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Quantitative simulation of temperature dependent magnetization

dynamics and equilibrium properties of elemental ferromagnets

R. F. L. Evans,1, ∗ U. Atxitia,1, 2 and R. W. Chantrell1

1Department of Physics, The University of York, York, YO10 5DD, UK
2Fachbereich Physik and Zukunftskolleg, Universität Konstanz, D-78457 Konstanz, Germany

Atomistic spin model simulations are immensely useful in determining temperature dependent magnetic prop-

erties, but are known to give the incorrect dependence of the magnetization on temperature compared to exper-

iment owing to their classical origin. We find a single parameter rescaling of thermal fluctuations which gives

quantitative agreement of the temperature dependent magnetization between atomistic simulations and experi-

ment for the elemental ferromagnets Ni, Fe , Co and Gd. Simulating the sub-picosecond magnetization dynam-

ics of Ni under the action of a laser pulse we also find quantitative agreement with experiment in the ultrafast

regime. This enables the quantitative determination of temperature dependent magnetic properties allowing for

accurate simulations of magnetic materials at all temperatures.

PACS numbers: 75.30.Kz,75.78.-n,75.10.Hk,75.30.Ds

I. INTRODUCTION

Magnetic materials are used in a wide range of technolo-

gies with applications in power generation1, data storage2,3,

data processing4, and cancer therapy5. All of these mag-

netic technologies operate at a wide range of temperatures,

where microscopic thermal fluctuations determine the thermo-

dynamics of the macroscopic magnetic properties. Recently

thermal fluctuations in the magnetization have been shown

to drive not only a number of phenomena of great funda-

mental interest, for example ultrafast demagnetization6, ther-

mally induced magnetic switching7,8, spin caloritronics9 but

also next generation technologies such as heat assisted mag-

netic recording10 and thermally assisted magnetic random ac-

cess memory11. Design requirements for magnetic devices

typically require complex combinations of sample geome-

try, tuned material properties and dynamic behavior to opti-

mize their performance. Understanding the complex interac-

tion of these physical effects often requires numerical sim-

ulations such as those provided by micromagnetics12–14 or

atomistic spin models15. Micromagnetic simulations at ele-

vated temperatures16,17 in addition need the temperature de-

pendence of the main parameters18 such as the magnetiza-

tion, micromagnetic exchange19 and effective anisotropy20.

Although analytical approximations for these parameters ex-

ist, multiscale ab-initio/atomistic simulations18,21 have been

shown to more accurately determine them.

With atomistic simulations the disparity between the simu-

lated and experimental temperature dependent magnetization

curves arises due to the classical nature of the atomistic spin

model22. At the macroscopic level the temperature dependent

magnetization is well fitted by the phenomenological equa-

tion proposed by Kuz’min22. However, the Kuz’min equation

merely describes the form of the curve with little relation to

the microscopic interactions within the material which deter-

mine fundamental properties such as the Curie temperature.

Ideally one would perform ab-initio 3D quantum Monte Carlo

simulations23. Although this is possible for a small number

of atoms, for larger ensembles the multiscale approach using

atomistic models parameterized with ab-initio information re-

mains the only feasible way to connect the quantum and ther-

modynamic worlds. At the same time there is a pressing need

to match parameters determined from the multiscale model

to experiment to understand complex temperature dependent

phenomena and magnetization dynamics. Atomistic models

also provide a natural way to model non-equilibrium tem-

perature effects such as ultrafast laser-induced magnetization

dynamics6–8 or quasi-equilibrium properties such as the Spin-

Seebeck effect created by temperature gradients9,24. Alter-

native numerical? ? and analytical? ? approaches have been

used to successfully describe the low temperature behavior,

but add significant complexity compared to simple classical

simulations.

In this work we present a single parameter rescaling of ther-

mal fluctuations within the classical Heisenberg model which

correctly describes the equilibrium magnetization at all tem-

peratures. Since the temperature dependence of important

magnetic properties such as anisotropy and exchange often

arises due to fluctuations of the magnetization, this rescaling

can also be used to accurately calculate their temperature vari-

ation. Furthermore we show that this rescaling is capable of

quantitatively describing ultrafast magnetization dynamics in

Ni. The quantitative agreement of the magnetic properties be-

tween theory and experiment enables the next generation of

computer models of magnetic materials accurate for all tem-

peratures and marks a fundamental step forward in magnetic

materials design.

II. FORM OF THE TEMPERATURE DEPENDENT

MAGNETIZATION

We first consider the physics behind the form of M(T ).
Atomistic spin dynamics (ASD) considers localized classical

atomic spins Si = µssi where µs is the magnetic moment, i.e

the spin operator Si at each lattice site takes unrestricted val-

ues on the unit sphere surface |si|= 1 whereas in the quantum

case they are restricted to their particular eigenvalues. How-

ever, when calculating the macroscopic thermodynamic prop-

erties of a many spin system, as ASD eventually does, this dis-
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tinction is not apparent since the mean value of 〈S〉= M(T ) is

not restricted to quantized values within the quantum descrip-

tion.

A direct consequence of the distinction between classi-

cal and quantum models is manifest in the particular statis-

tical properties of each approach. As is well-known, ther-

mal excitation of the spin waves in ferromagnets leads to a

decrease of the macroscopic magnetization M(T ) as temper-

ature increases.25 In the limit of low temperatures, m(T ) =
M(T )/M(0) can be calculated as m = 1 − ρ(T ), where

ρ(T ) = (1/N )∑kkk nkkk is the sum over the wave vector kkk of

the spin wave occupation number in the Brillouin zone26,27.

The occupation number of a spin wave of energy εk cor-

responds to the high temperature limit of the Boltzmann

law in reciprocal space,26 nkkk = kBT/εkkk, where T is the

temperature, kB is the Boltzmann constant, while quan-

tum spin waves follow the Bose-Einstein distribution (nkkk =
1/(exp(εkkk/kBT ))−1)). Different forms of m(T ) are expected

due to the specific nkkk used in each picture.

Given that the spin wave energies εkkk are the same in both the

quantum and classical model the difference in the form of the

M(T ) curve comes solely from the different statistics. We can

illustrate the difference in the statistics by considering the sim-

plest possible ferromagnet described by a quantum and clas-

sical spin Heisenberg Hamiltonian. To do so, we consider the

anisotropy and external magnetic fields as small contributions

to the Hamiltonian in comparison to the exchange interaction

energy. Thus, the energy can be written as εkkk = J0(1− γkkk),
where γkkk = (1/z)∑ j J0 j exp(−ikkkrrr0 j), rrr0 j = rrr0 − rrr j with rrr0 j

the relative position of the z nearest neighbors.

The integral ρ(T ) = (1/N )∑kkk nkkk at low temperatures for

both quantum and classical statistics are very-well known

results.26 For the classical statistics

mc(T ) = 1−
kBT

J0

1

N
∑
kkk

1

1− γkkk

≈ 1−
1

3

T

Tc
, (1)

where Tc is the Curie temperature and we have used the

random-phase approximation28 (RPA) relation to relate W and

Tc (Jcl
0 /3 ≈ WkBTc) (exact for the spherical model29), where

W = (1/N ∑kkk
1

1−γkkk
) is the Watson integral.

Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1−
1

3
s

(
T

Tc

)3/2

(2)

where s is a slope factor given by

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin integer spin quantum number and ζ (x) the

well-known Riemann ζ function, and the RPA relation for a

quantum model (3kBT
q

c = J
q
0 S2/W ) has been used. We note

that if one wants to have T
q

c = T cl
c then the well-known identi-

fication J
q
0 S2 = Jcl

0 is necessary.26 We also note that Kuz’min22

utilized semi-classical linear spin wave theory to determine

s, and so use the experimentally measured magnetic moment

and avoid the well known problem of choosing a value of S

for the studied metals.

Mapping between the classical and quantum m(T ) expres-

sions is done simply by equating Eqs. (1) and (2) yield-

ing τcl = sτ
3/2
q , where τ = T/Tc, for classical and quan-

tum statistics respectively. This expression therefore relates

the thermal fluctuations between the classical and quantum

Heisenberg models at low temperatures. At higher tempera-

tures more terms are required to describe m(T ) for both ap-

proaches, making the simple identification between temper-

atures cumbersome. At temperatures close to and above Tc,

εkkk/kBT → 0 is small and thus the thermal Bose distribution

1/(exp(εkkk/kBT )− 1) ≈ εkkk/kBT tends to the Boltzmann dis-

tribution, thus the effect of the spin quantization is negligible

here. For this temperature region, a power law is expected,

m(τ)≈ (1− τ)β , where β ≈ 1/3 for the Heisenberg model in

both cases.

The existence of a simple relation between classical and

quantum temperature dependent magnetization at low temper-

atures leads to the question - does a similar scaling quantita-

tively describe the behavior of elemental ferromagnets for the

whole range of temperatures? Our starting point is to repre-

sent the temperature dependent magnetization in the simplest

form arising from a straightforward interpolation of the Bloch

law25 and critical behavior30 given by the Curie-Bloch equa-

tion

m(τ) = (1− τα)β
(4)

where α is an empirical constant and β ≈ 1/3 is the critical

exponent. We will demonstrate that this simple expression is

sufficient to describe the temperature dependent magnetiza-

tion in elemental ferromagnets with a single fitting parameter

α . An alternative to the Curie-Bloch equation was proposed

by Kuz’min22 which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]β . (5)

The parameters s and p are taken as fitting parameters, where

it was found that p = 5/2 for all ferromagnets except for Fe

and s relates to the form of the m(T ) curve and corresponds to

the extent that the magnetization follows Bloch’s law at low

temperatures. In the case of a pure Bloch ferromagnet where

s = 1, p = 3/2 and α = p equations (4) and (5) are identical,

demonstrating the same physical origin of these phenomeno-

logical equations.

While Kuz’min’s equation quantitatively describes the form

of the magnetization curve, it does not link the macro-

scopic Curie temperature to microscopic exchange interac-

tions which can be conveniently determined by ab-initio first

principles calculations31. Exchange interactions calculated

from first principles are often long ranged and oscillatory

in nature and so analytical determination of the Curie tem-

perature can be done with a number of different standard

approaches such as mean-field (MFA) or random phase ap-

proximations (RPA), neither of which are particularly accu-

rate due to the approximations involved. A much more suc-

cessful method is incorporating the microscopic exchange

interactions into a multiscale atomistic spin model which

has been shown to yield Curie temperatures much closer to

experiment21. The clear advantage of this approach is the
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FIG. 1. Temperature dependent magnetization for the elemental ferromagnets (a) Co, (b) Fe, (c) Ni and (d) Gd. Circles give the simulated

mean magnetization, and dark solid lines show the corresponding fit according to Eq. (4) for the classical case α = 1. Light solid lines give

the experimentally measured temperature dependent magnetization as fitted by Kuz’min’s equation. Triangles give the simulated data after

the temperature rescaling has been applied showing excellent agreement with the experimentally measured magnetizations for all studied

materials. Inset are plots of the relative error of the rescaled magnetization compared to Kuz’min’s fit to the experimental data, showing less

than 3% error for all materials in the whole temperature range (a more restrictive 1% error is shown by the shaded region). The final fitting

parameters are listed in Tab. I. Color Online.

direct linking of electronic scale calculated parameters to

macroscopic thermodynamic magnetic properties such as the

Curie temperature. What is interesting is that the classical spin

fluctuations give the correct Tc for a wide range of magnetic

materials21,31, suggesting that the particular value of the ex-

change parameters and the form of the m(T ) curve are largely

independent quantities. The difficulty with the classical model

is that the form of the curve is intrinsically wrong when com-

pared to experiment.

III. ATOMISTIC SPIN MODEL

To determine the classical temperature dependent magneti-

zation for the elemental ferromagnets Co, Fe, Ni and Gd we

proceed to simulate them using the classical atomistic spin

model. The energetics of the system are described by the clas-

sical spin Hamiltonian15 of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the

local and nearest neighbor magnetic moments at each atomic

site and Ji j is the nearest neighbor exchange energy given by28

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which

for RPA γ = 1/W and the value of Tc is taken from experi-

ment. The numerical calculations have been carried out using

the VAMPIRE software package32. The simulated system for

Co, Ni, Fe and Gd consists of a cube (20 nm)3 in size with

periodic boundary conditions applied to reduce finite-size ef-

fects by eliminating the surface. The equilibrium tempera-

ture dependent properties of the system are calculated using
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Texp = 300 K

Simulation

Tsim = 50 K

Universe

msim = 0.9

mexp = 0.9

FIG. 2. Schematic diagram of the rescaling applied to the simulation

of a magnetic material. The universe has a temperature Texp = 300K,

which for an experimental sample has a macroscopic magnetization

length of mexp = M/M0
s = 0.9. Using the temperature rescaling this

leads to an internal simulation temperature of Tsim = 50K, which

leads to a simulated equilibrium magnetization of msim = 0.9. There-

fore macroscopically mexp ≡ msim.

the Hinzke-Nowak Monte Carlo algorithm15,33 using 20,000

equilibration steps and 20,000 averaging steps resulting in the

calculated temperature dependent magnetization curves for

each element shown in Fig. 1. For a classical spin model it

is known that the simulated temperature dependent magneti-

zation is well fitted by the function15

m(T ) =

(
1−

T

Tc

)β

. (8)

We note that Eqs. 4 and 8 are identical for the case of α = 1.

Fitting the simulated temperature dependent magnetization

for Fe, Co, Ni and Gd to Eq. 8 in our case yields an appar-

ently universal critical exponent of β = 0.340± 0.001 and a

good estimate of the Curie temperature, Tc within 1% of the

experimental values. In general β depends on both the system

size and on the form of the spin Hamiltonian? , hence our use

of a large system size and many averaging Monte Carlo steps.

We note that our calculated critical exponent in all cases is

closer to 0.34 as found experimentally for Ni34 rather than the
1/3 normally expected.22 The simulations confirm the ability

of the atomistic spin model to relate microscopic exchange

interactions to the macroscopic Curie temperature. However

as is evident from the Kuz’min fits to the experimental data

(see Fig. 1) the form of the magnetization curve is seriously

in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature dependent mag-

netization between the classical simulation and experiment we

proceed by implementing temperature rescaling to map the

simulations onto experiment in a quantitative manner. Sim-

ilar to Kuz’min22, we assume in our fitting that the critical

exponent β is universal and thus the same for both the clas-

sical simulation and for experiment, and so the only free fit-

ting parameter is α . Due to the limited availability of raw
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FIG. 3. Plot of reduced simulation temperature τ = Tsim/Tc as a

function of the reduced input experimental temperature τ̃ = Texp/Tc

for different values of the rescaling exponent α . Higher values of α
correspond to a lower effective temperature and reduced fluctuations

in the simulation.

experimental data, we use the equation proposed by Kuz’min

as a substitute for the experimental data, since they agree ex-

tremely well.22 This also has the advantage of smoothing any

errors in experimental data. We proceed by fitting the Curie-

Bloch equation given by Eq. 4 to the Kuz’min equation given

by Eq. 5 where the parameters s and p are known fitting pa-

rameters (determined from experimental data by Kuz’min22),

and β ≃ 0.34 and Tc are determined from the atomistic simula-

tions. The determined value of α then conveniently relates the

result of the classical simulation to the experimental data, al-

lowing a simple mapping as follows. The (internal) simulation

temperature Tsim is rescaled so that for the input experimen-

tal (external) temperature Texp the equilibrium magnetization

agrees with the experimental result. Tsim and Texp are related

by the expression

Tsim

Tc
=

(
Texp

Tc

)α

. (9)

Thus, for a desired real temperature Texp, the simulation

will use an effective temperature within the Monte Carlo

or Langevin dynamics simulation of Texp, which for α > 1,

Tsim < Texp leading to an effective reduction of the thermal

fluctuations in the simulation. The physical interpretation of

the rescaling is that at low temperatures the allowed spin fluc-

tuations in the classical limit are over estimated and so this

corresponds to a higher effective temperature than given in

the simulation. This is illustrated schematically in Fig. 2.

Clearly different values of α in Eq. 9 lead to different map-

pings between the experimental temperature and the internal

simulation temperature. Larger values of α lead to reduced

thermal fluctuations in the spin model simulations, owing to

quantum mechanical “stiffness”. A plot of the simulation tem-

perature Tsim as a function of the input experimental temper-

ature Texp for different values of the rescaling exponent α is

shown in Fig. 3. Above Tc it is assumed that Tsim = Texp due

to the absence of magnetic order. For Monte Carlo simula-

tions the reduced simulation temperature appears directly in



5

TABLE I. Fitting parameters for the temperature dependent magne-

tization derived from the classical spin model simulations by fitting

to Eq. (4) for α = 1 (Tc and β ) and by secondary fitting to Eq. (5) to

obtain the rescaling factor α .

Co Fe Ni Gd

Tc 1395 K 1049 K 635 K 294 K

β 0.340 0.339 0.341 0.339

α 2.369 2.876 2.322 1.278

the acceptance criteria P = exp(−∆E/kBTsim) for individual

trial moves, thus reducing the probability of acceptance and

resulting in a larger magnetization length for the system.

We now apply the temperature rescaling to the simulated

temperature dependent magnetization for Fe, Co, Ni and Gd

and directly compare to the experimental curve, as shown by

the corrected simulation data in Fig. 1, where the final fitted

parameters are given in Tab. I. For Co, Ni and Gd the agree-

ment between the rescaled simulation data and the experimen-

tal measurement is remarkable given the simplicity of the ap-

proach. The fit for Fe is not as good as for the others due to

the peculiarity of the experimentally measured magnetization

curve, as noted by Kuz’min22. However the simple rescal-

ing presented here is accurate to a few percent over the whole

temperature range, and if greater accuracy is required then a

non-analytic temperature rescaling can be used to give exact

agreement with the experimental data.

The ability of direct interpolation of Bloch’s Law with crit-

ical scaling to describe the temperature dependent magnetiza-

tion is significant for two reasons. Firstly, it provides a sim-

ple way to parameterize experimentally measured temperature

dependent magnetization in terms of only three parameters via

Eq. (4). Secondly, it allows a direct and more accurate de-

termination of the temperature dependence of all the param-

eters needed for numerical micromagnetics at elevated tem-

peratures from first principles when combined with atomistic

spin model simulations18–20. We also expect the same form is

applicable to other technologically important composite mag-

nets such as CoFeB, NdFeB or FePt alloys.

V. DYNAMIC TEMPERATURE RESCALING

We now proceed to demonstrate the power of the rescal-

ing method by considering magnetization dynamics using a

Langevin dynamics approach15 with temperature rescaling.

The temperature rescaling can be used for equilibrium simu-

lations at constant temperature, but also dynamic simulations

where the temperature changes continuously. The latter is par-

ticularly important for simulating the effects of laser heating

and also spin caloritronics with dynamic heating. As an exam-

ple, we simulate the laser-induced sub picosecond demagne-

tization of Ni first observed experimentally by Beaurepaire et

al.6. The energetics of our Ni model are given by the Heisen-

berg spin Hamiltonian

H =−∑
i< j

Ji jSi ·S j −∑
i

kuS2
i,z (10)

where Ji j = 2.757× 10−21 J/link is the exchange energy be-

tween nearest neighboring Ni spins, Si and S j are a unit vec-

tors describing the direction of the local and neighboring spin

moments respectively and ku = 5.47×10−26 J/atom.

The dynamics of each atomic spin is given by the stochastic

Landau-Lifshitz-Gilbert (sLLG) equation applied at the atom-

istic level given by

∂Si

∂ t
=−

γe

(1+λ 2)
[Si ×Hi

eff +λSi × (Si ×Hi
eff)] (11)

where γe = 1.76 × 1011 JT−1s−1 is the gyromagnetic ratio,

λ = 0.001 is the phenomenological Gilbert damping param-

eter, and Hi
eff is the net magnetic field on each atomic spin.

The sLLG equation describes the interaction of an atomic spin

moment i with an effective magnetic field, which is obtained

from the derivative of the spin Hamiltonian and the addition

of a Langevin thermal term, giving a total effective field on

each spin

Hi
eff =−

1

µs

∂H

∂Si

+Hi
th (12)

where µs = 0.606µB is the atomic spin moment. The thermal

field in each spatial dimension is represented by a normal dis-

tribution Γ(t) with a standard deviation of 1 and mean of zero.

The thermal field is given by

Hi
th = Γ(t)

√
2λkBTsim

γeµs∆t
(13)

where kB is the Boltzmann constant, ∆t is the integration

time step and Tsim is the rescaled simulation temperature from

Eq. 9. As with the Monte Carlo simulations, this reduces the

thermal fluctuations in the sLLG and leads to higher equilib-

rium magnetization length compared to usual classical sim-

ulations. However unlike Monte Carlo simulations, the ex-

plicit timescale in the sLLG equation allows the simulation

of dynamic processes, particularly with dynamic changes in

the temperature associated with ultrafast laser heating. In this

case the temporal evolution of the electron temperature can

be calculated using a two temperature model35, considering

the dynamic response of the electron (T
exp

e ) and lattice (T
exp

l )

temperatures. To be explicit, when including the tempera-

ture rescaling the two temperature model always refers to the

real, or experimental temperature, Texp; Tsim only applies to

the magnetic part of the simulation where the thermal fluctu-

ations are included. The time evolution of T
exp

e and T
exp

l is

given by35

Ce

∂T
exp

e

∂ t
=−G(T exp

e −T
exp

l )+S(t) (14)

Cl

∂T
exp

l

∂ t
=−G(T

exp
l −T exp

e ) (15)
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FIG. 4. Simulated demagnetization of Ni comparing classical and

rescaled models with experimental data from [6]. The rescaled

dynamic simulations show quantitative agreement with experiment

from an atomic level model. Color Online.

where Ce and Cl are the electron and lattice heat capacities,

G is the electron-lattice coupling factor, and S(t) is a time-

dependent Gaussian pulse with a FWHM of 60 fs which adds

energy to the electron system representing the laser pulse. The

time evolution of the electron temperature is solved numer-

ically using a simple Euler scheme. The parameters used

are representative of Ni36, with G = 12× 1017 W m−3K−1,

Ce = 8× 102 J m−3K−1 and Cl = 4× 106 J m−3K−1. The

sLLG is solved numerically using the time dependent elec-

tron temperature rescaled using Eq. 9 with the Heun numeri-

cal scheme15 and a timestep of ∆t = 1×10−16 s.

To simulate the effects of a laser pulse on Ni, we model a

small system of (8 nm)3 which is first equilibrated at Texp =

300 K for 20ps, sufficient to thermalize the system. The tem-

perature of the spin system is linked to the electron tempera-

ture and so a simulated laser pulse leads to a transient increase

of the temperature inducing ultrafast magnetization dynamics.

After a few ps the energy is transferred to the lattice where

T
exp

e = T
exp

l . The classical and rescaled dynamics are calcu-

lated for identical parameters except that α = 1 is used for

the classical simulation since no rescaling is used. The simu-

lated magnetization dynamics alongside the experimental re-

sults are shown in Fig. 4, where the laser pulse arrives at t = 0.

As expected the standard classical model shows poor agree-

ment with experiment because of the incorrect m(T ). How-

ever, after applying dynamic temperature rescaling quantita-

tive agreement is found between the atomistic model and ex-

periment. This result exemplifies the validity of our approach

by demonstrating the ability to describe both equilibrium and

dynamic properties of magnetic materials at all temperatures.

VI. DISCUSSION AND CONCLUSION

In conclusion, we have performed atomistic spin model

simulations of the temperature dependent magnetization of

the elemental ferromagnets Ni, Fe, Co and Gd to determine

the Curie temperature directly from the microscopic exchange

interactions. Using a simple temperature rescaling consid-

ering classical and quantum spin wave fluctuations we find

quantitative agreement between the simulations and experi-

ment for the temperature dependent magnetization. By rescal-

ing the temperature in this way it is now possible to derive

all temperature dependent magnetic properties in quantita-

tive agreement with experiment from a microscopic atomistic

model. In addition we have shown the applicability of the ap-

proach to modeling ultrafast magnetization dynamics, also in

quantitative agreement with experiment. This approach now

enables accurate temperature dependent simulations of mag-

netic materials suitable for a wide range of materials of prac-

tical and fundamental interest.

Finally it is interesting to ponder what is the physical ori-

gin of the exponent α . From the elements studied in this

paper, there is no correlation between α and the crystallo-

graphic structure or the Curie temperature, nor by extension

the strength of the interatomic exchange constant. The rescal-

ing is independent of temperature and so the origin must be

an intrinsic property of the system with a quantum mechani-

cal origin as suggested by Eq. (3). In the simplistic picture

it should relate to the availability of spin states in the vicinity

of the ground state, with the fewer available states the more

Bloch-like the temperature dependent magnetization will be.

However, it would be interesting to apply detailed ab-initio

calculations to try and delineate the origin of this effect in

simple ferromagnets.
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