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Abstract 

Underground coal gasification (UCG) is the in-situ conversion of deep underground coal to synthesis 

gas for heating, chemical manufacturing and power generation. UCG has been the subject of 

extensive pilot testing but technical and environmental concerns remain, not least its greenhouse 

gas emissions. An attractive solution is to combine UCG with CO2 capture and storage (CCS) so that 

the CO2 generated from the UCG and combustion of synthesis gas is re-injected back underground in 

the UCG cavities, adjacent unmineable coal seams and stressed strata. Thereby the emissions from 

UCG are eliminated and deep coal reserves become a new source of energy supply. This paper 

reviews the recent global development of UCG projects, the research progress of UCG technology 

and the technical developments and economic feasibility of UCG-CCS in recent EU projects. 

Keywords: UCG; CCS; Computational modelling; Experimental tests 

1. Introduction 

Despite the ongoing trend towards renewable energy sources, fossil fuels, particularly coal, will 

continue to be a major source of energy for many decades ʹ a 20% increase in coal demand is 

predicted between 2008 and 2035 (IEA, 2010). However, coal is one of the primary environmental 

ƉŽůůƵƚĞƌƐ ĂŶĚ ŝƚƐ ƵƐĞ ŝƐ ĐŽŶƚƌŝďƵƚŝŶŐ ƚŽ ƚŚĞ ƌŝƐŝŶŐ ˁʽ2 concentration in the atmosphere. The key to 

reconciling these differences lies in the application of clean coal technologies (CCTs). Furthermore, 

ŵĂŶǇ ŽĨ ƚŚĞ ǁŽƌůĚ͛Ɛ ĐŽĂů ƌĞƐĞƌǀĞs are too deep to exploit by conventional methods (such as surface 

mining or underground mining). Underground coal gasification (UCG) provides access to coal 

deposits that would otherwise remain unused and an attractive route to carbon capture and storage 

(CCS).  

UCG is a technology to gasify the coal in situ in order to produce synthesis gas, which is a mixture of 

mainly hydrogen, carbon dioxide, carbon monoxide and methane. It involves a minimum of two 

wells (injection well and production well) partly drilled into the deep coal seam some distance apart, 

and connected by a channel through which gases can flow, as shown in Figure 1. During the UCG 

process, the gasifying agent (air, or oxygen, and possibly added steam) is supplied via the injection 

well to the underground gasification chamber, and the product gases are extracted via the 

production well to the surface for treatment and use. This process develops cavities within the coal 

seam and the roof may collapse, resulting in further growth of the cavity voids. Once the quality of 

the product gas has declined in the reaction zone, new coal is then exposed by moving the injection 

point and the process continues until the length of the borehole is exhausted. The size of the cavity 

formed during UCG has direct impacts on the economic and environmental aspects of a UCG project. 

Commercial-scale UCG operations would involve multiple boreholes/wells to produce sufficient 

quantities of syngas. UCG offers the potential for using the energy stored in coal in an economic and 
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environmentally sensitive way, particularly from deep deposits which are unmineable by 

conventional methods. It is rapidly becoming a viable commercial activity in Australia, South Africa 

and China, while many Eastern European countries are intensively working for its commercialization 

(e.g. Poland and Hungary). If UCG were to be successfully developed and widely deployed, then the 

ǁŽƌůĚ͛Ɛ ĐŽĂů ƌĞƐĞƌǀĞƐ ĂƌĞ ůŝŬĞůǇ ƚŽ ďĞ ƌĞǀŝƐĞĚ ƵƉǁĂƌĚƐ ďǇ a substantial amount.  

AůƚŚŽƵŐŚ ƚƌŝĂů ŽƉĞƌĂƚŝŽŶƐ ŽĨ UCG ďĞŐĂŶ ŝŶ ƚŚĞ ϭϵϯϬ͛Ɛ ;)ĂŵǌŽǁ͕ ϮϬϭϬͿ͕ ƚŚĞ ĐĂƉƚƵƌĞ ĂŶĚ storage of 

CO2 as an integral part of the operation has only been considered in recent years. UCG-CCS entails 

injecting and storing the CO2 produced in the underground gasification process and as a by-product 

of the shift reaction in which the CO in the extracted synthetic gas is reacted with steam to produce 

hydrogen and CO2. In addition to the injection of the separated CO2 into adjacent coal seams, the 

UCG cavities, boreholes and created fractures could provide an additional capacity for CO2 storage 

(Pei et al., 2010). Both UCG and CCS technologies have been tested separately and to some extent 

already applied commercially, but no site test has yet combined those two technologies. A few deep 

trial UCG projects have been undertaken (e.g. Swan Hills, Canada) and are useful for identifying and 

evaluating technical issues when implementing UCG-CCS projects. 

This paper reviews the recent practicalities of worldwide UCG projects and the research activities 

that are associated with UCG technologies, with an emphasis on the developments during the last 

five years. The recent development on computational modelling as well as experimental (both 

laboratory and field scale) tests of UCG process are highlighted. Base on the research outcomes from 

a previous UCG-CCS project, the technical challenges and economic feasibility of combining UCG 

with CO2 storage are also discussed.  

 

Figure 1 Schematic diagram of UCG process (Source: UCG association) 

2. Recent practicalities of UCG projects  

UCG involves multi-physics/chemistry processes which take place at different time and length scales, 

and requires sophisticated modelling supported by full-scale tests to advance the technology. 

Although large scale UCG projects have been developed in the past, e.g. Angren, Uzbekistan, and 

commercial projects are currently underway in many countries, financial institutions, investors and 



sometimes government sectors, need a greater understanding of the technical, economic and 

environmental risks of UCG in order to permit or finance the commercial projects. The development 

work currently under way is aiming at converting the knowledge gained into commercial practice 

and it is increasingly recognized that sharing experience and skills will significantly increase the 

economically viability of UCG. This section reviews current UCG developments and the potentials for 

the exploration of coal deposits at the global scale in terms of its implementation across the various 

continents over the past 5 to 10 years. Figure 2 is a snapshot of some of the UCG activities, which 

will be described in detail in the following sections. 

 

 

Figure 2 Worldwide underground coal gasification: a snapshot (Yang et al., 2014). 

 

2.1 Australia 

Substantial progress and employment of the UCG technology has been demonstrated in Australia, 

where development took a lead between 2000 and 2012. The work was initiated by the private 

company, Linc Energy which built a demonstration plant for UCG at Chinchilla, Queensland in 1999. 

A total of five UCG reactors were tested, and the work was accompanied by the construction of a gas 

to liquid pilot plant for diesel fuel (Linc Energy, 2013).  Another company, Carbon Energy Ltd, has 

constructed two reactors, and used the syngas produced in a demonstration 1MW power generation 

unit for a short time. Although other companies such as Cougar Ltd have attempted to pursue their 

own UCG projects, this has been stopped as a result of an assessment of the impact on the 

environment and other factors. UCG in Australia has now been affected by the reaction to the 

Cougar problems at Kingaroy and the Queensland Government has published an independent 

scientific report on UCG, which requires each company to demonstrate decommissioning before 

further activities are permitted.  Australia has shown willingness to undertake CCS projects involving 
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power generation (e.g. the CarbonNet project in Victoria) and has shown interest in forming 

partnerships with European research institutions on UCG-CCS. 

2.2 Asia 

UCG activities in Asia have been progressive. The proven coal reserve in China is 114.5 BT and 

because of the limitations ŝŶ ŵĂŶƵĂů ŵŝŶŝŶŐ͕ ĂďŽƵƚ ϱϬ й ŽĨ CŚŝŶĂ͛Ɛ ĐŽĂů ƌĞƐŽƵƌĐĞƐ ĂƌĞ ƵŶŵŝŶĞĚ͘ 
CŚŝŶĂ͛Ɛ interest in UCG is provoked by ƚŚĞ ŐŽǀĞƌŶŵĞŶƚ͛Ɛ commitment to ensure a reduction in 

pollution from coal-fired power plants. China has run about 15 UCG trials to date, aided by the UCG 

Research Center of China University of Mining and Technology (Beijing) (CUMTB) which has carried 

out theoretical research, UCG model tests and series of field tests. CUMTB, in collaboration with the 

coal industry, has brought forward the development of UCG in China. The maturing of UCG is of 

great importance to China and the country is trying to stimulate and enhance cooperation with 

other countries and foreign companies that have interest in accelerating the development and 

application of the UCG technology. ENN Group, which is part of the Hebei based XinAo Group and 

ŽŶĞ ŽĨ CŚŝŶĂ͛Ɛ ůĂƌŐĞƐƚ ƉƌŝǀĂƚĞ ŐĂƐ ĐŽŵƉĂŶŝĞƐ ǁŝƚŚ ůĂƌŐĞ ŽǀĞƌƐĞĂƐ ŝŶƚĞƌĞƐƚƐ͕ ŝƐ ǁŽƌŬŝŶŐ ĐůŽƐĞůǇ ŶŽƚ 
only with CUMTB but internationally with higher-learning institutes and corporations in Uzbekistan, 

USA, Australia, South Africa and EU. In 2011, a $1.5 billion commercial partnership was launched 

between Seamwell International Ltd (UK) and Chinese Energy Conservation and Environmental 

Protection Group (CECEP, China) to gasify 6 million tons of ďƵƌŝĞĚ ĐŽĂů ƉĞƌ ǇĞĂƌ ŝŶ IŶŶĞƌ MŽŶŐŽůŝĂ͛Ɛ Yŝ 
He coal field, aiming to generate 1,000 MW of power for 25 years. Australian based Carbon Energy's 

commercial UCG project is located at Haoqin Coal Field in Xiwuqi in Inner Mongolia, China.  It is a 

technology license agreement (TLA) with Zhengzhou Coal Industry Group Co Ltd (Zhengzhou Group) 

to be the exclusive underground coal gasification (UCG) technology partner for the project in China 

(Carbon Energy Ltd, 2013).  

In 2005 the Neyveli Lignite Corporation in India initiated a new project, funded by the Ministry of 

Coal to select a suitable lignite block for UCG trial, carry out pilot-scale studies and assess the heat 

value of the gas produced. Subsequently, the Central Mine Planning & Design Institute Limited 

(CMPDI) prepared data packages for five prospective UCG sites and appointed Skochinsky Institute 

of Mining (SIM), Russia as consultants. One of the five sites, the Kasta block in Raniganj coalfield was 

selected for a UCG pilot and borehole drilling is completed. Another two coal blocks, Kaitha Block of 

CĞŶƚƌĂů CŽĂůĨŝĞůĚƐ LƚĚ ĂŶĚ TŚĞƐŐŽƌĂ ͞C͟ BůŽĐŬ ŽĨ WĞƐƚĞƌŶ CŽĂůĨŝĞůĚƐ LƚĚ ǁĞƌĞ ŝĚĞŶƚŝĨŝĞĚ by Coal India 

Limited (CIL) in July 2014 for commercial development. 

In December 2009 the Thar Coal and Energy Board (TCEB) in Pakistan established a joint public 

private partnership with world renowned companies from China, Germany and South Africa to study 

the geological, hydrological, cultural and environmental impact of Thar Coal Mining with a view to 

mining 6.5MT/y of coal and generating 1,200 MW of electric power. In 2010 a UCG project was 

started in Block V of Thar Coal deposits (containing 1.4 billion tons of low-grade lignite coal reserves) 

(Khurshid, 2011). The aim was to set up two pilot 5MW power plants and to generate 8,000 MW 

from Thar Coal by 2015. During the construction phase of the UCG pilot, problems were 

encountered mainly concerning hole linkage, water incursion, aquifer characterisation and ignition 

of coal. The plant now is expected to produce electricity by 2018 (Tribune, 2015).  

2.3 North America 



In North America the USA and Canada have conducted field trials and modelling work on UCG for 

decades in both industry and research establishments. The USA was the principal driver of UCG 

ƚŚƌŽƵŐŚŽƵƚ ƚŚĞ ϭϵϴϬ͛Ɛ ĂŶĚ ĞĂƌůǇ ϭϵϵϬ͛Ɛ ďƵƚ ǁŽƌŬ ǀŝƌƚƵĂůůǇ ƐƚŽƉƉĞĚ ŝŶ ƚŚĞ ŵŝĚ ϭϵϵϬ͛Ɛ ǁŚĞŶ ŶĂƚƵƌĂů 
gas prices fell to record low levels. A revival of interest in UCG occurred about 10 years later (2005), 

mainly by Lawrence Livermore National Laboratories (LLNL) who secured funding from US 

Department of Energy (DOE) to undertake a review of Best Practice in UCG in 2006 (Burton et al., 

2007). LLNL have continued research in UCG with the emphasis on developing an integrated 3D full 

simulator of the cavity growth (reaction, geo-thermal, hydrology & fluid mechanics) (Nitao et al., 

2011). 

The commercial development of UCG in the US has been undertaken by mainly Australian and 

Canadian Companies (Linc Energy, Carbon Energy and Ergo Energy and Laurus). Linc Energy has 

acquired a project in Wyoming to develop UCG and GTL (Gas To Liquids) from UCG.  An application 

to the Environmental Protection Agency (EPA) and the Wyoming Department of Environmental 

Quality for a pilot study has been approved in September 2014. Linc Energy also has another 

potential UCG project in Cooks bay Alaska in association with the State Authorities, which has just 

started exploratory drilling in September 2014. Carbon Energy also has coal assets in Wyoming and 

North Dakota for a possible future pilot (Carbon Energy Ltd, 2012). The Canadian Company Laurus 

Energy has plans to develop a UCG project at Stone Horn Ridge near the Beluga River in southern 

Alaska in conjunction with CIRI (Cook Inlet Region Incorporated, a native American-owned 

corporation in Alaska). The project will be designed and developed with the capability for CCS 

Currently, the most advanced Canadian UCG development is a pilot project completed by Swan Hills 

Synfuels with support from the Alberta Energy Research Institute (AERI). It was set in the Manville 

coal seams between 4 to 5.2 metres thick at a depth of 1400 m, the deepest UCG ever conducted in 

the world. The trial gasification has used a single pair of wells to produce gas with a CV of 10MJ/m3.  

The Government of Alberta and Swan Hills Synfuels agreed funding for $285 million to cover the CCS 

part of the project, but this has since been withdrawn. Laurus Energy Canada Inc. is a licensee of the 

Ergo Exergy͛Ɛ proprietary UCG technology and is seeking projects in North America to demonstrate 

that large quantity of syngas can become an important feedstock to power generation, chemical and 

fertilizer plants in the Region. Although permits for its project in Alberta were received in February 

2011, it was delayed by the fall in natural gas prices in North America due mainly to shale gas. Other 

organisations such as Sherrit Technologies and University of Calgary are involved in the development 

of clean energy technologies and performing feasibility studies and Ergo Exergy are technology 

supplies to a number of projects worldwide, including South Africa, New Zealand and Alaska (Ergo 

Exergy, 2014). 

2.4 South Africa 

The energy company Eskom is the first to initiate the investigation of UCG in South Africa (Eskom, 

2013). In 2007 Eskom commissioned a UCG Pilot Plant with a capacity of about 3MW next to Majuba 

Power Station in Mpumalanga and in 2010 the syngas produced was used for co-firing with coal in 

the power station. The Majuba coal deposit is bituminous coal with thickness range of 1.8 m to 4.5 

m and lies at depth between 250 m and 380 m. Sasoil Limited has been investigating UCG for their 

gas-to-liquid (GTL) process in Secunda and has snow joined forces with Eskom in a 1B Rand project 

to jointly develop commercial UCG in South Africa. Other projects in Africa include the sub-Saharan 



project with Linc Energy and Exxaro Resources, and the Theunissen project with Africary Holdings 

Ltd (Green, 2014). 

2.5 Europe 

UCG has a long theoretical and field-based history in the UK, France, and the Former Soviet Union 

(FSU) (Shafirovich and Varma, 2009). The activities have been carried out for more than 50 years in 

the FSU and later in Russia itself. Scientific and engineering knowledge on UCG have been 

continuously developed, and has led to several UCG operations. Since 1996, when field work 

stopped, Russia has been improving the basic structural components and operational parameters of 

UCG technology. The new designs and technological know-how that have recently emerged are 

protected by a series of Russian patents. It is anticipated thĂƚ ‘ƵƐƐŝĂ͛Ɛ ĨŝƌƐƚ UCG ƉƌŽũĞĐƚ will take 

place soon in Chukotka where Clean Energy, a subsidiary of Linc Energy, investigated the coal 

deposit there in 2013 and concluded at least two sites are suitable for the implementation of UCG 

(The Moscow Times, 2013). 

Ukraine has continued to work on UCG after independence from FSU. The country participated in 

the first RFCS funded HUGE Project (2007-2010) by providing an extensive review of the Soviet work 

on UCG and contributed to the design of the underground gasifier design at the Barbra Mine, 

Katowice. The Ukrainian Technological Academy (UTA) has patented a geo-technology process for 

obtaining hydrogen by purifying synthesis gas from UCG (UAHE, 2010), and in December 2012, Linc 

Energy and the Ukrainian company DTEK holdings started ƚŽ ĞǀĂůƵĂƚĞ UCG ƉŽƚĞŶƚŝĂů ŽĨ DTEK͛Ɛ ĐŽĂů 
resources (Linc Energy, 2012) but this is now on hold. 

A company which has been active in UCG in Hungary is Wildhorse Energy, which is focussed on 

implementing UCG and developing its prospective uranium deposit in the Mecsek Hills in the Pécs 

region of Southern Hungary.  In July 2012 the Hungarian Government approved UCG as a technology 

and planed for the construction of a 130 MW pilot plant to demonstrate the ability of UCG 

dependent on seeking investment partners.  

The Polish Government views UCG as a method to exploit its large coal reserves for power 

generation. Small-scale UCG experiments were carried out in the 1960s and 1970s and since 2007 

Poland has begun to re-evaluate its UCG activities through new exploratory and field tests in the 

country. An important EU project undertaken by Central Mining Institute (GIG in Polish) is the 

Hydrogen Oriented Underground Coal Gasification for Europe project (HUGE, 2007-2010), funded 

under the Research Fund for Coal and Steel (RFCS) programme and bringing together eleven 

partners from seven countries. Its main focus was the theoretical and experimental development of 

in-situ production of hydrogen-rich gas from coal using underground gasification. A follow-up project 

HUGE2 (2011-2014), which is also financed by RFCS, focuses on the environmental and safety 

aspects associated to the UCG process, including underground water contamination, potential 

leakage of toxic gases. Poland also has a nationally funded UCG project, which is being constructed 

in an active coal mine in Upper Silesian Basin, to produce an industrial plant design by 2015. In 

addition, Linc Energy has a joint venture to develop UCG in Poland with an exploration site licence in 

Silesia (Green, 2014). 

A comprehensive feasibility study has been completed for developing UCG in Dobruja coal deposit in 

Bulgaria under a project funded by RFCS (Sheng et al., in press). Geological model, geo-mechanical 

and cavity models and hydro-geological model have been developed for the target area. In addition, 



engineering, drilling and completion requirements of wells were investigated and the environmental 

and economic assessment of the combination of UCG and subsequent CO2 storage has been 

performed. 

UCG development in the UK ŐŽĞƐ ďĂĐŬ ƚŽ ƚŚĞ ϭϵϱϬ͛Ɛ ĨŝĞůĚ ƚƌŝĂůƐ and a new initiative on UCG (2000-

2005) led by the UK Coal Authority and supported by the UK Department of Trade and Industry (DTI) 

investigated the feasibility of UCG in the UK. The main conclusion was that UCG should be seen 

primarily as a near-shore and estuary technology and a site was identified in the Firth of Forth for a 

possible field trial. More than 25 licences have since been issued for UCG exploration in offshore 

locations. The current key players are Thornton Energy (Firth of Forth), Five Quarter (Newcastle,) 

and Cluff Natural Resources with eight offshore sites in Firth of Forth, Liverpool, Cumbria and 

Durham. The geological evaluation of these license areas is all funded by key private sector 

investors, and planning applications are currently in preparation. In addition, the relevant energy 

and environmental authorities of Scotland, Wales and England are considering the permitting 

implications.   

The review has shown that UCG is evolving as a strategic technology of growing interest worldwide 

for large-scale syngas production to unlock the potential of huge unminable deep coal resources 

with distinct cost and environmental advantages. Although much is known about the control, site 

selection and operation of UCG, further knowledge from modelling and field tests must be pursued 

to ensure that environmental impacts of full commercial deployment are fully understood and 

assessed. This would place coal in a sustainable, secure and competitive energy mix and allow its 

continued contribution to a competitive and secure energy supply. A comprehensive set of data of 

UCG trial projects including coal types and seam thickness has been reported in 2007 (Khads et al., 

2007) but more detailed information of recent UCG projects over the past few years still needs to be 

updated. Key to the commercialisation and growth of the UCG industry is the collaboration and 

sharing of expertise and knowledge between projects and governments with experience in UCG, 

particularly in the area of environmental impact, planning and regulation.  

EU-funded projects are one of such opportunities that set the basis for collaboration between EU 

countries in the field of clean coal technologies like UCG and CO2 storage solutions. The countries 

with the greatest interest and most active R&D programs in UCG are China, India, South Africa, 

United States, Canada, Australian and certain Member States of the EU. China, South Africa and the 

US are the countries probably closest to commercialisation outside of the EU. Within the EU the 

countries showing the most progress are Poland, Hungary and the UK. CCS research and 

development is active and demonstration scale projects of both capture and CO2 storage are 

underway in most countries, and the mature of CCS is of significant importance to facilitate the 

combination of UCG and CCS. Case studies of UCG-CCS have been carried out in the Powder river 

basin of Wyoming, USA (Zamzow, 2010) and the Williston basin, North Dakota, USA (Pei eta al., 

2010). In Europe, a consortium funded by the EU has carried out a pilot investigation of in-situ 

hydrogen production incorporating UCG-CO2 management in Poland (Zamzow, 2010). 

3. Research development of UCG 

UCG is conceptually very simple but the development of a working system has proved more difficult 

in practice. The main problems include accurate in-seam drilling, controlling the reaction within the 

seam and producing a consistent and high quality gas. Therefore trials must be undertaken at pilot 

scale, although they are both costly and time consuming. More research on prediction of cavity 



growth, site evaluations, assessment and mitigation of environmental impacts, economic studies 

and safety are generally required to convince financial institutions, permitting authorities and 

investors to support the commercial projects. 

The quality of the product gas from UCG process is influenced by the coal properties as well as the 

operation such as feed conditions and injection points. As gasification proceeds, an underground 

cavity is formed. The volume of the cavity increases progressively with coal consumption and roof 

spalling due to thermo-mechanical fracture. As the cavity growth is irregular in three dimensions, 

the flow pattern inside the UCG cavity is highly non-uniform. The complexity increases further 

because of several other processes occurring simultaneously, such as heat transfer due to 

convection and radiation, spalling, water intrusion from surrounding aquifers, several chemical 

reactions, and other geological aspects. 

Despite the fact that very few experiments have been carried out in the laboratory, there are still 

some lab tests reported in the past few years, with a particular purpose to understand the cavity 

growth as well as to validate numerical modelling. Field tests of UCG are less expensive than pilot 

projects but could be more useful than laboratory tests by incorporating more underground 

geological effects. The research from laboratory, field scale pilot test as well as advanced 

computational modelling of UCG are presented in this section aiming to provide an  in depth 

overview of the recent developments.  

3.1 Laboratory and field tests of UCG  

Only a few field tests were carried out to date and limited data on cavity growth in a burning coal 

seam have been obtained, due to the high cost as well as the difficulty of controlling the operating 

variables. As a result, a number of laboratory-scale coal block gasification tests have been performed 

recently under a three-dimensional geometry (Daggupati et al., 2010; Liu et al., 2011; Stanczyk et al., 

2011; Prabu and Jayanti, 2012). In those experiments, usually a borehole was drilled through the 

coal block; blast gas was injected into one end of the borehole and the product syngas extracted 

from the other end. However, even these tests are difficult to interpret because they are three-

dimensional tests and the cavity wall temperature changes with time and along the axis of the 

borehole. In addition, it is difficult to apply the same or similar hydrostatic stresses on the tested 

coal/rock samples to represent the real UCG scenario, thus the influence of geologic condition on 

the cavity growth is hard to investigate at laboratory scale. 

A field test was reported by Yang et al. (2008) to use two-stage gasification approach with long 

channel and big section for hydrogen production in Woniushan Mine, Jiangsu Province, China. In this 

two-stage UCG, oxygen enriched air was injected to stimulate the gasification and increase the 

average temperature of the coal seam up to 1000°C, and then steam is injected after the first stage 

of air injection to invoke the reaction between steam and the incandescence for water gas with high 

content of hydrogen. It is also noticed that the two-stage gasification technology is more suitable for 

gasifiers of large size. A similar two-stage UCG test was performed late by Liu et al. (2011) to 

investigate the syngas composition as well as temperature field. In the first stage, and main outcome 

of the test is the effect of oxygen concentration on the time duration of the two gasification stages. 

The temperature field during the test was measured, but it provides more information on the 

temperature drop along with the gasification process rather than the cavity shape.   



A semi-industrial test of Enhanced-UCG (EUCG) technology was reported by Wang et al. (2009) to 

gasify the scattering coal seals in Zhong-Liang-Shan mine in China for three months by making use of 

the abandoned mine shafts as gasification channels. Due to controlled moving injection points, the 

operation of this specific EUCG is more controllable in terms of operational pressure and gas flow, 

and meanwhile it seems a feasible technology to ͚ƌĞ-ŵŝŶĞ͛ ƚŚĞ ĂďĂŶĚŽŶĞĚ ĐŽĂů ƌĞsources, 

particularly in China.  

In the frame of HUGE project (Hydrogen Oriented Underground Coal Gasification for Europe), 

Stanczyk et al. (2011) carried out simulated UCG experiments on lignite and hard coal seams using 

three different gasification agents, i.e. air, oxygen, oxygen enriched air in an ex situ reactor. It was 

found that oxygen was necessary to sustain the gasification process of both lignite and hard coal. 

Optimal oxygen/air ratios for both types of coal were identified, although the ratio was strongly 

related to the reactor geometry. Later, Stanczyk et al. (2012) also adopted the two-stage gasification 

approach (Liu et al., 2011), used large rock and coal samples, and applied a vertical weight on the 

reactor to mimic the underground gasification conditions. Although the production rate of hydrogen 

is still the main purpose, the experiment provides invaluable information on the temperature profile 

for future thermodynamics analysis. Using electromagnetic technology, the horizontal projection of 

the cavity shape on the level of the gasification channel is also obtained, as shown in Figure 3.1. 

 

Figure 3.1 Image of horizontal projection of gasification cavities (Stanczyk et al., 2012). 

The shape and rate of growth of the UCG cavity have great impact on other important phenomena, 

such as reactant gas flow patterns, kinetics and temperature profiles. Daggupati et al. (2010) 

designed a series of laboratory tests to investigate the cavity formation of lignite coal and its 

dependence on injection flow rate, operation time as well as the distance between injection and 

production wells. It was reported that the injection flow rate and operation time resulted in 

monotonic increases in all the dimensions of the cavity, when other factors are kept the same. 

Under that experimental condition, empirical correlations for cavity growth were proposed in which 

the correlation coefficients were obtained by fitting the experimental data using statistical software. 

The shape and size of the cavity in three dimensions are measured, as shown in Figure.3.2.   



 

Figure 3.2 Photograph of the vertical section of the gasification cavity (Daggupati et al., 2010) 

Prabu and Jayanti (2012) carried out laboratory scale studies to simulate UCG of high ash coals using 

pure oxygen or oxygen and steam as the gasifying agents. They investigated the effects of coal 

properties, and feed gas flow rate and composition on the rate of cavity growth and found that high 

oxygen flow rates are required to ensure the cavity expands in all directions. The high ash content 

(25% by weight), also produces very fine-sized ash particles which were found to fill the cavity 

(Figure 3.3).  

 

Figure 3.3 Tear drop shape of cavity after gasification (Prabu and Jayanti, 2012). 

3.2 Numerical modelling of UCG  

3.2.1 Modelling of cavity growth 

The UCG cavity consists of coal, char, ash, rubble and voids, therefore its shape and size evolves as 

the gasification process proceeds. Generally the cavity size depends on the coal consumption is 

mainly governed by the reaction rate that takes place in the cavity reactor, whereas the cavity shape 

depends on the growth rates in the four directions which is influenced by the gas flow field inside 

the cavity, and other effects such as thermo-mechanical spalling of the coal, operating conditions 

and coal seam thickness. The growth as well as the final form of UCG cavity has direct influence on 

the economic and environmental factors of the project. Width/height ratio of the UCG cavity 

determines the resource recovery and the ultimate overall dimensions will dictate the hydrological 

and goemechanical response of the overburden. The evolution of UCG cavities and the final shape 



and size of the gasification channel are of vital importance for the environmental safety and 

geological stability of surrounding geological formation (Bhutto et al., 2013). 

Efforts have been made to develop mathematic and/or numerical models, ranging from 1D, to 2D 

symmetric and to full 3D, to predict the UCG cavity growth. Perkins et al. (2006) developed a 1D 

thermo-mechanical model to investigate the effects of operating conditions (e.g., temperature, 

pressure, water influx, gas composition) and coal properties (e.g., thermo-mechanical spalling 

behaviour, reactivity, composition) on the rate of local cavity growth and the effectiveness of energy 

utilization (see Figure 3.4). The thermo-mechanical spalling behaviour of coal, the behaviour of the 

ash and the amount of fixed carbon in coal were found to most affect the cavity growth rate.   

 

Figure 3.4 Schematic of 1D thermo-mechanical UCG model, reproduced from Perkins et al. (2006). 

Chen et al. (2011) developed a 2D thermal model to calculate the temperature distribution in the 

vertical direction of the UCG cavity and the combustion volume by assuming a circular gasification 

channel. Yang et al. (2014) developed a 3D coupled thermoʹmechanical finite element model to 

analyse the cavity growth as well as the roof deformation and ground surface subsidence. A coupled 

temperatureʹdisplacement procedure was adopted to simultaneously solve the stress/displacement 

and temperature fields. Cavity shapes and temperature profile in the coal seam during gasification 

were investigated by assuming the coal consumption at a specific temperature, e.g. the coal is 

assumed completely gasified once its temperature reaches 1000 degrees Celsius. It should be noted 

that in this thermo-mechanical modelling the cavity is represented by the elements with thermal 

and mechanical properties similar to syngas, but the conjunctive heat transfer through gas flow is 

neglected, thus the irregularity of the cavity shape cannot be accurately predicted. 

To account for the chemical reaction, the UCG cavity is usually considered as either a packed bed or 

a free channel. Yang et al. (2004) assumed the UCG cavity as a packed bed reactor and used a set of 

partial differential equations to model the temperature distribution. Yang (2006) also presented a 

3D unstable nonlinear numerical model of UCG to study the temperature field, concentration field as 

well as pressure field in the gasification panel. Khadse et al. (2006) developed a 1D transient model 

for UCG by viewing the UCG channel as a packed bed and the coal particles are filled in the reactor 

and go through the processes of oxidation and gasification in a porous space. Because there are 

large differences in the characteristic times of the different variables in this model, the system of 

equations was divided in into two parts, one consisting of steady state gas phase and energy balance 

in only the length domain and the other set of solid balance equations in time domain only.  
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The chemical processes can be coupled with the mass- and heat- transfer equations to give better 

prediction of temperature distributions in UCG cavity. Perkins and Sahajwalla (2007) developed a 2D 

axisymmetric CFD model of the UCG cavity that can be used to simulate the combined effects of 

heat and mass transport and chemical reaction during the gasification process. Although a number 

of assumptions and simplifications were made to make the simulations tractable, the results reveal 

the importance of transport and reaction processes occurring in the UCG cavity. Nourozieh et al. 

(2010) used a comprehensive porous media flow approach to construct a 3D model of UCG of thin 

and deep coal seam, ini whch the cavity growth is caused by char combustion and gasification 

reactions, and the rate of cavity growth depends on the rate of these reactions. However, other 

types of mechanisms such as thermo-mechanical failure, rock spalling, sidewall regression, and bulk 

collapse of coal are not included. Seifi et al. (2011) carried out a 3D simulation of UCG process using 

the STARS module of the Computer Modelling Group Software (CMG), which is a process simulator 

for modelling the flow of three-phase and geo-mechanical process (fracturing, compaction and rock 

failure), to investigate cavity shape, temperature variation, product gas composition and flow rates, 

taking into account heat and mass transport phenomena in conjunction with chemical reactions. 

Despite assuming constant thermal properties for solid components and water and also predicting 

the pyrolysis process with one reaction, the findings of this model are physically consistent with 

those in the literature in predicting syngas flow rate, cavity shape, and temperature profiles.  

The actual UCG cavity is expected to be irregular in all three dimensions, and its growth rate might 

well be different in different directions (Daggupati et al., 2011). Furthermore, a complex non-ideal 

flow pattern of the reactant gas prevails in the cavity and is strongly governed by the cavity shape. In 

the process of UCG, the cavity shape is coherent with the gas flow.  Due to buoyancy forces, the 

actual UCG cavity is irregular in all three dimensions, and on the other hand the cavity geometry acts 

as boundary for the gas flow. The characterization of the non-ideal flow patterns in UCG is an 

important aspect, as it is likely to significantly influence the process performance. Computational 

fluid dynamics (CFD) studies are essential to understand these complex flow patterns within the 

cavity. The phenomenological model proposed by Daggupati et al., (2011) is shown in Figure 3.5, 

where the focus is on the UCG cavity and flow patterns. The cavity is subdivided into discrete 

compartments which exchange heat and mass with the cavity roof and the non-carbonaceous rocky 

floor (as shown in Figure 3.6), providing significant computational savings in predictive modelling for 

UCG cavity flow patterns. Furthermore, the influence of injection orientation (vertical or horizontal) 

and radiation on the reactant gas flow has been analysed. The CFD results are further used to 

conduct numerical (virtual) tracer experiments and to determine the residence time distribution 

(RTD) or exit age distribution. Based on the flow patterns from the CFD simulations and the RTD 

studies, the cavity is modelled as a simplified network of ideal reactors.  



 

Figure 3.5 Phenomenological modelling of the underground coal gasification process  

for a nonspalling case (Daggupati et al., 2011). 

 

Figure 3.6 CFD Contours of the magnitude of the velocity (m/s) on a center plane (width) for 

different cavity sizes (Daggupati et al., 2011). 

Another modelling attempt by Luo et al. (2009) has combined CFD and mathematical cavity growth 

model and it also showed promising results in terms of cavity shape, dimensions and coal 

consumption, as shown in Figure 3.7. Effects of natural and forced convection driving forces on heat 

and mass transfer in cavity are considered in the 2D mathematic cavity growth model which is then 

expanded into 3D and incorporated with CFD simulation by assuming the cavity growth is uniformly 



expanded towards side wall and roof wall. The information from the Chinchilla UCG trial work has 

been used to validate the modelling results. 

  

 

Figure 3.7 Combined CFD and mathematic cavity growth model 

3.2.3 Geomechanical and Environmental modelling 

Even though UCG is operated in deep coal seams below the water table, product gas could migrate 

through geologic faults and openings (fractures) in rock strata to upper water aquifer to cause 

contamination. In addition, the spalling of overburden strata and unbalance hydrostatic pressure in 

the surrounding area of the UCG cavities could also create paths for the aquifer water to flow into 

the cavities, mix with the residual chemicals produced in UCG process, and consequently 

contaminate the upper aquifers. An example is the detection of benzene in ground water in Kingaroy 

project in Queensland which directly caused the project to be blocked in July of 2010 (Imran et al., 

2014).  

During the UCG process, elevated temperature and permeation of fluid inside the rock pores could 

change the mechanical behaviour such as stiffness and strength of strata rock, which might cause 

geologic instability and even substantial subsidence of the ground surface. An investigation by 

Vorobiev et al. (2008) at LLNL has focused on geomechanical processes in coal and surrounding rocks 

during the UCG process. Finite-element (FE) and discrete-element (DE) are coupled both in two and 

three dimensions to analyse a series of UCG scenarios.  For example, the collapse of cavity roof as a 

result of blocks sliding into the cavity under the stress induced by the cavity was simulated by 

introducing joints into the continuum FE model (see Figure 3.8). 

(a) At 2.5 days, the cavity touched the overburden 

(b) 5 days cavity size and shape 

(c) 10 days cavity size and shape 



 

Figure 3.8 Collapse of Cavity in jointed rock during UCG, after Vorobiev et al. (2008). 

In a recent EU project funded by RFCS, the geomechanical response of the geologic faults in a 

potential UCG coal deposit was studied (Sheng et al., in press). The model incorporated a detailed 

geologic structure of the site including the positions and depths of the faults as well as the thickness 

of and depth of the coal seams, as shown in Figure 3.9. A sensitivity analysis on the acceptable 

distance of the cavity away from the faults has been carried out and the resulted stress distributions 

are used as one of the criteria for the site selection. 

                      

(a)                                                                                                   (b) 

Figure 3.9  Geomechanical model of the selected site: (a) faults structure in pink and (b) Contact 

pressure distributions on the faults 

Besides the numerical modelling on UCG cavity growth and gas flow, the consequent effects of UCG 

on the subsidence and water flow are also important factors to consider. In addition, to minimize the 

environmental impact, after shutting down the UCG process the cavities must be washed by a net 

flux of water. This operating strategy prevents the dispersion of reaction products into the 



surroundings in preparation for post-burn clean-up treatment which is particularly important when 

CO2 is planned to be injected back. The temperature, pressure, porous media properties, and 

composition of the liquid and gaseous phases (including contaminant concentrations in the 

groundwater) in the subsurface after the UCG need to be addressed. A 3D regional groundwater 

model was developed using the computer program MODFLOW to investigate the non-isothermal 

groundwater flow and contaminant transport near a vertical geologic fault (benzene was considered 

to be the primary contaminant of concern) (Sheng et al., in press). The modelling results in Figure 

3.10 showed that contaminant concentrations would exceed 1 ppb after one year of UCG operations 

but in a relatively small area in the vicinity of the impacted zone. For the later years, the 

concentrations would be substantially below 1 ppm due to contaminant dilution. 

 
 

 
Figure 3.10 Model predicted transients in benzene concentrations in ppm. 

(a) 1 year, (b) 10 years, (c) 100 years and (d) 1000 years after the UCG and                                                       

CCS activities have been performed 

To address the issues of rock fracture, aquifer interference, and water flow in coalmine environment, 

CSIRO (Commonwealth Scientific and Industrial Research Organisation) in Australia has developed a 

two phase flow model based on finite element method, COSFLOW (Mallett, 2006). In COSFLOW, the 

fracture is estimated from a mechanical sub-model and coupled with the changes of permeability 
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and porosity used in the fluid flow sub-model. Similar to the conventional flow model, the flow in 

the fracture system is controlled by the pressure gradient and is governed by DĂƌĐǇ͛Ɛ ůĂǁ. The 

dynamic interaction between the mechanical deformation and fluid flow processes is described 

through a series of coupled non-linear partial differential equations. A prediction result of 

subsidence and permeability is shown in Figure 3.11 and Figure 3.12, respectively. 

 

Figure 3.11 Modelling of subsidence by COSFLOW 

 

Figure 3.12 Modelling of permeability by COSFLOW 

3.2.4 Integrated modelling 

Aghalayam (2010) reviewed the state-of-the-art modelling of UCG process and reported that a few 

models have considered three-dimensional simulation of the UCG process with some assumptions, 

such as the absence of the heat-transfer calculation or constant gasification temperature. A 

distinguishing feature of three-dimensional modelling is that the physical and chemical phenomena, 

such as mass and heat transport, chemical reactions, and geo-mechanical behaviour, become far 

more complex. UCG involves interdependent multi-physical/chemical processes (Figure 3.13) in 

which the cavities, geologic deformation and fracture, as well as fluid permeation take place at 

different time and length scales.  LLNL has been developing a new integrated 3D UCG simulator with 

the capability to predict cavity growth, product gas composition and rate as well as environmental 

interaction (Nitao, 2011). The model aims to integrate thermal-hydrological model, cavity gas model, 

geomechanical model, rubble zone model, wall zone model and boundary evolution model. It has 



been applied to modelling the Hoe Creek III field test with encouraging results demonstrated in 

Figure. 3.14. 

Figure3.13 Distinctive multiphysical/chemical process domains involved in UCG(Nitao, 2011). 

 

Figure 3.14 Integrated modelling of UCG cavity at 14 days (Nitao, 2011). 

4. Combining UCG with CCS 

Although there has not been a trial test on UCG-CCS, the methods of capaturing CO2 from UCG 

syngas have been discussed, including pre-combustion removal, post-combustion removal and oxy-

fuel method (Zamzow, 2010). It is assumed that UCG would leave highly porous residuals and 

adjacent coal seams, in addition to the cavity voids. As these areas cool down, the abandoned 

cavities would be accessed by directional drilling or through the existing production boreholes. CO2 

would then be injected at high pressure for storage and retention. For permanent CO2 sequestration, 

the depth and strata conditions must be suitable. When a UCG operation is shut down and CO2 is 

scheduled to be injected back to the cavities, it is essential to carry out the necessary treatments to 

prepare the cavities for an efficient CO2 storage, while preventing contamination of adjacent 

groundwater aquifers. With cavities cleaned, potential contamination of nearby aquifers caused by 



the escape of UCG by-products (tars, phenol, benzene, etc.) could be avoided. Furthermore, after 

the UCG process, the temperature in the UCG reactor remains as high as 1000 °C for a long period. 

At the time of CO2 injection, the temperature in and around the UCG cavities must have already 

been cooled down to a temperature level to maintain the CO2 in a supercritical status. Cavities can 

be cooled down either naturally (without any specific measures) or by flushing water. A coupled 

hydro-thermal analysis was carried out to investigate time dependency of the cooling down process, 

showing that the forced cooling by water flushing at a flow velocity of 1 m/s can decrease the 

temperature in the cavities much more efficient than natural cooling at a factor of more than 300 

(Sarhosis et al., 2013). However, a coupled thermo-hydraulic-geomechanical model is still required 

to investigate whether the forced cooling could induce fracture events in the rock strata. Other 

factors that must be considered when combining UCG with CCS are well completion, site selection 

criteria to minimize environmental impacts after CO2 injection, and economic feasibility of injecting 

CO2 into UCG cavities. 

The volume required to store the CO2 produced from the combustion of syngas can be 4 to 5 times 

larger than the volume occupied by the extracted coal at 800 metres depth, but the actual storage 

capacity of is much higher than the extracted coal volume because of the increased permeability of 

the rock strata as well as the remaining coal between the UCG cavities and between gasification 

channels (Roddy et al., 2010). Accurate prediction or estimation of the CO2 storage capacity in UCG 

cavities is challenging, and it directly affects the technical feasibility of UCG-CCS projects. The CO2 

sorption capacities of coal gasification residues for representative hard coal in Germany was 

experimentally measured by Kempka et al. (2011) which provides an effective assessment of the CO2 

storage potential related to the UCG-CCS technology. It was found that up to 42 percentages 

increase of CO2 sorption capacity before and after gasification, suggesting that storage of CO2 in UCG 

cavities is a feasible option.  

Economic cost is another important factor that also needs to be considered when combining UCG 

with CCS. A techno-economic model has been developed by Nakaten et al. (2014a; 2014b) to assess 

the one-at-a-time sensitivity of the cost of electricity on 14 selected geological, technical and 

market-dependent variables in a UCG-CCS process where synthesis gas from UCG is used to fuel a 

combined cycle gas turbine (CCGT) for generating electricity. It was revealed that the cost of 

electricity is less sensitive to geological model input parameters than the technical components of 

CCGT implementation, the syngas composition or market-dependent parameters in the selected 

study case. It was calculated that the overall cost of electricity accounts to 48.56 Φ/MWh without 

CCS or emission charges. However, the cost increases significantly to 71.67 Φ/MWh according to a 

CO2 storage capacity of 20.5% in the UCG cavities and a CO2 emission charge of 80 Φ/t, and to 73.64 

Φ/MWh with 100% emission charges, thus further CO2 storage options would be more economic. 

The model is site-specific for a target area in Bulgaria, but it is applicable to any potential UCG site 

for economic analysis, provided the geological, hydrogeological and geomechanical data are 

available.  

Interdisciplinary studies on the technical and economic feasibility of combining UCG with CO2 

storage in a Bulgaria coal deposit was presented with a focus on the development of site selection 

requirements for UCG-CCS, estimation of CO2 storage volumes, drilling and completion issues for 

wells used for UCG and/or subsequent CO2 injection, and assessments of economic feasibility and 

environmental impacts of the scheme (Sheng, Y., et al., in press). State-of-the-art geological, geo-

mechanical, hydro-geological and coupled thermo-mechanical models were developed to better 



understand the UCG-CO2 storage processes and aid the determination of site selection requirements 

for evaluation of deep coal locations in a target coal deposit in Bulgaria. A set of criteria for the UCG 

site selection are listed in Table 4.1. The risks of subsidence and groundwater contamination have 

been assessed in order to pave the way for a full-scale trial and commercial applications. The 

research confirms that cleaner and cheaper energy with reduced emissions can be achieved by 

combining UCG with CCS and the economics are competitive in the future European energy market. 

However, rigorous design and monitor schemes are still essential for productivity, safety and the 

minimisation of the potential environmental impacts.  

Table 4.1 List of criteria from hydro-geological investigations 

Category Desired value Comments 

Coal thickness (m) >2m 
Not greater than 30m. Ideally 5 -10 m 

Number of seams to be gasified 
 Avoid seams with overlying coal within 

15m 

Thickness variation (% of seam 

thickness) 

<25 Avoid variable thickness seams 

Depth (m) >92 Preferably more than 300m and not 

more than 2000 m 

Angle of coal seam (degrees) 0-70 Any but steeper is preferred as it may be 

technically difficult to mine through 

conventional methods. 

Variation of the angle of the 

coal seam (% of average angle) 

<2  

Thickness discontinuity (m) 1 Avoid seams with variable partings/ 

discontinuities. 

Overburden (m) 100 Floor and roof conditions needs to be 

examined carefully. 

Coal rank (vitrinite reflectance) Low rank 

bituminous 

Free swelling index should be low. Sub 

bituminous or lower rank, ideally not 

coking, non-swelling coals. 

Ash content (wt %) <50%  

Coal sulphur (wt %) <1 Volatile matter greater than 10%. 

Sulphur should be removed along with 

syngas. 

Coal moisture (wt %) <35 Preferred 7-35%. Controlled inflows of 

water or high moisture contents are 

desirable especially after ignition. 

Gross calorific value of coal >12MJ kg-1  



Category Desired value Comments 

Thickness of consolidated 

overburden 

>15  

Seam permeability (mD) 50-150 More permeable greater than 20%. 

Swelling coals may interrupt the gas 

circuit. High permeability coals may 

allow excessive water infiltration causing 

possible chance of gas leakage and 

contaminant movement. 

Porosity of coal seam >30% Porous coal seam. 

Distance to nearest overlying 

water-bearing unit (m) 

100  

Coal aquifer characteristics Confined  

Available coal resources (106 

m3) 

>3.5Mt >20 years long operation. Depend upon 

gas utilisation and profitability. 

Proximity to faults >150 m depending 

on site conditions 

If many major faults then site specific 

calculation required to be carried out for 

the accurate estimation of the distance. 

Distance from active mines 

(km) 

>3.2  

Distance from abandoned mines 

(km) 

>1.6  

Geology-lithology  High UCS, non-porous and impermeable 

strata 

Hydrology Non aquifer strata is 

preferred. 

Non porous strata <30%, Impermeable 

<5%, Moderate water ingress. Avoid 

potable aquifer and large water bodies. 

Geotechnical strata properties Rock strength: 

Uniaxial compressive 

strength range 50 to 

250 MPa.  

Density greater than       

2000kg/m3 

Avoid excessively fractured, faulted and 

broken rocks as they may cause water 

inrush or product gas and contaminant 

leakage 

Infrastructure availability  Roads, electricity and power 

transmission lines 

Presence of coal bed methane  Depends upon economics or commercial 

value of CBM deposit and its 

interoperability with UCG. 

 



5. Discussion and conclusions 

UCG could be an attractive and green technology for the utilisation of huge unminable coal 

resources to produce syngas products (e.g. power generation, coal to liquids, hydrogen and 

fertilizers) with distinct economical and environmental advantages. UCG also provides an 

opportunity for low cost CCS as it does not require the transportation of CO2. However, modern UCG 

is a new industry to the public, the media and also the regulators. Though licensing policies for UCG 

are already being formed in some countries (e.g. Australia, UK, Canada, New Zealand and U.S.A), the 

lack of regulations in other countries is slowing down the progress. The challenge to ensure the 

commercial viability of UCG technology is still significant, but these hurdles could be overcome by 

contributing more research efforts as well as deploying the right policies and arguments to convince 

the public. While government support of the technology is needed to produce a reliable base of 

technical knowledge and expertise, the implementation of more projects is required to test possible 

UCG approaches and practice the combination of UCG-CCS. Additionally, some commercial field 

projects could serve as possible locations to develop and test novel monitoring, simulation, drilling 

or environmental protection technologies, tools and approaches. Existing computational models are 

very helpful for improving the understanding of UCG process and can provide certain guidance on 

better controlling of it, however, considerable work still needs to be done on developing more 

advanced and more integrated computational models that are validated at laboratory scale as well 

as field scale to more accurately predict the cavity growth and the environmental impact of UCG and 

subsequent CO2 injection and storage. This will not only gain more confidence from the public for 

future UCG-CCS projects but also provide useful guides on the selection of potential UCG-CCS sites. 

CCS research and development is active and demonstration scale projects of both capture and CO2 

storage in saline aquifers and depleted hydrocarbon fields for enhanced oil or gas recovery are 

underway worldwide, but combining UCG with CCS is still at a stage of desk study and feasibility 

investigation. 

When CO2 is injected into the UCG cavities, an important issue to be addressed is the upward 

movement of CO2 as a free phase (free surface flow). During the injection of CO2 into the deep 

underground cavities, increased formation pressure as well as temperature difference between the 

injected CO2 and caprock as well as remaining coal will change the effective stress condition in the 

geologic structure. In addition, large buoyance forces together with hydrocarbon depletion on 

overlying caprock might challenge its capillary and structural integrity and can eventually trigger 

seismic events. The understanding of coupled thermo-hydro-mech-chemical effects will be crucial to 

convince the public that CO2 injection and storage is secure. The geologic response as a result of 

interactions between the injected CO2 and the storage complex must be taken into account in order 

to identify and prevent the potential leakages during the injection and storage phases. Integrated 

models can aid in defining the maximum sustainable injection pressure that guarantees that no CO2 

leakage will occur. The permeation of CO2 into caprock is determined by the combined effects of CO2 

pressure distribution as well as the rock permeability. Therefore it is important to understand how 

the CO2 penetrate into and propagate within the caprock under dynamic (during injection) and 

equilibrium (after injection) pressure conditions. The storage Of CO2 in UCG cavities is different to 

other CCS approaches, thus it is essential to carry out trial projects to test the UCG-CCS concept and 

collect field data for further research development including the cross validation of computational 

models and field measurements. 



In addition to the technical challenges involved in UCG-CCS, economic assessment has rarely been 

undertaken to determine the costs of energy produced by UCG syngas with the consideration of 

subsequent CO2 storage. An reliable model for economic assessment rely on the detailed 

geomechanical, geological and hydrogeological data of a target coal deposit, which cannot be 

obtained without the engagement and investment from industry and government. In addition, the 

CO2 storage requires long-term monitoring and maintenance, which creates more difficulties and 

uncertainties for predicting whether a UCG-CCS project is economically worthwhile. Nevertheless 

with both UCG and CCS technologies being more mature, the combination of these two will 

eventually become technically and economically viable. 
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