. In this situation, the ES 

smoothing algorithm proves effective to condition 𝑐! and, to a minor extent, 𝑅 and 𝑐. 

The performance of the ES algorithm can be also quantified by analyzing the reduction, 

with respect to the forecast stage (see Table 2, Scenario 0), of the two coefficients 𝐴𝐸 and 

𝐴𝐸𝑃 (Equations 12-13) for the updated ensembles of log 𝒖!  and log 𝒖! , 𝑅, 𝑐, ℎ, 𝛥𝑝, 
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log 𝑐! , and Ψ!!
𝜈  reported in Table 2 for Scenario 2. 𝐴𝐸 and 𝐴𝐸𝑃 are reduced: for 𝑅, 

from 83.9 and 81.2 (Scenario 0) to 70.1 and 61.5 (Scenario 2), respectively; for 𝑐, from 107.3 

and 76.0 (Scenario 0) to 63.7 and 50.3 (Scenario 2), respectively; and for log 𝑐!  from 0.944 

and 0.820 (Scenario 0), to 0.149 and 0.125 (Scenario 2), respectively. No significant 

reduction is observed for the other reservoir parameters. 

A well-known inconsistency of ensemble-based KF methods, when applied to non-linear 

processes, lies in their tendency to provide updated state values that are not coherent with the 

physical laws behind the model equations. While this may be an important concern when 

updating system response variables, it is a secondary issue when the goal of data assimilation 

is to estimate system parameters, as in this case. Nevertheless, a simple way to cope with this 

issue is to apply the updated ensemble of parameters 𝑅
(!), ℎ(!), 𝑐(!),𝛥𝑝(!), 𝑐

!

(!)
, 𝜈(!)  

𝑗 = 1,2,… ,𝑛!"    in an “a posteriori” stochastic simulation using Equations (4-5) to produce 

physically consistent updated ensembles of the surface displacement 𝒖
!

(!)
,𝒖

!

(!)
   𝑗 =

1,2,… ,𝑛!"    . These ensembles are plotted in Figure 5. The spread of these ensembles 

around the noisy measurements is remarkably small. As reported in Table 2, the 𝐴𝐸 and 𝐴𝐸𝑃 

values for the updated surface displacement ensembles are greatly reduced, for log 𝒖! , from 

1.016 and 0.833 (Scenario 0), to 0.017 and 0.017 (Scenario 2), respectively, and for log 𝒖! , 

from 1.011 and 0.836 (Scenario 0), to 0.018 and 0.017 (Scenario 2), respectively. Figure 5c 

shows the corresponding prior (forecast) and posterior (update) CDFs of the lumped 

parameter 1− 𝜈 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝, which is linearly proportional to the intensity of the surface 

displacement components, 𝑢! and 𝑢!, according to Equations (4-5). The comparison of these 

CDFs indicates that the ES is able to greatly condition this parameter around its deterministic 

reference value. The reduced spread of the displacement ensembles given in Figures 5a and 

5b may thus be explained by the substantially small variability of the posterior distribution of 
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1− 𝜈 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝 (Figure 5c) and the variability of the updated reservoir parameters 𝑅 and 

𝑐 (Figures 4a and 4b), as expressed by Equations (4-5). 

INSERT TABLE 2 HERE 

The results presented in Figure 4 seem to suggest that the ES is unable to significantly 

reduce, for example, the uncertainty in the radius of the reservoir 𝑅. This may constitute a 

significant drawback, given that, in a real-world situation in which the Geertsma’s analytical 

solution (Equations 1-2) was used to evaluate the magnitude of the land surface displacement, 

the reservoir radius would be the parameter representing the average spatial extent of the area 

interested by a reduction in pore pressure. 

To investigate this issue an ad-hoc data assimilation test is carried out, in which the prior 

uncertainty in the radius of the reservoir 𝑅 is assumed to be much larger than previously 

assumed (see Table 1). The reservoir radius 𝑅 is thus sampled from a uniform PDF 

characterized by a minimum value of 500 m and a maximum value of 5000 m. Similar to 

what is done for 𝜈 (Section 4.1), 𝑅 needs to be scaled to a standard uniform distribution, 

𝑈 0,1 , and then transformed to standard normal distribution before use in the ES algorithm. 

In this test, all other statistical parameters, the true reference state, the measurement 

locations and the measurement error remain unchanged. The results of the data assimilation 

are summarized in Figure 6, which shows the CDFs of 𝑅 and 𝑐! before and after the 

assimilation of the land surface displacement data (Figure 2). In each subpanel, the “true” 

reference value of the corresponding parameter is also shown. These results indicate that, in 

this case, the ES is able to strongly reduce the uncertainty not only on the medium 

compressibility 𝑐!, but also on the reservoir radius 𝑅. One may observe that, according to 

Geertsma’s model (Equations 1-2), both horizontal and vertical displacements depend on 𝑐! 

through a linear relationship, and on 𝑅 through a non-linear relationship.  Since in this case 

the statistical variability of the two parameters is assumed to be high, the sensitivities of the 
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land displacements to the values of 𝑐! and 𝑅 are comparable to one another and the ES 

effectively “distributes” the reduction in uncertainty on both parameters. Figure 6 does not 

report the CDFs for the reservoir parameters 𝑐, ℎ, 𝛥𝑝, and 𝜈, since no substantial difference is 

observed with the corresponding CDFs presented in Figure 4. Note, however, that a result 

qualitatively similar to that shown in Figure 6 would be obtained if a much larger degree of 

prior uncertainty was hypothesized for either ℎ or 𝛥𝑝, since land surface displacements  

(Equations 4-5) are linear with respect to the product 𝑐! ∙ ℎ ∙ 𝛥𝑝. 

INSERT FIGURE 6 HERE 

4.4 Effect of Measurement Errors and Number of Measurement Data 

Supplementary data assimilation scenarios are investigated in order to quantify the 

influence of the measurement error and the number of measurements on the reservoir 

parameter ensemble updated with the ES algorithm. The results of these tests are summarized 

in Table 2 and Figure 7. 

INSERT FIGURE 7 HERE 

In Scenarios 1-4 (Table 2), the measurement error for the log-transformed displacement 

data is progressively decreased assuming standard deviation values 𝜎 equal to 0.5, 0.05, 0.01, 

and 0.0001. In Table 2, the 𝐴𝐸 and 𝐴𝐸𝑃 metrics for the displacement distributions log 𝒖!  

and log 𝒖!  exhibit a general decreasing trend with decreasing measurement errors. With 

respect to the forecast stage (Scenario 0), the same metrics for the reservoir parameters 𝑅, 𝑐 

and 𝑐! are significantly reduced for low values of 𝜎, whereas they remain substantially 

unchanged for ℎ, 𝛥𝑝, and 𝜈. Figure 7a, 7c, and 7e show the prior and posterior CDFs for the 

reservoir radius 𝑅, the reservoir average depth 𝑐, and the compressibility 𝑐!, respectively, 

obtained after assimilating surface displacement data with the 𝜎 values corresponding to the 

Scenarios 1-4 presented in Table 2. 
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When analyzing the results in Table 2 and Figure 7 it becomes apparent that, when land 

surface displacement data are characterized by low measurement errors as, for example, in 

Scenarios 3 and 4, the ES algorithm is able to strongly reduce the uncertainty not only on 𝑐!, 

as observed in Scenario 2 (Figure 4e), but also on 𝑅 and 𝑐. In practice this shows that, in 

terms of parameter estimation by assimilation of surface displacement data and given the 

assumed prior statistics (Table 1), 𝑅 and 𝑐 are more sensitive to measurement errors than 𝑐!. 

On the other hand, the uncertainty on parameters such as ℎ, 𝛥𝑝, and 𝜈 is not reduced since the 

sensitivity of the land displacement distribution to their value is much smaller than for 𝑅, 𝑐 

and 𝑐!. 

The last three rows of Table 2 summarize the results of analyses conducted to study the 

effect of the number of measurements. Scenario 5 represents the case in which surface 

displacements are collected from a single location (𝑚 = 2), situated at the intermediate point 

of the five locations shown in Figure 2. Scenario 2 represents the base case described above, 

in which five measurement locations are sampled (Figure 2). With respect to Scenario 2, 

Scenario 6 considers three additional measurement locations positioned at radial distances of 

500 m, 1650 m, and 2600 m. The 𝐴𝐸 and 𝐴𝐸𝑃 values provided in Table 2 for Scenario 5 

(𝑚 =  2) indicate the ES is able to significantly reduce the uncertainty in the surface 

displacements by assimilating the surface displacements from a single location adequately 

chosen. A pronounced improvement is observed for Scenario 2 (𝑚 =  10). Scenario 6 (𝑚 =

  16) is slightly better but substantially equal to Scenario 2, which indicates that the increase of 

information provided by further measurements is progressively fading. 

As observed above, the only reservoir parameters whose uncertainty is reduced upon 

assimilation of surface displacement data are 𝑅, 𝑐 and 𝑐!. Figures 7b, 7d and 7f show the 

forecasted and the updated sample CDFs of 𝑅, 𝑐 and 𝑐!, respectively, obtained in Scenarios 2 

(𝑚 =  10), 5 (𝑚 =  2), and 6 (𝑚 =  16). Comparison of these profiles indicates that the ES is 
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capable to identify the reservoir compressibility 𝑐! even with the assimilation of a few 

measurements (Figure 7f).  The reduction in the prior uncertainty on the reservoir radius R is 

negligible in Scenario 5 (𝑚 =  2), whereas some slight improvement is observed in Scenarios   

2 (𝑚 =  10), and 6 (𝑚 =  16) (Figure 7b). The reduction in the prior uncertainty on the 

reservoir depth 𝑐 remains negligible in Scenario 5 (𝑚 =  2), but becomes quite significant in 

Scenarios 2 (𝑚 =  10), and 6 (𝑚 =  16) (Figure 7d). In each case, as the number of 

measurements increases the reduction in parameter uncertainty becomes smaller. 

4.5 Updating of reservoir parameters during loading/unloading sequences. 

A final test is carried out to investigate the efficiency of the ES algorithm for 

geomechanical characterization during loading/unloading events. These events are 

characterized by a reduction of the pore fluid pressure in the reservoir, which produces a 

settlement of the ground surface, followed by a fluid pressure recovery with an ensuing 

surface rebound. These rebound effects are observed, for example, over reservoirs used for 

GSR [24], or reservoirs where the fluid pressure drop during gas production is followed by a 

re-pressurization sustained by the dynamics of aquifers in contact with the reservoir, which 

may keep entering the original gas region long after the reservoir is abandoned [63]. Under 

these conditions, the porous medium typically exhibits a hysteretic behavior, with the 

compressibility of the unloading stage, 𝑐!,!, reduced with respect to the compressibility of 

the loading stage, 𝑐!,!, by a ratio 𝑠 (≥1), that is,  𝑐!,! = 𝑐!,! 𝑠 [54]. 

In this test, a reference system with the “true” reservoir parameters reported in Table 1 is 

considered. These parameters are the same as in the test of Section 4.3. However, the 

reservoir undergoes a pressure recovery in the unloading phase, 𝛥𝑝!, equal to half the 

pressure decrease in the loading phase, 𝛥𝑝!, while the medium compressibility in the 
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unloading phase, 𝑐!,!, is 𝑠 = 4.26 times smaller than the compressibility during the loading 

phase, 𝑐!,!  (see the last row of Table 1). 

A forecast ensemble of 𝑛!" =1,000 states is generated through stochastic simulation of 

Geertsma’s analytical solution. In this case, the reservoir parameters 𝑅, ℎ, 𝑐, 𝛥𝑝!, 𝛥𝑝!, 𝑐!,!, 𝜈 

and  𝑠 are assumed to be uncertain and characterized by the prior PDFs given in Table 1. The 

ratio 𝑠 is assumed to fit to a uniform distribution 𝑈 1,10 . Note that since two assimilation 

times are considered (𝑛!! =  2) and eight are the uncertain reservoir parameters (𝑛! = 8), the 

size of 𝑼
!

! is 𝑛!!
∙ 𝑛! + 𝑛! ×𝑛!" = 2 ∙ 2 ∙ 301+ 8 ×1,000 = 1,212×1,000, which is 

about twice as large as in the case considered in Section 4.2. 

INSERT FIGURES 8 AND 9 HERE 

The ES update results are summarized in Figures 8 and 9. The forecast ensemble of 

surface displacement distributions 𝒖! and 𝒖! in both loading and unloading phases are 

obtained by applying Equations (4-5) with pressure change and compressibility equal to 𝛥𝑝! 

and 𝑐!,!  during loading, and equal to 𝛥𝑝! and 𝑐!,! during unloading. In this case, the log-

transformed measurements are affected by an error quantified by a standard deviation 𝜎 = 

0.01. Measurement collection is simulated from the “true” surface displacement fields 𝒖! and 

𝒖! obtained by applying Geertsma’s model with the reservoir parameters given in Table 1. 

Surface displacement values are collected from the same five locations shown in Figure 2 

during both loading and unloading stages, thus assimilating m=20 data overall.  

Figure 8 displays the results of the fit analyses (as in Section 4.3) performed on the 

forecast and update ensembles of the reservoir parameters 𝑅, ℎ, 𝑐, 𝛥𝑝!, 𝛥𝑝!, 𝑐!,!, 𝜈 and 𝑠. 

Similar to what observed in Section 4.3, the ES proves effective in reducing the spread of the 

prior statistical distributions of 𝑅, 𝑐, 𝑐!,! and 𝑠, whereas this spread remains substantially 

unchanged for ℎ, 𝛥𝑝!, 𝛥𝑝! and 𝜈. 
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Figures 8a and 8b show that the ES is able to narrow significantly the uncertainty on 𝑅 

and 𝑐 around their respective true value. In Figure 8c, one may note the remarkable 

effectiveness with which the ES reduces the variability of 𝑐!,! around its true value (Table 1). 

In addition, even after updating, the statistical distributions of 𝑅, 𝑐 and 𝑐!,! remain of the 

same type hypothesized for their prior.  

Figure 8d provides the results of the fit analysis for the ratio 𝑠, based on the assumption 

that both forecasted and updated samples are uniformly distributed. While this hypothesis is 

obviously met for the forecast ensemble, generated on the same assumption, it is not verified 

for the update ensemble, which indicates that in this case the ES is not able to preserve the 

PDF type originally prescribed for the ratio 𝑠.  More importantly, however, the ES is able to 

provide an updated 𝑠 with a spread that is significantly reduced with respect to the forecast 

ensemble. In particular, Figure 8d shows that the updated sample of 𝑠 is more clustered 

around its median value (the 50th percentile, where the regression line intersects the abscissa), 

which is very close to its true value 𝑠 = 4.26 (Table 1). 

Figure 9 presents the results obtained with an “a posteriori” stochastic simulation using 

Equations (4-5) with the updated ensemble of reservoir parameters 

𝑅
(!), ℎ(!), 𝑐(!),𝛥𝑝

!

(!)
,𝛥𝑝

!

(!)
, 𝑐
!,!

(!)
, 𝜈(!), 𝑠(!)    𝑗 = 1,2,… ,𝑛!"  (Figure 8). Figures 9a and 9b 

show the ensembles of surface displacements 𝒖! and 𝒖!, respectively, for the loading phase 

(𝑐
!

(!)
≡ 𝑐

!,!

(!)), whereas Figures 9c and 9d display the same ensembles for the unloading phase 

(with 𝑐
!

(!)
≡ 𝑐

!,!

(!)
= 𝑐

!,!

(!)
/𝑠(!)). It is interesting to observe that the spread of both the 𝒖! and 

𝒖! ensembles around the noisy measurements is remarkably small during loading (Figures 9a 

and 9b), while it is larger during unloading (Figures 9c and 9d). This is the because the ES 

proves more effective in reducing the larger uncertainty on 𝑐!,! (Figure 8c) than it does on  𝑠 
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(Figure 8d). However, this difference is not as pronounced as Figure 9 would indicate at first 

glance, since a logarithmic scale is used to plot the displacements. 

5 Discussion 

In general terms, the effectiveness of the ES (Equations 7-8) in reducing the uncertainty 

on reservoir parameters based on a given number measurement of surface displacement 

depends on two major factors: (i) the magnitude of measurement errors, which is accounted 

for in the matrix R (Equation 9b) at the “denominator” of the Kalman gain matrix 𝑲! 

(Equations 8); (ii) the values of cross-correlation between displacements and parameters, 

which are found in the correlation matrix 𝑪!𝑯! at the “numerator” of 𝑲!. The latter are 

essentially related to (a) the partial derivatives of the displacements with respect to the 

parameter and (b) the “prior” uncertainty assigned to the parameter, quantified by the spread 

of the parameter PDF. Larger cross-correlation values typically signify a better ability of the 

ES to identify a given parameter based on displacement measurements. 

The results presented in the previous sections indicate that, by merging surface 

displacement data into Geertsma’s solution, the ES can successfully exploit the correlation 

between the parameters 𝑅, 𝑐 and 𝑐! and the state vectors 𝒖! and 𝒖! to condition the 

parameter ensembles around their “true” reference value. This “conditioning” is not as 

effective for reservoir parameters such as ℎ, 𝛥𝑝 and 𝜈. Indeed, because of the prior statistical 

variability hypothesized for ℎ, 𝛥𝑝 and 𝜈 and the structure of Geertsma’s model (Equations 1-

2), the correlations of these parameters to 𝒖! and 𝒖!  result negligible when compared to the 

same correlations for 𝑅, 𝑐 and 𝑐!. In other words, 𝑅, 𝑐 and 𝑐! affect the variability of the 

surface displacement prediction much more than ℎ, 𝛥𝑝 and 𝜈. 

These effects may be substantiated, for example, by inspecting the coefficients of the 

Kalman gain matrix 𝑲!. Table 3 reports, for Scenario 3 (𝑚 =10, 𝜎 =  0.01), the coefficients 
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of 𝑲! for the rows corresponding to the six reservoir parameters, 𝑅, ℎ, 𝑐, 𝛥𝑝, log 𝑐! , and 

Ψ
!!

𝜈 , and the columns corresponding to the log-transformed surface displacements, 

log 𝑢!  and log 𝑢! , at the locations 𝑟 = 1,100 m and 𝑟 =  0 m, where they reach their 

maximum value, respectively. Table 3 shows that, for at least one of the considered 

displacement components, the magnitude of the coefficients associated with 𝑅, 𝑐 and log 𝑐!  

is significantly larger than magnitude of the coefficients associated with ℎ, 𝛥𝑝 and Ψ!!
𝜈 , 

and thus explains why the corrections of 𝑅, 𝑐 and 𝑐! achieved by assimilating surface 

displacements results much more pronounced than the corrections of ℎ, 𝛥𝑝 and 𝜈. 

INSERT TABLE 3 HERE 

As explained in Section 3.2, if measurement errors affecting surface displacements are 

large, then the ES is not able to correct the forecast ensemble and the updated ensemble 

remains similar to the forecast. This is confirmed by the results obtained in Scenarios 2, 5 and 

6 (Figures 7b, 7d and 7f), which show that the ability of the ES to condition the reservoir 

parameters 𝑅, 𝑐 and 𝑐! strongly depends on measurement errors (Table 2). While the 

identification of 𝑅 and 𝑐 requires the availability of low-noise measurements (Figures 7a and 

7c), 𝑐! is less sensitive to measurement errors because its correlation to the displacements is 

larger given its large prior uncertainty. In this respect, the results in Figure 7c show that even 

when the log-standard deviation of the measurement error 𝜎 is as large as 1, the ES still 

maintains its ability to reduce the prior uncertainty on 𝑐!. 

The number of collected measurements is also relevant to the effectiveness of ES. In the 

investigated scenarios, five adequately chosen measurement locations seem enough to 

achieve a fairly good estimation of 𝑅, 𝑐 and 𝑐! (Figures 7b, 7d and 7f) and, consequently, a 

more reliable prediction of the surface displacements. However, many more measurement 

locations will be likely necessary in real-world systems in which reservoir parameters are 

spatially heterogeneous and where the prediction of land motion requires the use of numerical 
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models by far more complex than Geerstma’s. In this instance, it is also expected that the 

influence of measurement errors will become more significant, with low quality measurement 

data carrying a limited power to condition reservoir geomechanical parameters. 

The strength of the ES algorithm, which is devised to improve the reliability of the 

modeling of dynamic systems, is best exploited in the simulation of reservoirs subject to 

time-dependent fluid pressure changes. For example, the simulation of loading/unloading 

sequences presented in Section 4.5 shows the great benefit that may be achieved from 

collecting and assimilating time-laps surface displacements at predefined locations. In 

practice, this has the effect of increasing the total number 𝑚 of available measurements in the 

spatio-temporal space, so that data collected at a given time have the ability to condition the 

model response not only at that time, but also at other past and future collection times. This 

effect is particularly instrumental in assessing the hysteretic properties of the porous medium 

compressibility. Indeed, although the conditioning of the loading-phase compressibility, 𝑐!,!  

(Figure 8c) seems more effective than the conditioning of the ratio 𝑠 = 𝑐!,! 𝑐!,! (Figure 8d), 

it is expected that assimilation of surface displacement data over several loading/unloading 

cycles will produce a more pronounced reduction of the statistical variability of  𝑐!,! and 

consequently of the ratio 𝑠. 

Finally, we would like to remark that the effectiveness of the ES data assimilation 

algorithm heavily relies on the correlation between reservoir parameters and surface 

displacement, which is estimated using the forecast model stochastic simulation. Implicitly, 

this requires the model to be able to reproduce the physics of the processes that cause the 

surface displacements being measured. It is obvious that, if the observed surface 

displacement is the compound effect of multiple causes, such as natural consolidation, 

surface loading, or water withdrawal from shallow aquifers, the parameter estimation 

obtained from the ES framework can have the effect of providing fictitious parameter values 
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making the model explain the observed data. In principle, this can be dealt with by re-

formulating the data assimilation equations to account for model uncertainty and bias in 

addition to parameter uncertainty. Although a very important topic, model uncertainty and 

bias in data assimilation is outside the scopes of this work. 

6 Conclusions 

In this study, an ES, i.e., a statistical data assimilation algorithm that merges measurement 

data into uncertain model-produced values within a Bayesian framework, has been applied 

for reservoir geomechanical characterization in developed gas fields. The measurement data 

consisted of land surface horizontal and vertical displacements collected at a number of 

points at prescribed collection times. 

The ideal system under consideration was a horizontal disk-shaped reservoir subject to a 

uniform fluid pressure change and embedded in a semi-infinite homogeneous and isotropic 

porous medium, for which an analytical solution in terms of horizontal and vertical 

displacement is available from the work of Geertsma [47]. The use of this simple direct 

model was embraced for merely demonstrative purposes, in order to test the potential of the 

ES algorithm [27] to assimilate surface displacement data that can be obtained, for example, 

from InSAR surveys. 

Given the low computational cost associated with Geertsma’s model, an ensemble of 

1,000 realizations of reservoir parameters was used to obtain a corresponding ensemble of 

land surface displacements. Measurement data consisting of surface horizontal and vertical 

displacement at prescribed locations were used to condition the generated parameter 

ensembles, with far superior results achieved in reducing the variability prescribed to 

parameters that have a larger correlation with the magnitude and the shape of the land surface 

displacement field, in this case the reservoir radius, 𝑅, the reservoir depth, 𝑐, and the porous 
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medium compressibility, 𝑐!. On the other hand, the ES could not significantly improve the 

prior statistics assigned to the other parameters, such as the Poisson ratio 𝜈, the reservoir 

thickness, ℎ, and the change in fluid pressure,  𝛥𝑝, which are typically identified with less 

uncertainty and thus have a smaller impact on the statistical variability of the land 

displacement.  

In the case of a loading/unloading sequence, such as the one typically experienced in gas 

reservoirs/aquifers systems that are developed and subsequently abandoned or in reservoirs 

used for GSR, the porous medium exhibits a hysteretic behavior with the compressibility in 

loading conditions decreased in unloading conditions by a factor 𝑠. In this situation, the 

assimilation of surface displacement data at the end of both the loading and the unloading 

phases proved effective to identify the corresponding compressibility values with reasonable 

accuracy. 

A major strength of the ES algorithm lies in its ability to assimilate simultaneously 

measurement data and model states at different times, so that system states at a given time are 

conditioned by measurements collected at other times. With this structure, the ES update 

algorithm may become quite a powerful tool for the estimation of system parameters. On the 

other hand, one has to be aware that ES equations are based on the classic KF, which was 

derived for linear models. The use of ensemble methods, such the ES, has been proposed as a 

way to extend the KF to non-linear models, and therefore may not provide an optimal 

solution for the assimilation of data into these models. The overall satisfactory results 

obtained in the case of Geertsma’s model are conducible to the linearity between the land 

displacements and the product 1− 𝜈 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝, and the “weak” non-linearity with 

respect to 𝑅 and 𝑐.   

Future work will involve the application of this methodology to a number of gas 

reservoirs in the Po plain, Italy, currently used for GSR, where time-laps vertical and 
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horizontal displacements of the land surface have been collected since 2003 using InSAR 

techniques [24]. The overall effort will be to assimilate these data into a three-dimensional, 

transversely isotropic, finite-element numerical model, in order to obtain a representative 

geomechanical characterization of the reservoir formations at the field scale.  
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Table 1. Statistics prescribed to characterize variability of parameters affecting surface displacements. 
The far-right column shows the true value of each parameter used in the data assimilation tests.   

Parameter (unit) Symbol PDF Type Statistical Parameters 
Reference 

(true) Value 
Radius (m) 𝑅 normal 𝜇! = 1,000 𝜎! = 100 975.09 

Thickness  (m) ℎ normal 𝜇! = 40 𝜎! = 10 37.51 

Depth (m) 𝑐 normal 𝜇! = 1,200 𝜎! = 100 1,291.10 

Pressure change  (Pa) 𝛥𝑝 normal 𝜇!! = -1×106
 𝜎!! = 0.5×105

 -1.009×106
 

Compressibility  (Pa-1) 𝑐! log-normal 𝜇!"# !! = -9 𝜎!"# !!
=1 2.63×10-10

 

Poisson Ratio (/) 𝜈 uniform 𝜈!"# =  0.0 𝜈!"# =  0.5 0.36 

Compressibility Ratio (/) 𝑠 uniform 𝑠!"# =  1 𝑠!"# =  10 4.26 

 

 

Table 2. Sensitivity of the performance parameters, AE and AEP, to the number of measurements, 
and to the standard deviation of measurement errors.  
    Surface 

Displacement 

Reservoir Parameter 

    log(ur) 
AE  

AEP 

log(uz) 
AE  

AEP 

𝑅 

AE  

AEP 

𝑐 

AE  

AEP 

ℎ 

AE  

AEP 

𝛥𝑝 
AE  

AEP 

log 𝑐!  
AE  

AEP 

Ψ
!!

𝜈  
AE  

AEP 
 Analysis Scenario 

Forecast 
 

0 
1.016 
0.833 

1.011 
0.836 

83.9 
81.2 

107.3 
76.0 

8.00 
7.78 

4.04×104 

3.95×104 
0.944 
0.820 

0.945 
0.792 

Update 

𝜎
 

0.50 1 
0.132 
0.127 

0.130 
0.128 

81.6 
80.3 

104.7 
75.2 

7.85 
7.75 

4.04×104 

3.95×104 
0.182 
0.174 

0.910 
0.785 

0.05 2 
0.017 
0.017 

0.018 
0.017 

70.1 
61.5 

63.7 
50.3 

7.84 
7.74 

4.04×104 

3.95×104 
0.149 
0.125 

0.917 
0.785 

0.01 3 
0.0043 
0.0042 

0.0042 
0.0041 

29.1 
26.7 

22.7 
21.0 

7.86 
7.73 

4.04×104 

3.95×104 
0.133 
0.116 

0.927 
0.783 

0.0001 4 
0.0002 
0.0001 

0.0002 
0.0001 

3.4 
3.2 

1.6 
1.3 

7.82 
7.70 

4.04×104 

3.94×104 
0.126 
0.114 

0.881 
0.780 

𝑚 

2 5 
0.036 
0.035 

0.044 
0.041 

80.0 
77.4 

100.1 
73.1 

7.85 
7.75 

4.04×104 

3.95×104 
0.158 
0.132 

0.908 
0.783 

10 2 
0.017 
0.017 

0.018 
0.017 

70.1 
61.5 

63.7 
50.3 

7.84 
7.74 

4.04×104 

3.95×104 
0.149 
0.125 

0.917 
0.785 

16 6 
0.014 
0.014 

0.014 
0.014 

66.3 
57.7 

56.8 
45.2 

7.85 
7.75 

4.04×104 

3.95×104 
0.146 
0.123 

0.916 
0.783 
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Table 3. Coefficients of the Kalman gain matrix for Scenario 3. Rows correspond to the six 

transformed reservoir parameters 𝑹, 𝒉, 𝒄, 𝜟𝒑, 𝐥𝐨𝐠 𝒄𝑴 , and 𝚿!𝟏
𝝂 , whereas the two columns 

correspond to the log-transformed surface displacements, 𝐥𝐨𝐠 𝒖𝒓  and 𝐥𝐨𝐠 𝒖𝒛 , at the locations 𝒓 = 

1,100 m and 𝒓 =  0 m. 

  Observation 

  log[ur(1100,0)] log[uz(0,0)] 

Parameter  column: 3 column: 6 

R   row: 603 +0.1404 -0.3177 

h   row: 604 +0.0043 +0.0195 

c   row: 605 +0.0050 -0.2579 

Δp   row: 606 +0.0017 -0.0060 

log  cM   row: 607 +0.0862 +0.1078 

Ψ-­‐1(ν)   row: 608 -0.0070 -0.0050 

  

 

 

 
 

 

Figure 1. Geometry for Geertsma’s analytical solution to the land subsidence problem. The reservoir 
is disk-shaped and embedded in a semi-infinite elastic homogeneous and isotropic medium. Reservoir 
compaction occurs due to a uniform change in gas pressure within the cylindrical volume. 
  



BAÙ, FERRONATO, GAMBOLATI, TEATINI AND ALZRAIEE: ENSEMBLE SMOOTHING OF LAND 
SUBSIDENCE MEASUREMENTS FOR RESERVOIR GEOMECHANICAL CHARACTERIZATION 

43 of 49 

 
 

Figure 2. Semi-log plots of the forecast ensembles for (a) horizontal and vertical surface displacement 
as a function of the radial distance from the center of the reservoir (Table 2, Scenario 0). In each 
subpanel, the solid black line represents the displacement for the “true” reference system, from which 
measurement data, indicated by blues dots, are collected. 
 
 
 

  
Figure 3. Results of the fit analysis for the sample distribution of (a) the horizontal and (b) the 
vertical surface displacement at a radial distance of 670 m from the center of the reservoir. The 
accurate fit between the sampled displacements and the regression line reveals that both ur and uz are 
log-normally distributed. 
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Figure 4. Comparison between the prior (forecast) and posterior (update) sample CDFs for the six 
reservoir parameters (a) R, (b) c, (c), h (d) Δp, (e) cM, and (f) ν (Table 2, Scenarios 0 and 2). In each 
subpanel, the “true” reference value of the corresponding parameter is also shown. 
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Figure 5. Updated ensembles for (a) horizontal 
and (b) vertical surface displacement fields after 
assimilation of surface displacement data as in 
Scenario 2 (Table 2). Solid black lines represent 
the “true” reference system displacements, from 
which measurement data (blue dots) are 
collected. (c) Prior and posterior sample CDFs 
for the lumped parameter 1 − 𝜈 ∙ 𝑐! ∙ ℎ ∙ 𝛥𝑝 
(Equations 4-5). The “true” reference value is 
shown as well. 
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Figure 6. Comparison between the prior (forecast) and posterior (update) sample CDFs for the 
reservoir parameters (a) R and (b) cM in the case where the prior uncertainty in the reservoir radius is 
sampled from a uniform distribution 𝑈 500,5000  (m). In each subpanel, the “true” reference value 
of the corresponding parameter is also shown. 
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Figure 7. Comparison between the prior (forecast) and posterior (update) sample CDFs for (a-b) the 
reservoir radius R, (c-d) the reservoir average depth c, and (e-f) the bulk compressibility, cM, obtained 
using increasing values of the standard deviation σ of the measurement error (subpanels a-c-e) and 
increasing values of the number m of the measurements (subpanels b-d-f). In each subpanel, the 
“true” reference value for the reservoir parameter is also shown. 
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Figure 8. Results of the fit analyses for the sample distributions of (a) reservoir radius R, (b) reservoir 
depth c, (c) compressibility cM and (d) the loading/unloading compressibility ratio s. After the ES 
updating, the statistical distributions of R and c remain normal, the statistical distribution of cM 
remains log-normal, whereas the forecast statistics of s is not preserved. 
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Figure 9. Semi-log plots of the updated ensembles for the horizontal and the vertical land surface 
surface displacement as a function of the radial distance from the center of the reservoir, obtained at 
the end of the loading phase (a-b) and after the unloading phase (c-d). In each subpanel, the solid 
black line represents the reference displacement profile, from which five measurement data, indicated 
by blue dots, have been collected. 
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