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Abstract Physico-chemical phenomena influenced by aging or reaction can result in 

rheological changes across several orders of magnitude, but the classical rheometry methods 

available for analysis of concentrated suspensions can face challenges in correctly measuring 

the yield stress of aging/reacting (evolving) materials and need some precautions to enable 

precise measurement of the evolution of the yield stress with time. Here, a creeping sphere 

method has been applied to measure time-resolved yield stress; the force required to pull a 

solid sphere at very low velocity is used to calculate yield stress using previous analytical 

solutions for local flow of a creeping sphere in yield stress materials. The measured yield 

stress values agree well with the data recorded using vane-in-cup geometry for time-

independent measurements using Carbopol gel. The creeping sphere is less affected by shear 

history because of the constantly changing shear region, and therefore measures yield stress 

changes in evolving materials such as cement for a long time period in a single run, without 

altering ongoing structural network bond formation. 

 

Keywords rheology, yield stress, creeping sphere, non-Newtonian Fluids, concentrated 

suspensions, cement 
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Introduction 

 

The rheological behavior of aging/reacting fluids can change noticeably as time passes. These 

changes have considerable impact on workability, transportation, and product quality in 

different applications such as mining, the food industry, and the design and use of 

construction materials. Time-resolved rheological changes are caused by various phenomena 

in different materials. For instance, in cements these changes are mainly the result of water-

consuming reactions and the formation of reaction products which increase the paste yield 

stress by increasing inter-particle interactions (Gauffinet-Garrault 2012). Alkali-activated 

slag binders have been developed as a low-CO2 alternative to Portland cement, but they are 

restricted in some areas of practice due to challenging rheology (Bernal and Provis 2014, 

Provis and Bernal 2014). It has been shown that yield stress increases dramatically after 

mixing for alkali-hydroxide-activated slag, but remains constant for alkali-silicate-activated 

slag, for 20 minutes after mixing using the vane in cup rheometry method (Kashani et al. 

2014). 

 

The slump test is the most popular test for measuring flowability of concretes and mortars. 

This test measures the retained height of a compacted inverted cone of concrete under the 

action of gravity. The slump test is a simple method which gives good indications of 

rheological behavior, related to yield stress and apparent viscosity. Changes in slump as a 

function of time after mixing of cement (termed ‘slump loss’) are used to calculate the 

pressure evolution associated with casting and to estimate sedimentation (Kovler and 

Roussel, 2011). The standardized basic slump test is applied to concrete and requires a large 

volume of material; a variety of ‘mini-slump’ tests have been proposed for paste and mortar 

mixes using smaller cones, but there is not yet any formal agreement on the optimal cone 

geometry or size for such a test. 

 

The use of the vane method to measure the time-resolved yield stress of aging/reacting 

binders has some limitations. Accurate time-resolved yield stress measurement using the vane 

method requires repeated preparation of new samples because irreversible particle depletion 

close to the vane tips induces errors in the measurement and causes underestimation of the 

yield stress (Ovarlez et al. 2011). This repeated sample preparation is also subject to 
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reproducibility errors. It is common to use pre-shear hand-mixing before each measurement 

to avoid this problem, but this can still introduce errors when evolving materials are used 

because rheological behavior is affected by shear and agitation (Ovarlez et al. 2011). 

 

Multiple sequential yield stress measurements using the same shear region in a single sample 

do not allow the material to undergo structural formation at rest, which would otherwise 

result in a yield stress increase. This structural breakdown by repeated measurements, or by 

premixing before each measurement, tends to be irreversible at higher shear stress for some 

non-Newtonian fluids (Gueslin et al. 2009). For reactive binders such as cement paste and 

alkali-activated slag, mixing and high shear forces cause breaking of agglomerates and 

manipulation of the process of reaction, which affect the rheological behavior (Williams et al. 

1999, Yang and Jennings 1995), and this influence of mixing history on material properties 

can even be observed in the hardened-state properties of the material in some cases (Palacios 

and Puertas 2011). The study of the rheological behavior of cement paste using magnetic 

resonance imaging velocimetry has shown that rheology is influenced by partially reversible 

shear-induced structure deformation and irreversible structure formation due to hydration 

(Jarny et al. 2008). In addition, mixing of a very high yield stress material can cause 

heterogeneity by entrainment of air in the material. 

 

Non-destructive methods such as ultrasound propagation have been used to monitor the early 

age changes in rheological properties induced by cement hydration, by examining the 

changes in shear wave reflection through Portland cement (Lootens et al. 2009, Müller et al. 

1999, Voigt and Shah 2004). The evolution of the storage and loss shear moduli of cement 

paste as a function of time was related to cement hydration and product formation (Jupe et al, 

2012). Mixing-free methods with continually changing shear regions such as penetrometry 

(Amziane and Ferraris 2007, Bernal et al. 2011, Lootens et al. 2009, Sant et al. 2008) have 

also been introduced to measure the time-resolved yield stress of evolving cementitious 

materials.  

 

One experimental penetrometry method is the Vicat needle test, ASTM C191 (ASTM 

International 2013) which is widely used to assess solidification processes, especially in 

cementitious materials. This method measures the penetration distance of a flat-headed 
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needle inserted from the material surface under a constant force, where ‘setting’ is defined in 

terms of the development of a resistance to penetration by the needle. However, this method 

is only applicable to semi-solid materials showing minimum shear yield stress of 20 kPa 

(Sant et al. 2008), and does not give any information regarding rheological behavior in the 

fluid state. In a study by Lootens et al. (Lootens et al. 2009), cement paste yield stress was 

measured during setting using a penetration test method. They used a hemispherical tip 

mounted on a rod, and the drag force on the tip during penetration at a velocity of 1 μm/s was 

associated with yield stress by assuming of quasi-static flow in a Bingham fluid. 

 

Flow around a rigid sphere has been studied in non-Newtonian fluids which can be described 

by the Bingham plastic (Beris et al. 1985, Blackery and Mitsoulis 1997) and Herschel–

Bulkley (H–B) models (Atapattu et al. 1995, Beaulne and Mitsoulis 1997), as well as other 

yield stress materials (Gueslin et al. 2006, Gueslin et al. 2009, Tabuteau et al. 2007), and 

these studies have provided both experimental data and numerical simulations for flow 

behavior, drag forces, and shear regions around the sphere. A practical method which 

measures rheological behavior based on the movement of a sphere is known as the ball 

measuring system (BMS), which was introduced by Müller et al. (Müller et al. 1999). In this 

method an eccentrically rotating solid sphere fixed to a thin holder is dragged within a body 

of fluid sufficiently large to approximate an infinite medium, following a circular path. 

However, this method has shown some challenges in geometry and design (Schatzmann et al. 

2009).   

 

In this study, a new method is proposed to measure yield stress by pulling a sphere vertically 

at very low and constant velocity through evolving materials. Yield stress is calculated from 

the measured force data based on equations published in previous numerical and 

experimental studies of rigid sphere motion (Atapattu et al. 1995, Beaulne and Mitsoulis 

1997, Beris et al. 1985, Blackery and Mitsoulis 1997, Schatzmann et al. 2009, Tabuteau et al. 

2007). The calculated yield stress values are also compared with data from the vane in cup 

method using a Carbopol gel which shows time-independent rheological behavior. The 

effects of sphere size, roughness, and velocity on the measured yield stress were studied. The 

creeping sphere method is then adopted to measure the time-resolved changes in yield stress 
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of evolving cementitious materials, which enables a long-duration yield stress measurement 

in a single run without interfering with the shear history of the material. 

 

 

Experimental details 

 

Materials 

 

Carbopol Ultrez 10 polymer powder was provided by Lubrizol, China. It was slowly added 

into water (0.3 wt.%) while mixing at 1000 rpm for 20 minutes, then 5M NaOH solution 

(NaOH pellets, AR grade, Sigma-Aldrich, Australia, dissolved in milli-Q grade water) was 

added dropwise until reaching a pH of 6 to initiate gelation. The Carbopol gel was allowed to 

rest for 24 hours in order to develop a homogenous structure. Ground granulated blast 

furnace slag (GGBFS) and anhydrous sodium metasilicate (Na2SiO3) were provided by 

Zeobond Pty. Ltd., Australia. Ordinary Portland cement (OPC), Type GP (general purpose) 

according to AS3972 (Standards Australia 2010), was obtained from a local retailer. 

Rheobuild 1000 (BASF, Australia) as a cement plasticizer was used in one of the Portland 

cement samples at 1 wt. % of dry powder mass. After hand mixing of the powdered solids 

with water at a water/solids mass ratio of 0.45 in each case, the paste was mechanically 

mixed for 10 minutes at 500 rpm before yield stress measurement. Sodium silicate activated 

slag pastes were formulated with 0.225 and 0.45 mmol Na2O per gram of slag, corresponding 

to the conditions used in previous work (Kashani et al. 2014). 

 

Creeping sphere test setup 

 

Lead spheres of different diameters (shown in Table 1), sold commercially as fishing sinkers, 

were attached to an Instron microtester 5848 (Instron, USA) via a thin stainless steel rod. The 

force required to move the sphere at a very low, constant velocity (9.58 mm/min) is recorded 

by the Instron instrument. The selected velocity equals to the linear velocity of the tips of the 

vane H while rotating at 0.2 rpm (Section 2.3). The test setup is shown in Figure 1. The 

instrument was calibrated to zero force before each measurement. The sphere was located 

above the sample surface at the start of each experiment, then moved downward into the 
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sample. The force on the sphere was recorded until it reached about 20 mm above the bottom 

of the container. After resting for 15 minutes, it was pulled backward to the start point at the 

same velocity. After resting and before moving upward, the balanced force was manually set 

at zero. In this experiment the measured force during upward and downward movements is 

treated separately in order to calculate yield stress and for this reason the force before 

movement in each direction was set at zero. The detectable force range was from 0.001 to 5 

N with a precision of 0.001 N. The force was measured at intervals of 0.1 s.  

 

The buoyancy force (Equation 1) on the sphere in the Carbopol gel was also calculated with 

the assumption that the displaced volume of the gel, V, by insertion of the spheres is equal to 

the sphere volume (ρgel: 1000 kg/m
3
). The results are shown in Table 1.  

 

FB=Vgρgel                 (1) 

 

Table 1  Spheres and thin rod average diameters compared to the sample container diameter (120 mm) 

Object Average diameter (mm) Ratio of container diameter to object diameter Buoyancy force (mN) 

Rod 1.47 83.74 <1 

S8 8.49 14.15 2.85 

S12 12.3 9.75 6.54 

S18 18.35 6.54 30.31 
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Figure 1  Creeping sphere test using Instron microtester; the force is measured during movement of the sphere 

from 1 to 2 (downward movement) and then 2 to 1 (upward movement).  The medium is water in the 

photograph 

 

Rheological test by the vane method  

 

The yield stress of samples was also measured using a Haake VT550 rheometer with vane H 

(a four-blade vane with length of 50.1 mm and diameter of 15.3 mm), in a sample volume 

1 

2 
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sufficient to simulate an infinite medium (Nguyen and Boger 1992). A direct yield stress 

measurement at a low rotational rate (0.2 rpm) was used because of the accuracy and 

reproducibility of the measured data (Nguyen and Boger 1985). Before each measurement the 

sample was mixed by hand to provide a homogenous paste, then let to rest for 30 seconds to 

dissipate residual stresses because of mixing, and afterwards the 0.2 rpm rotational rate was 

applied, corresponding to the methodology used in previous work (Kashani et al. 2014). The 

flow curve was also determined similarly by increasing the rotational rate in 8 consecutive 

steps from 2 rpm to 500 rpm with 30 seconds rest in between measurements, then the 

measured torque was related to shear stress according to Nguyen and Boger (Nguyen and 

Boger 1983). Shear rates at each shear stress was calculated based on a linear regression 

between the logarithm of shear stress and logarithm of angular velocity according to Nguyen 

and Boger (Nguyen and Boger 1987). 

 

 

Results and discussion 

 

Force measurement of creeping sphere 

 

Figure 2 shows the force changes corresponding to the movement of the 8 mm lead sphere 

(S8) at a constant velocity of 9.58 mm/min in the Carbopol gel during downward (negative 

force as shown in Figure 2) and then upward movement (shown as positive force). The first 

noticeable force change starts when the sphere touches the sample surface during downward 

movement (shown as 60 mm displacement in Figure 2). At this point, the magnitude of the 

force on the sphere increases sharply until the sphere is completely below the gel surface. 

Similar behavior has been recorded for various objects becoming immersed in a yield stress 

fluid (Boujlel and Coussot 2012, Lootens et al. 2009); in this case, there is not an evident skin 

or surface tension effect in the initial stages of immersion.  

 

Once the sphere is submerged, the force increases gradually during downwards motion until 

the sphere reaches the designated point close to the bottom of the container, which is shown 

as zero displacement in Figure 2. As soon as the sphere stops, the absolute force on the 

sphere suddenly decreases by removing the material resistance force against the movement 
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(not shown). During upward movement the force increases until the sphere moves steadily. 

As soon as the sphere breaks through the gel surface the force magnitude decreases until the 

sphere leaves the material. At this point the balanced force on the sphere would be zero if the 

force was not manually set at zero after the rest time (see Section 2.2).  

 

Forces acting on the moving sphere within the gel are resistance to deformation from the gel, 

gravity, and buoyancy forces. The buoyancy force, compared to the measured force in Figure 

2, is negligible (Table 1). The balanced force on the hung-in-air sphere was set at zero in 

order to eliminate the gravity force on the sphere. Therefore, the material resistance is 

assumed to be the sole reason for the force changes during sphere movement. 

 

 

Figure 2  Force vs. displacement for the lead sphere (S8) during downward (←) and upward movement (→) 

within the Carbopol gel at the velocity of 9.58 mm/min 

 

 

Figure 3  Force vs. displacement for S18 (a, a'), S12 (b, b'), and the thin rod (c, c') within the Carbopol gel at the 

velocity of 9.58 mm/min (upward and downward movements are shown by grey and black lines, respectively) 
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The other two spheres of different sizes (S12 and S18), and also the same thin rod without 

any sphere attached (the dimensions are shown in Table 1), were used in similar experiments 

in the same Carbopol gel as depicted in Figure 3. The spheres with different diameters follow 

similar trends although the magnitude of the force and the point of the transition to the steady 

state condition are different, which is expected because of different volumes and surface 

areas of the spheres. 

 

The force changes by movement of the rod are negligible as shown in Figure 3; only when a 

substantial length of the rod moves within the sample, a small force change is observed. 

Therefore the force change versus displacement is not sufficient to induce any interruption 

when it is attached to the spheres. Also, in order to have an effective force change caused by 

the rod, it first needs to have contact with the gel, however, it was observed that after 

insertion of the sphere into the gel, the rod was only partially covered at the top of the sphere 

(about the sphere diameter), and the remainder was contact-free during the movement of the 

sphere. The gap generated within the gel by insertion of the sphere was not fully recovered to 

fill around the rod. This situation was observed in both upward and downward movements 

and also for all other highly viscous samples used here. The gap was generated in the 

downward movement but recovered itself as the sphere was being pulled upwards. In both 

situations the amount of sample surrounding the top of the sphere was about a length similar 

to the sphere diameter, therefore, no concerns about the pseudo-infinite nature of the medium 

is presented (this will be discussed later, in section 3.3). The ability of the material to re-fill 

this gap depends on the sphere diameter and the yield stress of the medium, and in this case 

where a high yield stress gel was used, recovery did not fully occur. A similar observation 

was recorded in a high yield stress material using a penetrometry method (Lootens et al. 

2009). However, if a low yield stress material is used, the situation would be different and the 

yield stress calculation must include the shear forces around the rod, which are neglected in 

the discussion and calculations for the sphere system here.  

 

Yield stress calculation by the creeping sphere method  

 

The free-fall of a solid sphere through a Bingham plastic fluid results in formation of a small 

envelope of sheared fluid around the sphere, the shape of which depends on the yield stress of 
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the fluid (Beris et al. 1985). There is also the possibility of some un-sheared regions forming 

as caps at the top and the bottom of the sphere, and potentially also some islands around the 

sphere, because of the appearance of flow stagnation points, depending on the dimensionless 

Bingham and yield stress numbers (Beaulne and Mitsoulis 1997). This has been shown by 

analytical and numerical studies of sphere motion in Bingham plastic (Beris et al. 1985, 

Blackery and Mitsoulis 1997) and H–B fluids (Atapattu et al. 1995, Beaulne and Mitsoulis 

1997). Regardless of flow behavior models (Bingham, H–B, or any other models), the 

assumptions around the yield stress are common. It would intuitively be expected that the 

shear envelope around a sphere should be axisymmetric although small deviations have 

recently been observed using flow imaging because of interference of an upward fluid motion 

in the wake path of the sphere (Gueslin et al. 2006, Gueslin et al. 2009). 

 

The numerical studies of Beris et al. (Beris et al. 1985) showed a critical dimensionless yield 

stress, Yg = 0.143 (Equation 2), above which a solid sphere cannot move within a yield stress 

material and the medium acts as a solid. This critical yield stress value was obtained by mesh 

refinement of the shear regions around the creeping sphere at very low Reynolds number (Re 

<< 1) and integral calculations of the maximum and minimum variation principles (Beris et 

al. 1985). This critical yield stress value has been confirmed by several other numerical and 

experimental studies (Beaulne and Mitsoulis 1997, Blackery and Mitsoulis 1997, Schatzmann 

et al. 2009, Tabuteau et al. 2007). 

 𝑌𝑔 = 2𝜏𝑦𝜋𝑅2 𝐹⁄           (2) 

Yg: dimensionless yield stress  

F: externally applied force (N) 

R: sphere radius (m) 

τy: yield stress (Pa) 

 

Therefore, the minimum external force required to move a sphere within a yield stress 

material is when Yg = 0.143. This minimum force is then associated with the yield stress in 

Equation 2. In order to determine this minimum force, first the movement velocity needs to 

be low enough in order to minimize inertial effects. This force also needs to be constant 

regardless of the sphere location as far as it is fully covered by an infinite medium and moves 
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steadily (steady-state condition). This situation is observed in the upward movement when 

the force increases to a constant value and is maintained until the sphere approaches the 

medium surface. 

 

During the downward movement a steady-state condition with constant force was not 

achieved. Significant entrainment of air was observed as the sphere penetrated the surface of 

the gel. The entrained air evolved from a cylindrical column to a conical shape, and 

ultimately separated from the surface of the sphere. The evolution of the entrained air has the 

effect of gradually increasing the proportion of the sphere that is exposed to the gel medium, 

hence and a gradual increase in force. This phenomenon is absent in the equivalent the 

upward motion of the sphere major. Thus it is expected that air entrainment is the primary 

reason that an equilibrium state was not observed for the downward penetration. 

 

If the plateau in the force during the upward movement of different spheres in Figure 3 is 

used as the minimum force, then Equation 2 gives the yield stress of the Carbopol gel 

considering Yg = 0.143. The results are compared with the yield stress measured for the same 

gel by the Haake rheometer using vane H, in Figure 4. The yield stress measured by this 

method agrees well with the data recorded by the vane method for the time-independent 

measurements. 

 

 

Figure 4  Yield stress of the Carbopol gel using creeping sphere with different sizes compared to the measured 

data of the same sample using vane H (error bars are due to out of roundness of the lead spheres) 
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Provision of an infinite medium for sphere movement is of great importance to eliminate the 

container wall effects which cause shear region deformation. For the vane method, double the 

size of the vane diameter and length is considered to be the minimum container size required 

to avoid rigid wall effects (Nguyen and Boger 1983). For a sphere moving in a cylinder of a 

Bingham plastic material, Blackery and Mitsoulis (Blackery and Mitsoulis 1997) found that 

close to a dimensionless yield stress of 0.143, a range of 2:1 to 50:1 ratios of cylinder 

diameter to sphere diameter did not cause any difference in representation of an infinite 

medium. Table 1 shows that the ratio of the container diameter to the sphere diameter, for the 

different spheres used in this study, is clearly sufficient to represent an infinite medium, and 

this is confirmed by the similar yield stress results for the three sphere sizes in Figure 4. 

 

Effects of rest time, velocity, and surface roughness on yield stress measurements 

 

The previous section showed that a single yield stress measurement using the creeping sphere 

method produced comparable results to the vane in cup method for Carbopol gel. However, 

the key aim of using the creeping sphere method is to study time-resolved yield stress for 

aging or reacting materials such as cementitious binders. As discussed above, the vane 

method is subjected to errors when the yield stress test is run repeatedly for a single sample 

over time. Here it is shown that such a problem does not occur for the creeping sphere 

method, as the shear region continually changes. Therefore, this method is capable of 

measuring yield stress over longer time periods, which also allows the material to rest 

between measurements without interference from external shear forces caused by mixing 

between consecutive runs.  

 

As was mentioned above, the plateau force during the upward movement of the sphere was 

used to calculate yield stress. Carbopol gel is known to have negligible time-induced 

rheological behavior (Boujlel and Coussot 2012, Tabuteau et al. 2007), which means that 

yield stress is constant as time passes. Therefore, after reaching the plateau force in upward 

movement, if the sphere stops and rests for several minutes, then the force must reach the 

same value when movement is re-started. As shown in Figure 5, after stopping the movement 
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the force drops suddenly, and as soon as the test is restarted, it returns to the previous plateau 

level.  

 

A similar test in the vane method produced quite similar results for Carbopol gel. Figure 6 

shows the measured torque against the displacement of the vane tip in its circular path at the 

rotational rate of 0.2 rpm. After reaching the maximum torque, which is used to calculate the 

yield stress, the torque is constant while the vane is rotating. As soon as the vane stops, the 

measured torque drops but reaches the same value when it starts to rotate again after 15 

minutes rest. The only difference here is that the vane rotates in the same path several times, 

but the shear region of the creeping sphere is constantly changing. This is an advantage to 

measure yield stress in a fresh section of the material which is less affected by shear history, 

especially for evolving and reacting binders although for a simple yield stress material such 

as Carbopol gel the difference between these two methods seems to be negligible when 

Figures 5 and 6 are compared. Therefore, changes in yield stress induced by structure 

formation of the evolving material can be studied over an extended period by making several 

stops during a single upward movement. Because of the continually changing shear regions, a 

fresh section of the material is tested each time in the creeping sphere method. 

 

 

Figure 5  Two sets of rests each for 15 minutes during the upward movement of sphere S8 within Carbopol gel 

at a velocity of 9.58 mm/min 
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Figure 6  The measured torque of Carbopol gel against the displacement of the vane tip in its circular path at 0.2 

rpm with 15 min stop between two consecutive measurements 

 

In conducting measurements with this technique, the sphere velocity must be low enough to 

minimize inertial effects. This is also the case in direct yield stress measurement by the vane 

in cup method (Nguyen and Boger 1985), where a very low rotational rate (≤ 0.2 rpm) is used 

to measure the yield stress. Here, the maximum sphere velocity was set equal to the linear 

velocity of the tips of the vane H while rotating at 0.2 rpm, which is 9.58 mm/min. Velocities 

of 2 and 5 mm/min were also applied in the same system, to evaluate the effect of different 

velocities on yield stress measurement. The results for sphere S18 at these velocities are 

shown in Figure 7, for upward movement through Carbopol gel, and it is clear that as long as 

the velocity is low enough to exclude inertial effects, the results obtained are the same. This 

is in agreement with previous studies of low velocity sphere motion in yield stress materials, 

which have shown that the steady-state drag force is dominated by the yield stress rather than 

sphere velocity (Chafe and de Bruyn 2005, Jossic and Magnin 2001, Zhu et al. 2001) and 

direct yield stress measurement using different rotational rates of the vane (Nguyen and 

Boger 1983). 
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Figure 7  Force vs. displacement during upward movement of the S18 sphere within Carbopol gel at velocities 

of 9.58, 5, and 2 mm/min 

 

The flow around the sphere must clearly have a very low Reynolds number (Re << 1) in 

order to associate resistance force with yield stress. Reynolds number calculation for non-

Newtonian fluids requires evaluation of flow behavior by fitting of flow curves to a fitting 

model such as the H–B model in order to use the flow exponents in Reynolds number 

calculation. The generalized Reynolds number for a sphere moving in an H–B fluid (Beaulne 

and Mitsoulis 1997) is shown in Equation 3. The flow curve of the Carbopol gel is shown in 

Figure 8, and fits to the H–B model (n = 0.3 and k = 52.47 Pa.s
n
). For the 9.58 mm/min 

velocity used here, the Reynolds number is 1.6 × 10
-6

, which is within the requirement of 

creeping flow without any involvement of inertia. 

 𝑅𝑒∗ = 𝑉2−𝑛𝐷𝑛𝜌𝑘                       (3) 

Re: Reynolds number for sphere in H–B fluid 

V: sphere velocity (m/s) 

D: sphere diameter (m) 

ρ: Carbopol gel density (kg/m
3
) 

n: flow index in H–B fluid model 

k: consistency factor in H–B fluid model(Pa.s
n
) 
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Figure 8  The flow curve of the Carbopol gel which fits to the Herschel–Bulkley model (dashed line) 

 

Another phenomenon which could affect the measured force, and hence lead to 

underestimation of the yield stress, is sphere slip during movement within the medium. Based 

on the absence of a decrease in force during measurement, a no slip condition has been 

assumed here. In other words, if during the movement of the sphere the material slipped at its 

surface, then the sphere could move freely with negligible force detected. In such situations 

the force might decrease to near zero values, however this was not observed. In the case of a 

slip condition, different sphere diameters would have led to variation of yield stress due to a 

differing slip extent, however this was also not experienced.  

 

Moreover, the lead spheres employed in this work have very rough surfaces (Figure 9) that 

minimize any possibility of slippage of the gel/paste on the surface. An experiment was 

conducted to evaluate the effect of roughness on yield stress calculation by coating a layer of 

paint having fine sand particles on S12 sphere as shown in Figure 9. This provides a 

roughness of about few hundred micrometers. The calculated yield stress results in Figure 10 

shows that surface roughness has a negligible effect on yield stress. This is in accordance 

with Tabuteau et al. (Tabuteau et al. 2007) who found the effects of roughness to be 

negligible on measured drag force of creeping sphere in Carbopol gel. 
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Figure 9  A comparison between surface roughness of original S12 sphere (right; dave: 12.3 mm) and sand-

coated S12 sphere (left; dave: 12.4 mm) 

 

 

Figure 10  Effect of roughness on yield stress measurement of Carbopol gel using the S12 spheres shown in 

Figure 9. 

 

A different approach in order to calculate yield stress from force measurement was used by 

Lootens et al. (Lootens et al. 2009) who studied cement paste yield stress during setting using 
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on the tip during penetration at low velocity was associated with yield stress. They assumed 

Stokes’ law in a Bingham fluid and a direct relationship was then developed between Stokes 

drag force and yield stress by exclusion of plastic viscosity because of the very low velocity 

of 1 μm/s, which provides a quasi-static condition. Whilst in this study the very low Reynolds 

number supports the creeping flow assumption, the lowest velocity is much higher than the 1 

μm/s required to justify the assumption of quasi-static flow. Furthermore, the Carbopol gel 
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used here does not follow the Bingham model. Therefore, considerable differences in velocity 

and flow behavior do not allow use of the same yield stress calculation in our model system. 

 

Measuring time-resolved yield stress of evolving cementitious binders 

 

The same method as used in section 3.2 to measure the yield stress of the Carbopol gel was 

also applied to Portland cement-water and ground granulated blast furnace slag-water pastes, 

and sodium silicate activated slag at dosages of 0.225 and 0.45 mmol Na2O/g slag. In contrast 

to the observations for the Carbopol gel, after resting in these reacting systems the force 

increases substantially, as seen in Figure 11 for the example of the slag-water paste. Even for 

this paste, which is considered a very slowly reacting binder (Chen and Brouwers 2007), the 

structural formation at rest is the process of re-agglomeration of formerly dispersed particles 

because of their high affinity and sometimes by formation of the products between dispersed 

particles and on their surface. This re-agglomeration of particles will increase particle-particle 

interaction, hence yield stress. 

 

 

Figure 11  Force vs. displacement of slag paste at two consecutive runs using sphere S8: the first run with 15, 

30, and 30 min rest during upward movement, and the second run immediately started after the first run with 

hand mixing in between. 
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yield stress was recorded compared to the value that had been reached at the end of the first 

run. This clearly shows that any method requiring pre-mixing between repeated 

measurements is incapable of monitoring actual yield stress increase caused by structural 

bond formation at rest. Conversely, the creeping sphere method is a simple and powerful 

solution to monitor time-resolved yield stress changes of such materials.  

 

Figure 12 shows the time-resolved yield stress changes measured in different cementitious 

binders. The time measurement starts as soon as water is added to the solid powders, and 

considering the mixing, downward movement, and rest time, the recording of data during 

upward movement commences 40 minutes after the start of mixing. The yield stress values 

measured for highly reactive binders such as cement paste and alkali-activated slag with 

higher activator dosage increase rapidly as time passes. This is attributed to water-consuming 

reactions and formation of the products causing formation of a three dimensional structure 

which increases the inter-particle forces hence yield stress (Figura and Prud'homme 2010, 

Gauffinet-Garrault 2012, Jarny et al. 2008, Palacios et al. 2008, Sant et al. 2008). 

 

 

Figure 12  Time-resolved yield stress of slag and Portland cement paste and sodium silicate activated slag at 

0.225 and 0.45 mmol Na2O/g slag measured using the creeping sphere method  
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period (Figure 13). This is due to the de-flocculation and de-agglomeration effects of the 

plasticizer which reduce the inter-particle forces and prevent reformation of structural bonds. 

This could also retard hydration reactions and the formation of solid products, which will 

slow the yield stress increase (Flatt and Schober 2012, Hanehara and Yamada 1999). 

 

 

Figure 13  Time-resolved yield stress of Portland cement paste and its counterpart with 1 wt. % plasticizer 

based on dry mix (w/s: 0.45) 

 

In cement, calcium silicate hydrate (C-S-H) as the main hydration product precipitates on the 

surface of un-reacted particles and causes aggregation of the particles into grains. Then inter-

particle forces will increase not just because of greater forces between C-S-H layers but also 

due to an increase in surface area of the particles (Gauffinet-Garrault 2012), although the 

roles of ettringite phases could be equally important at the early age of cement hydration 

because of rapid formation of these products and their roles in adsorption of chemical 

plasticizers (Plank and Hirsch 2007, Rossler et al. 2008, Zingg et al. 2008). Calcium (sodium) 

aluminosilicate hydrate as the main product of alkali-activated slag could behave similarly 

although it has not yet been studied in sufficient detail. However, the reaction products firstly 

form in pore solution regions in alkali- activated slag, where there is a high concentration of 

soluble silicates, compared to OPC where the C-S-H precipitates mainly on cement particles, 

therefore water consumption and dissolution with the formation of the products into the 

solution produce a network between slag particles which seems more dominant in alkali- 
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activated slag (Richardson 1999, Wang and Scrivener 1995). This cohesive network will 

increase inter-particle forces and hence yield stress if it is not disturbed by external shear 

forces such as mixing. 

 

Yield stress measurement versus time of alkali-activated slag using the vane in cup method 

and hand-mixing between consecutive measurements in a previous study (Kashani et al. 

2014) showed no yield stress increases for slag paste and sodium silicate-activated slag at 

similar dosages up to 20 minutes. However, the creeping sphere method proved that 

structural bond formation in these binders happens during resting which increases the yield 

stress. Nevertheless, it is believed that time-induced structural network bonds formation 

seems to be overshadowed by the external shear forces during hand-mixing when repetitive 

yield stress measurements are conducted by the vane method.  

 

 

Conclusions 

 

This paper has introduced a new method of measuring yield stress based on local flow around 

a creeping sphere. The minimum external force to pull a solid sphere within a non-Newtonian 

fluid is associated with the yield stress by using a dimensionless yield stress value of Yg = 

0.143 which defines the transition point between stagnation and local flow of a solid sphere 

within a yield stress material. The yield stress measured by this method agrees well with the 

data recorded by the vane in cup geometry for time-independent measurements. The effects 

of different sphere sizes and velocity on the measured yield stress are negligible, as long as 

the creeping flow regime is maintained. The container size diameter, which was more than 

six times the diameter of the sphere in the tests presented here, is sufficient to show no wall 

effect. No slip around the sphere during the movements was experienced. 

 

The creeping sphere method was also applied to measure the time-resolved yield stress of 

evolving cementitious binders. Pausing the sphere motion while moving in a single path 

enables a long time period of yield stress measurement. Also, any interference caused by 

external shear forces or shear history is minimized, and continually changing shear regions 
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provide a fresh medium for every measurement. This method is capable of monitoring yield 

stress increase caused by structural bond formation in particulate suspensions at rest. 
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