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Sensorless Flux-Weakening Control of
Permanent-Magnet Brushless Machines

Using Third Harmonic Back EMF
J. X. Shen, Senior Member, IEEE, Z. Q. Zhu, Senior Member, IEEE, and David Howe

Abstract—The sensorless control of brushless machines by de-
tecting the third harmonic back electromotive force is a relatively
simple and potentially low-cost technique. However, its application
has been reported only for brushless dc motors operating under
normal commutation. In this paper, the utility of the method for
the sensorless control of both brushless dc and ac motors, including
operation in the flux-weakening mode, is demonstrated.

Index Terms—Back electromotive force (EMF), brushless drives,
permanent-magnet machines, sensorless control.

I. INTRODUCTION

N
UMEROUS sensorless control techniques have been

developed for brushless dc (BLDC) and brushless ac

(BLAC) machines. For example, methods based on the detec-

tion of the zero crossing of the back-electromotive-force (EMF)

waveforms [1], [2] are simple, and various commercial ICs are

available for BLDC drives. However, they are not applicable

to BLAC operation, or even to BLDC operation if the commu-

tation advance or the current decay in the freewheeling diodes

is greater than 30 electrical, since the zero crossing of the

back EMFs cannot then be detected. Theoretically, back-EMF

reconstruction and integration methods [3] are suitable for

surface-mounted permanent-magnet (SPM) BLDC and BLAC

motors, but not for interior permanent-magnet (IPM) motors,

since the stator winding inductance is simulated by a trans-

former or appropriate electronic components, and cannot vary

with rotor position. Moreover, the hardware is relatively com-

plex and implementation is difficult. In all back-EMF-based

sensorless techniques, the low-speed performance is limited,

and an open-loop starting strategy is required [1]–[3]. In most

other sensorless control strategies, such as flux observers [4],

model-reference adaptive control [5], [6], extended Kalman

filters [7], and adaptive sliding observers [8], a mathematical

model of the machine is required. Further, phase or terminal
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Fig. 1. Schematic of brushless motor with Y-connected resistors.

voltages often have to be measured and A/D converters are

required. In order to reduce the number of voltage transducers,

voltages can be deduced from the inverter switching status

and the measured dc-link voltage [9]. Rotor saliency detection

methods [10]–[12] are suitable for low-speed operation, and

applicable to IPM BLDC and BLAC drives. Methods which

utilize the third harmonic component of the back EMF are

attractive since they are relatively simple and potentially low

cost. To date, however, their performance has been reported

only for BLDC motors operating under normal commutation,

i.e., without commutation advance or flux weakening [3],

[13]. In this paper, the utility of the third harmonic back-EMF

method is demonstrated for the sensorless operation of both

BLDC and BLAC drives.

Three methods have been proposed to extract the third

harmonic component of the back EMF [3], [13]–[15]. These

are evaluated and the most appropriate is identified and imple-

mented for the sensorless control of both BLDC and BLAC

drives, including operation in the flux-weakening mode. Fi-

nally, experimental results are given to further verify the utility

of the method.

II. EVALUATION OF METHODS FOR EXTRACTING THIRD

HAMONIC BACK EMF

Fig. 1 shows a schematic of a permanent-magnet brushless

drive with Y-connected resistors to enable the third harmonic

component of the back EMF to be sensed. In the literature, three

methods for obtaining the third harmonic voltage have been pro-

posed: 1) from the voltage between the star point “ ” of the

resistor network and the neutral point “ ” of the stator wind-

ings [3], [13], [14]; 2) from the voltage between “ ” and

the midpoint “ ” of the dc bus [13]; and 3) from the voltage

between “ ” and “ ” [15]. These are evaluated in detail as

follows.

0093-9994/04$20.00 © 2004 IEEE
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A. Voltage

Assuming the inductances of the brushless motor are constant

and that the three phases are symmetrical, from Fig. 1

(1)

where , , and are the triplen harmonics of the back

EMF. Since the derivation does not depend on the motor op-

erating mode, the third harmonic back EMF can be extracted

from the voltage irrespective of whether the motor is op-

erated in BLDC or BLAC mode, provided, of course, that the

phase back-EMF waveform contains a third harmonic compo-

nent. Fig. 2 shows measured waveforms of when a surface-

mounted magnet motor was run as BLAC with pulsewidth mod-

ulation (PWM), and as a BLDC motor both with and without

PWM. Although, theoretically, should have a smooth and

clean waveform, as will be seen, in practice high-frequency

noise exists as a result of commutation and PWM switching

events. However, this can be easily eliminated by using either

a low-pass filter (LPF) or a bandpass filter (BPF).

B. Voltage

From Fig. 1

(2)

In BLAC mode, the terminal voltages ( , , and ) are

either 0 or . Therefore, the voltage comprises a series of

pulses, the amplitude being either or , as shown in

Fig. 3. Clearly, cannot be used for the sensorless control of

a BLAC drive.

In BLDC mode without PWM

(3)

where the subscript represents the nonenergized phase. It was

assumed in [13] that the back-EMF waveforms of the two en-

ergized phases were identical and instantaneously sum to zero.

Thus, (3) was rewritten as

(4)

Itwouldappear,therefore,thatthethirdharmoniccomponentof

thebackEMFcouldbeextractedfrom .However, thisassump-

tionisonlyvalidwhentheback-EMFwaveformistrapezoidalwith

aflat top electrical,whichisnotgenerallythecaseinprac-

tice. In general, (3) can be further derived as

(5)

Clearly, contains information on nonzero-sequence com-

ponents in the back EMF of the nonenergized phase. Moreover,

if the current in the freewheeling diode has not decayed to zero

or if PWM is employed, pulse or noise is introduced in , as

Fig. 2. Measured waveforms of u (U = 200 V). � : measured rotor
position; e , e , e : predicted phase back EMF and its fundamental and third
harmonic components, which are predicted according to � and EMF constant
for each harmonic; i : measured phase current; G1: measured gate drive signal.
(a) BLAC operation with PWM. (b) BLDC operation with PWM. (c) BLDC
operation without PWM.

evidenced in Fig. 3. Therefore, in general, it is inappropriate to

use for the sensorless control of a BLDC drive.

C. Voltage

From Fig. 1

(6)

In BLAC mode, is essentially noise while repre-

sents the zero-sequence back EMF of a nonenergized phase.

Therefore, while contains the third harmonic component of
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Fig. 3. Measured waveforms ofu (U = 200V). (a) BLAC operation with
PWM. (b) BLDC operation with PWM. (c) BLDC operation without PWM.

back EMF, it also contains significant noise, as shown in Fig. 4.

Clearly, it is more difficult to extract the third harmonic com-

ponent of back EMF from than from . Moreover, both

methods require access to the winding neutral point.

In BLDC mode, can be derived by substituting (1) and

(5) into (6), to give

(7)

Fig. 4. Measured waveforms ofu (U = 200V). (a) BLAC operation with
PWM. (b) BLDC operation with PWM. (c) BLDC operation without PWM.

where the subscripts and represent two energized phases.

Clearly, does not contain any effective information that can

be used to deduce the rotor position. Moreover, if the phase back

EMF has an ideal trapezoidal waveform, the instantaneous sum

of the back EMFs of the energized phases is effectively zero,

as shown in Fig. 4, the waveform of comprising pulses due

to current decaying in the freewheeling diodes and noise due to

PWM switching.

From the foregoing, only the voltage is suitable for the

third harmonic back-EMF sensorless operation of both BLDC

and BLAC SPM motors, as summarized in Table I. Therefore,

although it requires access to the neutral point of the stator

winding, can be used for sensorless control in both the con-

stant-torque and flux-weakening modes.
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TABLE I
SUMMARY OF ALTERNATIVE SENSING METHODS

Fig. 5. Zero-crossing detection of third harmonic voltage. (a) Typical
waveforms. (b) Detection hardware.

III. SENSORLESS OPERATION: NONFLUX-WEAKENING MODE

A. Rotor Position Estimation

The zero crossings in the third harmonic voltage corre-

spond to rotor positions 0, rad , respectively,

as illustrated in Fig. 5(a). Generally, other zero-sequence EMF

harmonics in SPM motors will be relatively small, as is the case

for the experimental motor, for which details are given in the

Appendix. In practice, however, will contain noise due to

switching events and asymmetries between phases. Therefore, a

BPF is employed before the zero crossings of the third harmonic

voltage are detected, as illustrated in Fig. 5. Since the oper-

ating speed range of the experimental six-pole motor varies from

150 to 1600 r/min, the frequency of third harmonic EMF varies

from 22.5 to 240 Hz. Hence, the low and high cutoff frequencies

of the BPF were chosen to be 2.2 Hz and 2.4 kHz, which are an

order of magnitude different to the minimum and maximum fre-

quencies. is then processed with a voltage comparator and

opto-isolator to generate a digital signal . The BPF intro-

duces a phase delay between and , as illustrated in

Figs. 5(a) and 6, which can be calculated from the filter param-

eters and the motor speed , being obtained from the

frequency of .

Sensorless control has been implemented with a TMS320C31

digital signal processor (DSP), the rotor position being esti-

mated at time increments s, as set by the DSP

timer, the flowchart of the timer interrupt service routine ( )

Fig. 6. u , u , and detection circuit output signal, without (SGN) and with
(SGN’) noise suppression, measured at 200 Vdc, 2.86 Adc, 829 r/min, BLAC
operation with PWM and without flux-weakening (u : 50 V/div; u , SGN,
SGN’: 5 V/div).

Fig. 7. DSP timer interrupt service routine for sensorless control.

being shown in Fig. 7. The DSP scans the signal in the

timer . If a falling edge is detected, the estimated rotor po-

sition is updated incrementally by either , or

. For example, if the updated value on the occur-

rence of the last falling edge was , the updated value should

be , while the next will be , and so on.

In order to avoid erroneous updating, two requirements have to

be satisfied: 1) noise in the signal must be distinguishable

and 2) the first update of must be correct. Details of how to

achieve these requirements are given in the following sections.

The rising edge of could be similarly utilized to enable

and, therefore, , to be updated six times per electrical

cycle. However, in order to simplify the software, updating is

implemented only three times each cycle, viz., on falling

edges, since no discernible performance deterioration was ob-

served. If a falling edge is not detected during the execution of

the DSP timer , the rotor position is simply estimated by

integration of the motor speed, i.e.,

(8)

Once the rotor position has been estimated, the instantaneous

current in the windings can be controlled to facilitate either

BLAC or BLDC operation, and this is also implemented in the
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TABLE II
BLDC CURRENTS

DSP timer . By way of example, the phase currents for

BLAC operation are

(9)

while those for BLDC operation are specified in Table II, where

is the commutation-advance angle.

B. Noise Suppression

In a practical system, the digital signal may contain

noise which could cause an erroneous update of the estimated

rotor position. Hence, signal edges which may arise due to noise

must be distinguishable from true falling edges using the DSP

software. Therefore, the values of in three successive

timer interrupts are recorded and compared. Only if they are

identical is their value accepted as the actual value of .

Usually, the duration of the noise is much less than , exper-

imental results showing that it usually ranges from 10 20 s.

Practically, such noise is highly unlikely to occur three times

in succession within a constant time interval of s.

Therefore, noise can generally be recognized and discarded.

However the foregoing procedure results in an actual falling

edge in being confirmed after it occurs, the time delay

varying from to , i.e., the average delay is .

The equivalent phase delay can be calculated from the motor

speed, and while it may be negligible at low speed, it may be

considerable at high speed. Therefore, in the previously de-

scribed rotor position update procedure should be replaced by

. On the other hand, the additional time delay which

is caused by noise processing has little influence on the esti-

mated speed measurement, as its variation is much shorter than

the cycle time of .

The number of recorded and compared values of is de-

termined experimentally according to the nature of the noise,

more values being required as the noise becomes more promi-

nent. In a practical system, however, the noise is effectively

eliminated by this noise processing procedure when the average

of three readings is used, as shown in Fig. 7, which compares

the signal of with and without noise suppression.

IV. SENSORLESS OPERATION: FLUX-WEAKENING MODE

The effectiveness of third harmonic back-EMF sensorless

control has been demonstrated on the experimental motor

for which details are given in the Appendix and whose base

speed is 830 r/min. As will be seen from Figs. 2–4, the phase

Fig. 8. BLDC operation without commutation advance (U = 200 V, 320
r/min, 4.62 N�m).~i : current reference; i : actual current; G1: gate drive signal;
u : terminal voltage; � : actual rotor position; � : estimated rotor position;
� –� : position estimation error. (a) Measured waveforms. (b) Rotor position
and error.

back-EMF waveform is not a pure sine wave. It contains a

sufficiently high third harmonic component to facilitate imple-

mentation of the proposed sensorless control strategy in both

BLDC and BLAC modes. However, in order to achieve the

same rated torque, the amplitude of the phase current reference

for BLDC operation is set to 3.30 A while that for BLAC

operation is set to 3.56 A.

A. Flux-Weakening in BLDC Mode

Below base speed, the phase current is in phase with the back

EMF, and the current amplitude is PWM regulated to produce

rated output torque, as shown in Fig. 8. Above base speed, com-

mutation is progressively advanced, so as to achieve flux weak-

ening, until the phase current waveforms ultimately become

continuous, as shown in Fig. 9. Clearly, when is 30 or

the current waveforms are almost continuous, the zero crossing

of the back EMF in a nonenergized phase is not discernable in

the terminal voltage [16], and conventional sensorless operation

based on detection of the zero crossings of the phase back-EMF

waveforms [1], [2] is not possible. However, the proposed third

harmonic back-EMF sensorless method results in high accuracy,

as can be seen by comparing the measured and estimated rotor

positions, and observing the estimated rotor position error.

The torque which can be realized in the flux-weakening mode

depends on the commutation-advance angle , as shown by
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Fig. 9. BLDC operation with 45 commutation advance (U = 200V, 1950
r/min, 0.25 N�m). (a) Measured waveforms. (b) Rotor position and error.

Fig. 10. Torque–speed curves of BLDC machine with different
commutation-advance angles � .

the experimental results in Fig. 10. The optimal values of for

maximum torque at any speed can be deduced from such data, as

shown in Fig. 11, which compares the torque–speed character-

istics which result both with and without optimal commutation

advance.

B. Flux Weakening in BLAC Mode

In order to maximize the output power above the base speed

the windings must be supplied with the optimum value of nega-

tive -axis current [17], [18]. With the amplitude of the current

and voltage vectors set at the maximum values, and ,

Fig. 11. Torque–speed characteristics of BLDC machine with and without
commutation advance, and optimal commutation-advance angle � .

Fig. 12. BLAC operation without flux weakening (U = 200 V, 320 r/min,
4.63 N�m).~i : current reference; i : actual current; G1: gate drive signal; u :
line-to-line voltage; � : actual rotor position; � : estimated rotor position;
� –� : position estimation error. (a) Measured waveforms. (b) Rotor position
and error.

the -axis current reference is calculated, with due account of

the winding resistance voltage drop , from [17]

(10)

where is the permanent-magnet excitation flux linkage, and

is usually set at [17]. is set to 0 if the calcu-

lated value is , or set to if the calculated value is
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Fig. 13. BLAC operation with flux weakening (U = 200 V, 2010 r/min,
0.27 N�m). (a) Measured waveforms. (b) Rotor position and error.

Fig. 14. Torque–speed curves for BLAC operation with and without
flux-weakening control, and optimal phase angle between current vector and
q axis.

. The -axis current and the equivalent commutation-ad-

vance angle can then be calculated from (9). This enables

a seamless transition between the maximum torque per ampere

mode (without flux weakening) and maximum power operating

modes (with flux weakening) to be achieved according to the

motor speed and parameters.

Third harmonic back-EMF sensorless operation has been

assessed both with and without flux weakening, representative

waveforms being shown in Figs. 12 and 13, together with

the estimated and measured rotor position and rotor position

error. Again, good agreement is achieved. Fig. 14 compares

TABLE III
SPECIFICATION AND PARAMETERS OF EXPERIMENTAL MOTOR

the torque–speed characteristics which result both with and

without optimal flux-weakening control.

V. CONCLUSION

The application of third harmonic back-EMF-based sen-

sorless rotor position estimation to both BLDC and BLAC

machines has been demonstrated. It caters for phase currents

which flow continuously, when the zero crossings of the phase

back-EMF waveforms are not detectable. However, as with all

EMF-based sensorless methods, an open-loop starting proce-

dure still has to be employed [1]–[3].

APPENDIX

For the specification and parameters of the experimental

motor, see Table III.
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