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Abstract

Previous results on the reduction of single-input/single-output
systems are extended to the case of square invertible multivariable
systems. It is shown that such systems have a unique decomposition in
the form of a forward and a feedback path each having special properties
relating to the invariant zeros of the original system. Under certain
generic conditions this decomposition can be extended to yield a repre-
sentation of the system as a nested sequence of feedback loops. This
provides a convenient method of deriving.reducing --order models, which
will give good matching of the asymptotic system root-locus and open-and
closed-loop system dynamics, and hence will be a valid tool in closed-

loop controller design.
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1z Introduction

(1)

A recent paper presented a method of obtaining reduced-order models

(i.e. models of smallerrstate—dimension) of a single-input/single—output

i (S8180) linear time-invariant dynamical system described by a state—space
model S(A,b,c) of the form

%(t) = A x(t) +b u(t) , =x(t) ¢ R*

il

c x(t) 1)

It was shown by manipulation of the transfer function g(s) 4 c(sI - A)—lb

y(t)

that the system (1) has a unique representation as a sequence of nested
feedback loops, with respect to which the state-space equations take a
particular canonical form. This transfer function/state-space decomposition
provided the basis of a reduction method having the following important

features:

-3

(a) the models generated preserve the asymptotic root-locus behaviour

- (i.e. the order,asymptotes and interéepts) of the original system;

(b) models can be generated to match a desired number of moments about
s =0 and ]sl = « of the original system;

(c) under well-defined conditions the reduced model has poles and zeros
closely approximating a subset of the poles and zeros of the original
system;

(d) simulation of the system in canonical form can give an a priori
estimate of suitable reduced model order, thereby eliminating some of
the trial and error methods commonly associated with model reduction

procedures.

(1)

® In this paper the concepts underlying the reduction technique for
SISO systems are extended to the case of square invertible multi-input/multi-

output (MIMO) systems described either by a state-space model of the form

A x(t) +Bu(t) , x(t) e R*, u(t) ¢ R"

x(t)

c x(t) , y(t) e R" (2)

y(t)

or equivalently by a strictly proper mxm invertible transfer function matrix,G(s).
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The development is such that each result can be seen to be the direct
generalisation to the square multivariable case of the equivalentrrESult

for SISO systems. In section 2 it is shown that a square invertible

system has a unique decomposition into the form of an invertible forward
path system having no zeros, and a feedback path with strictly proper
transfer function matrix, characterising the invariant zeros of the original
system. In terms of the state-space representation (2), this decomposition .
is achieved by factoring out the subspace v*, the maximal (A,B) - invariant

(2) (3)

subspace in the kernel of C, as described by Wonham'“~’, Bengtsson S

Mbrse(a). Under certain mild restrictions (corresponding to the generic
condition of invertibility of certain subsystems) the decomposition can be
extended naturally to give a nested sequence of feedback loops, each having
no invariant zeros, and with respect to which the system state-space
equations again take a particular canonical form. It is also possible to
modify the theory to allow the retentioﬁ in each loop of a specified set

of invariant zeros. Section 3 describes how this nested feedback loop |
decomposition can be applied to the problem of model reduction, providing

a method of obtaining reduced order models which again satisfies properties
(a) - (d) above. Section 4 considers computational schemes for achieving
the desired system decomposition, which are shown to be particularly simple
in the generic case when each loop has uniform rankﬁs’q Section 5 presents
a detailed example, illustrating the application of the proposed techniques

to the reduction of a complex high—order two-input, two-output system.

Decomposition of a Square Invertible Linear System

We consider initially the decomposition of a square invertible MIMO
system into an invertible forward path system, having no zeros, and a
single strictly proper feedback system, and deomonstrate that such a
decomposition can be equivalently derived from either of the two standard
forms of system.representation, i.e. a transfer function matrix, or a

set of state~space equations.
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2.1 Decomposition of Square Invertible Transfer Function Matrix

Consider an invertible linear MIMO system having a strictly proper
mxm transfer function matrix G(s). Thé inverse transfer function matrix

(6)

may be written as
G (s) = B (s) - Hy(s) (3)

where Pl(s) is an mxm polynomial matrix in s, and Hl(s) is a strictly

proper mxm transfer function matrix. Furthermore, Pl(s) and Hl(s) as

)(6)

defined in this way are unique. As G(s) is invertible, and likewise Pl(s

equation (3) gives

L [T - PIl(s) Hl(s)] & Pil(s) (4)

G(s) = [P(s) = H ()]
and defining Gl(s) 4 PIl(s), this may be written as

G(s) = [I - Gy (s) Hl(sj]_l G, (s) (5)
(6)

In this expression, Gl(s) is a strictly proper' ‘transfer function matrix

with polynomial inverse, which is uniquely defined by (3), and has no
invariant zeros(6). Thus equation (5) gives a unique decomposition of G(s)
into a forward path system Gl(s) having no invariant zeros, and a strictly
proper feedback system Hl(s), as illustrated by Figure 1.

If Gl(s) and Hl(s) have minimal (i.e. controllable and observable)

state—-space realisations S(Al;Bl,Cl) and S(A2,B2,Cz) of state dimension

0, and n, respectively, then equation (5) implies that S(A,B,C), with

A= s B = ;c=|:c1 0] (6)

is a state-space representation of G(s). Furthermore, S(A,B,C) is con-
trollable and observable (c.f. Appendix 1).
Defining F g [0 Cé], and A = A - BF, it is easily seen that

: .th : s
‘ n1+1’en2+1""’ enl+n2} {(where e; is the 1 unit vector in
hjn . .

R Lt 2, n1+1 L~ n1+n2) is an (A,B) - invariant subspace in the kernel

of C. In fact, as S(Al,B

A
Uy = Span {e

Cl) has no invariant zZeros, v, is the largest such

1’
% . ; (2) : d
subspace, denoted by vV . Thus S(Al’B1’Cl) is a factor system obtalne

(by factoring
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out v ) from S(A,B,C), and the poles of S(AZ’BZ’CZ)’ or equivalently the

roots of ]sIn - A |, are the invariant zeros of S(A,B,C), or G(s).

|
it

Decomposition of State-Space

Consider the mxm invertible system S(A,B,C) of state dimension n,

(4)

described by equation (2). Using the results of Morse' ’, and defining
*

v to be the maximal (A,B) - invariant subspace in the kernel of C, and T
to be the smallest subspace satisfying R(B){C t, AWM )¢ 1 (where R(B)

denotes the range of B,N denotes the kernel of C), invertibility of

S(A,B,C) implies(7) that
S BB = g (7)
v D x = (8)

%
(where(:)denotes a direct sum). Let dimv = n, (= number of invariant
A
zeros of S(A,B,C)), and set n,=n-n.

*
Then the effect of tramnsforming to the basis {1, v } of R" is

characterised by the following result.

Theorem 1

For a square invertible system S(A,B,C) of state dimension n,
*
transformation to a basis {t , v } yields an equivalent system

S@(l), B(1), C(1)) of the form

AQL) = ; B(1) = o) = [c, 0] (9

for some matrices Al’Bl’Cl’ A2,B2,C2 of dimension n, Xxn,, N, XMW, mX o,

A

n,Xxn,n Xm mXxn, respectively. The system S(Al,Bl,Cl) is controllable,
observable and invertible, and has no invariant zeros, and the system

S(Az,Bzﬂz) is controllable (resp. observable) if and only if S(A,B,C) is

controllable (resp. observable) (Proof: c.f. Appendix 2.)
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It should be noted that S(AZ’BZ’CZ) as defined above may not be invertible

as, for instance, B, or 02 need not have full rank,

2
Equations (9) are of the same form as equations (6), and by defining

G, ()4 C, (sI_-A)7T , and H (s) 4 C (sT - A ) 'B., and partitionin

1 s T 1 2°%, 20 P2 3 g

the state vector in the obvious way, it csn be seen that SCAQL), B{I), (L)),

and hence S(A,B,C), may again be represented in the forward/feedback loop

configuration of Figure 1. Furthermore, as S(Al, ﬁl’ 61) has no invariant

zeros, the results of Section 2.1 imply that Gl(s) and Hl(s) are uniquely

defined. Thus it can be seen that the approaches of Sections 2.1 and 2.2

yield exactly equivalent results.

We now consider conditions under which the above decomposition can be
applied repeatedly to give a nested sequence of feedback loops, the MIMO
equivalent of the result obtained for SISO systems.

Nested Feedback Decomposition

If S(Az’BZ’CZ)’ or equivalently Hl(s), as defined above is invertible
it can be similarly decomposed into forward and feedback paths to give
Gz(s), HZ(S)' Proceeding in this way, if for some integer £ the succes-
sively defined systems S(Ai, Bi’ Ci) (3 <1< 8) are all invertible then
the system S(A,B,C), or equivalently G(s), admits the decomposition of
Figure 2, in which Gi(s) 4 éi(sI - Ai)'lﬁi (1 £ i< 4) is an mxm strictly

proper invertible transfer function matrix having no zeros, and

A ~ -1 ; ; .
HR(S) = Cz+1(sI A£+l) B2+1 1s a strictly proper transfer function
matrix. Thus G(s) may be expressed as

_ ol -1 - -1 ~1y-1  4-1
Gls) = [6,7(s) - [6,7¢s) =[ ... -[g () - B ()]7] L]
(10)

The corresponding state—space equations have the form

x(t) = A(2) x(t) + B(2) u(t)

C(2) =(t) (11)

]

y(t)

with



A = [ i B6 o 0 booo
5,8, & 8,8 0 : 0
0 ﬁBéZ \§3 ﬁ364 , 0 (12)
0 o B,C, 34 o ‘
T Aﬂ_l ﬁg—Pn ; 0
_________________________ Ag ag-l ___An | icgié
0 0 B B i 0 Boy 62 : A£+1'
and ﬁ(g)=ﬁ(1), &(g) = 6(1) are as defined by equations (9) ,
S(ﬁi,ﬁi,ai) has state dizansion n; (1 <1igyg), and S(A£+1,B£+1,C£+1)
has state dimension n -‘21 n; . Making the corresponding partition of the
3B T T

state vector, x(t) = (Kl(t), Kz(t),...x (t)T, the outputs yi(t) in

7+1

Figure 2 are given by yi(t)éai(t)xi(t)(l <i < Q) y£+1(t) = CE+1(t)~x2+1(t). The

uniqueness of each subsystem follows from Section 2.1 and 2.2, and this
decomposition of the system into such a nested sequence of feedback loops
with loop transfer matrices Gi(s) having no zeros (so that Gzl(s) is a

polynomial matrix in 566)),f0r 1< 1ig 8, is unique. The existence of

the decomposition depends only upon the invertibility of the successively
defined subsystems S(Ai’Bi’Ci)' Although this condition is not always
satisfied, it is true that if for some j > 1 the subsystems S(Ai’Bi’Ci)
(1< i< j) are all invertible, apd n - i n, > m, then the invertibility

i=1
hE S(Aj+1’Bj-\‘~l’Cj+1) holds generically.

Finally note that the matrix

A, ﬁ263 0 | 0
ﬁB 62 A3 B, &4 : 0 (13)
0 B,C, A, | 0
|
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is similarity equivalent to Az, and hence has eigenvalues equal to the

invariant zeros of S(A,B,C).

Retention of Zeros in the Forward Path

In the decomposition described above the forward path transfer function
matrices have no invariant zeros. It is possible however to retain zeros in
each loop by the following procedure.

Let S(A,B,C) be a controllable and observable mxm invertible system
and suppose that v*, as defined in Section 2.2, can be expressed as

v* = vj()bz (14)

* %
with Avic:xﬁ_+ R(B) (i = 1,2). Equation (l4) corresponds to a partitioning

%
of the set of system zeros into two disjoint subsets, with Vi representing

®

those zeros which are to be retained in the forward loop system, and 3

representing the remaining zeros which will constitute the poles of the
feedback system. Considering the proof of Theorem 1 (in Appendix 2), the
x &
(A,B) - invariance of the subspaces Vir Yy implies that
~ ~ * *
F may be chosen to satisfy (A + BF)vi(::vi (i=1,2)
%
Then, as C R {o} (i =1,2), it follows that
~ A ~ * ~ ~ ~ ~ ~ *
(A + BF + KC) (1t + vl) = (A + BF + RC)T + (A + BF + Kc)vl
. %
1% A= BF)\)1CT * vy
and (A + BF + KC) “; = (A + BF)v?(::vg. Thus it can be seen that a

5 % Kk ok
transformation to a basis {1 + vi, vﬁ} again yields a system S(A,B ,C ) of

the form
* * & % % * * - % -
A= A BiCy | 3B = |B | 4 0 = [c] 0] (15)
* % *
Bﬁ C1 A2 0

X _k % ; " . % x % %
where S(Al’Bl’Cl) has state dimension = n - dim Voo and S(AZ’BZ’CZ) has
*
state dimension = dim Voo The controllability and observability of
® Kk % » "
S(Ai’Bi’Ci) (i = 1,2) follow directly from the corresponding properties of

* _k & , ;
S{A,B,C), and the invertibility of S(Al,Bl,Cl) is implied by the inverti-

bility of S(A,B,C).
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it A E * -1 % A K =1 %
Defining Gl(s) = Cl(sI - Al) Bl’ Hl(s) = Cz(sI - A2) B

s WE again

have the forward and feedback path decomposition illustrated in Figure 1.

Here, however, Gl(s) has a set of zeros characterised by the maximal

%

1’
%
and the poles of HI(S) are those zeros of S(A,B,C) corresponding to v,

* #* :
(A, ,B.) invariant subspace in the kernel of C,, which is precisely v
1 LR | B |

Application to Model Reduction

Suppose that for some £ > 1 the invertible mxm system S(A,B,C),
with transfer function matrix G(s), admits an equivalent representation
of the form (12) corresponding to the state-space decomposition described
in Section 2. (Sections 2.1 and 2.2 demonstrate that such a decomposition
certainly holds for £ = 1). An obvious method of obtaining a reduced-order
model of S{A,B,C), and the natural generalisation of that proposed by the

(1)

authors for single-input/single-output systems, would be to retain loops
1,2,...j of the nested feedback decomposition, for some 1 € j £ £ and
approximate S(Aj+1’Bj+1’Cj+1) or equivalently Hj(s), by some lower order
(a) 5 (a) .(a) (a) o

j+1’Bj+l’Cj+1) (or Hj (s)). The reduced - order model,

s(A(azB(azC(a)), generated in this way would take the form

system S(A

Cad 4 £ 4 |
A = |4 B,C, 0 ] 0
B,C, A, B,C, I 0
0 B,C, A, s } :
. : A B L 0
g : A, ; C,
J:l g“l i o
B ; B
jcj-l AJ i it
{a) =2 (a)
0 R Q. A,
LO : 2 L | 3+l |
(a) - (a) _ 2
B = | B S -l Y 0] (16)
l 0
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- g =

~

with Ai’ﬁi’ai (1 £ i g j) defined by equation (12), and transfer function
matrix, G(a)(s), given by
6P (e) = [67Ms) - [6;1¢6) - ... ~[G51(s) : H;a)(s)]_l ity
| (17)

(a) p(a)

41 J+1’ (a)) is chosen to have state dimension p then the order of

If S(A,
the reduced model S(A(a) (a ),C(a)) is % n, +p, and S(A(a) (a ),C(a)) is

-1 (2) p(a) ()

controllable (resp. observable) if and only if S(A. +1, 41 J+1) is control-

lable (resp. observable). (This follows by applying the proof of minimality
(a)g (a) (ag

given in Appendix 1 successively to the subsystems S(A

(a) (a) (a)) (a) g(a)

41 j+1’ (a)) in the obvious

S(A seewhich are derived from S(A.
way) .

(Note: As indicated by the previous remark, the method of deriving reduced
order models suggested above (and the computational procedure described in
Section 4) can be applied to non-minimal system realisations S(A,B,C) and
still generate controllable and observable models. This may be useful when
the system to be reduced is described by some complex high-order transfer
function matrix, and a non-minimal state-space realisation can be obtained
by simple inspection by using, for instance, the method of Rosenbrock(s)).
The proposed model reduction technique has several important features

paralleling those for the SISO case, which are discussed below.

Moment Matching about s = o and |s|

Consider the approximation G(a)(s) = [Gl(s) - Hia)(s)]_l to the
system transfer function matrix

G(s) = [Glﬁs) - Hl(s)]-l. Evidently

6(s) - 6@ (s) = cs) [, (e) - B, @ ()]6"® (o) (18)
Suppose that Hl(s) has the series exansion about fsf = @ given by
H (s) = _f s M, (19)
i=1

where M, , 1 2 1, are the system Markov parameters, and a series
i

expansion about s = 0 given by
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Hl(s) = é si N. (20)

(a)
1

If H
o
the first n time moments Ni’ 0<1ig n- 1, of Hl(s) then equation (18)

(s) matches the first m Markov parameters, Mi’ Logiaiig m , and

implies that G(a)(s) matches the first m + 2 non-zero Markov parameters

and the first n non-zero time moments of G(s).

(a) (a)
1

(Note: Under the above conditions on H (s), G (s) may well match more

than the specified number of moments of G(s) about s = o or [s] = o=, For

instance, if G(s) is of uniform rank(z)kl, for some k17> 1, so that the

first k-1 Markov parameters of G(s) (and hence of G(a)(s)l) are zero,
then it can be shown from equation (18) that G(a)(s) matches the first
b+ mo o+ 1 non-zero Markov parameters of G(s). -Similarly if the first k, time
moments of G(s) are all zero for some kZ > 0, theﬁ'G(a)(s) will match the
first Efno non—zéro'time moments of G(s)).

Applying the above techniques inductively to Hi(SS, TSt 18
possible to state the following generalisation of single-input/single-output
results on the moment-matching properties of the reduced models.

Theorem 1

If G(at)

with 6(s) = [6] GG, (o) - oo =[G (o) - B ()] .7, such that

(s) as defined by equation (17) is an approximation to G(s),

Hga)(s) matches the first m Markov parameters and n_ time moments of
Hj(s), then G(a}S) matches (atleast) the first 2j + m non-zero Markov

parameters and the first n_ non-zero time moments of G(s).

3.2 Asymptotic Behaviour of the System. Root-locus

It is known(e’g) that the orders, asymptotic directions and pivots

of the unbounded infinite zeros of the root-locus of G(s) K(s), for any
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forward path controller K(s) satisfying the (practical) constraing that
1im K(s) is finite and non—singular, are identical to those of Gl(s) K(s)
Lié:mGl(s) defined as in Section 2.1. ' Moreover, this result is true for
any reduced model of G(s) with forward path transfer function matrix Gl(s)
and strictly proper feedback system. That is, if system compensation is
regarded as the systematic manipulation of asymptotic directions and pivots
then the reduced order models described above can be used with confidence
as the basis of the design exercise.

The finite cluster points of the root-locus at high gains are identical
to the system zeros. It is therefore important that the reduced model
should give an adequate representation of the dominant zeros of the system.

This is discussed in the next section.

Matching of the Open-Loop Poles and Zeros

Consider a square invertible system with a state-space representation

of the form (12). If the elements of the off-diagonal block B.C, .(or B, .C,
j o+l 3+l 3

are 'small' in some sense for some j < &, then the states corresponding to

the lower blocks j+l, j+2,..., &1 will be 'approximately' unobservable
J

(resp. uncontrollable) and the eigenvalues of the matrix
A

[ A A
A Blc2
Bo8y Ay
(21)
A, B. . C.
371 -1 73
B.C, A,
\ J .]_1 ] )

will be a good approximation to a proper subset of the eigenvalues of A(L),

-

containing the dominant modes of the original system. Similarly the

eigenvalues of

(10

)

)
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(22)

J
L B.C.
will be a good approximation to the lower r.h. submatrix of A(L) defined

by equation (13), and hence to the dominant system zeros. Thus the reduced

order model obtained simply by neglecting loops j+1, j+2,...2+ 1, i.e. by

putting Hga)

original system.

(s) = 0, can preserve the essential pole-zero structure of the
s P P

(a)

In practice a non—zero approximation Hj

be chosen to give better matching of the system steady-state behaviour, but,

(s) will probably

providing that this is an adequate representation of Hj(s), the reduced
order model G<a)(s) can still provide a goodmatch to the dominant poles
and zeros of G(s).

For certain systems the gain and phase margins, and hence the closed-
loop stability and oscillation characteristics, will depend critically upon
a particular subset of the system zeros, for example those situated in, or
close to , the right-half complex plane. In such cases, these zeros can be
retained explicitly in the forward path system, Gl(s), by the techniques of
Section 2.4, so that they will also be zeros of any reduced order model

derived by the proposed methods.

Estimation of Suitable Réduced-Model Order

As in the SISO casg(l)

the reduction technique proposed here can be
used to provide a priori estimates of suitable reduced model order, although
the multivariable nature of the problem does make it difficult to give

rules concerning the reducibility of the system which will be applicable

in all practical cases.
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Consider a system represented by the state-space canonical form of
equation (12). An examination of the magnitudes of the elements in the
off-diagonal blocks of the state matrix, as suggested-by the previous
section, may indicate that an adequate ﬁodel may be obtained from the
first j loops only (for some 1 ¢ j <. In general, though, the elements
within each block will have an absolute magnitude dependent on the detailed
choice of basis, and hence it is difficult to assess their overall signifi-
cance in relation to the many other parameters within the state matrices.
The significance of the respective feedback loops can be more effectively
assessed from simulation data by considering the simulated response of the
system in the form (12) to suitable inputs u(t) in each channel, and
examining the output of each loop in the corresponding nested feedback
decomposition (as described in Figure 2). More precisely, for 1 £ j < m,
let yg(t) = (yii(t),ygi(t),...gﬂii(t))T denote the output yi(t) of loop i
(1 £ i ¢ 2+1) in the feedback configuration of Figure 2 to the system input
H(t).ej, i.e. a unit step in channel j (H(t) is the unit step function:
H(t) =0,t < 0, H(t) = 1,t > O, and ej is the jth unit vector in RFB, and
define yg(t) = (yio(t),...yio(t))T g H(t) ej. Then if for+w some 1 < k < &

the loop outputs satisfy

|yi’k_1(t)[ >> Iyi’k+1(t)| : (23)
for all 1 < i, j < m, and all times t of interest, it can be seen from
Figure 2 that loops k+l, k+2,...8+1 have little effect on the system input-—
output behaviour, and that an adequate model can intuitively be obtained
by retaining loops 1,2,.,.k and taking some simple approximation to Hk(s)
(e.g. a steady-state approximation, as described in Section 3.5). Equation
(23) represents mg inequalities, and in practice there may not exist a
sufficiently small integer k for which they are all satisfied. However,
experience with numerical examples indicates that it is frequently only

necessary for equation (23) to be satisfied for some subset of the i's
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and j's, or that the loop outputs need simply satisfy a norm criterion
j j
] Fee1 © 1] >> || Fear O[5 (24)
for all 1 € j < m and times t of interest.
So far, only models obtained by taking strictly proper approximations

s(A(a) (a) (a)) ey

310 J+1’ ) or Hj(s) have to be considered. It

i+’ Bi41°%541
may in some situations be useful to take approximations of the form

sa (@ 3@ @ @ (a)

L J+1, j41° J+l ¥ 1s an mxm constant matrix, described

), where D.

by the equations

(a) SOy & Fa) u(t)

x(t) =
(25)

y(t) = (a) x(t) + Dja) u(t)

with transfer function matrix
(a)
ey (a) £ g L@l (@)

H (s) DJ+1 Cj+1 (sI Aj+1) Bj+1 (26)
so that

ity (ié) (a)

| 8]+

Section 3.5 summarises briefly the extension of the previous results

“to this case.

)

Non-strictly Proper Approximations to S(Aj+l’Bj+l’Cj+1

Consider the reduced model of the square invertible mxm system S(A,B,C)
in canonical state-space form (12), obtained by retaining loops 1,2,...]
(for some 1 ¢ j ¢ g) of the corresponding feedback decomposition and taking

an approximation to S(A, ) of the form (26). Then it is not

j+1° J+1,

difficult to show that the resulting model has a state-space representation

sa@ 5@ @)y of the form
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CI e | *
A A B, C, 0 I 0
B,C, 4, B,C, | O
0 B.C, 4y ke
|
R b
“j“ ‘J_} J( ) & , (a)
Q. .+B.D0'& ¢, B.cl2
J BJ -1 Aj+ 3 J*¥L ] l BJCJ+1
(a) = (a)
0 0 0 : 4 :
\ s BJ+1 CJ | j*l
B
aa) _ 1 ’ a(a) _ [Cl o] (27)
0

~ A ~

(a) : .
The system S(A + B. D. C.,B.,C.) can be obtained from S(A.,B,,C.) b
" B b S L R ¢ i J) 9

the application of constant output feedback, and therefore has no zeros

(a) ( )

so that S(A C(a)) described by equation (27) can again be represented

by the nested feedback loop decomposition of Figure 2, in which loops
1,2,...] have invertible transfer functién matrices with no invariant zeros,
and loop j+l is strictly proper. Loop j has inverse transfer function
matrix equal to GTl(s)-— Dgii, and the controllability (resp observability)
of S(A(a) (a ),C(a)) nd S(AF;Q, (ii,cgia, ga)) are again equivalent. Thus
if j > 1, the reduced order model S(A(azB(aZC(a))will still preserve the
asymptotic properties of the system root-locus as described in Section 3.2,
but can only be guaranteed to match the first 2j - 1 Markov parameters of G(s).
The most useful application of a non-strictly proper approximation to
H (s) occurs in the case where lim H.(s) is finite (i.e. A. is non-singular)

i+l
(a) e ol .
and Hj is taken to be the steady-state approximation Hj(o) (as illustrated

. ’ . pfa) ik
in the example of Section 5). In this case, J+l = Cj+1Aj+lBj+1’ and the
j+1th blocks in equation (27), and the last loop of the corresponding nested

feedback configuration, disappear. G(a)(s) will now satisfy

6 sy = ato) (28)
(a)

i.e. G (s) matches the first time moment of G(s).
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Computational Procedure for Decomposing the System State—Space

The implementation of the reduction techniques proposed above, for
which the system must be transformed to the state-space canonical form(12)
requires a procedure for calculaﬁing at each stage the subspaces V* and T
defined in Section 2.2. There is a well known recursive relation(ll).(in
fact the dual of equation (45)) which expresses v as a limit of a sequence

(3)

of subspaces, and this may be translated directly into an algorithm to
*
generate a basis matrix for v . A basis for T may be found either by
; A n s p b kS
noting that 7~ (the orthogonal complement of T in R') is the maximal (A",C)-

invariant subspace contained in the kernel of BT, or by applying the algorithm

presented in Appendix 3.

In the generic case when S(A,B,C) is of uniform rank(5’6) kl so that
k. -2 k.-1
CB=CAB=..=CA' B=o0,|cA" B|#0, (in fact, gemerically, k, =1),
it can be shown(lz) that
kl_l
T = R(B) @ AR(B) @&...®A =~ R(B) (29)
W i-1
and v =) Rer (CA™ ) (30)

i=1
Equations (29) and (30) can then be used to generate simple algorithms for

: *
calculating basis for T and V , and furthermore, transformation to the basis
s e ol . Bl oo (3L
[B(cA © B) ",AB(CA ~ B),....,A " B(CA " B) ]

A PN A

*
where V is some basis matrix for V yields S(Al,Bl,C ), as defined in

equation (10), in the particularly simple 'observable block companion form'

A [ w ~ (k71 ~ [ ]
A =0 o.. 04, |,B = |CA" B, C = 0...0 T_
I 0... 0 &, 0
(32)
0
0T 0 K.
0 0 I 0
\ m AkllJ \ J

for some mxm matrices Ajl (L 3 % kl). The corresponding forward path

transfer function matrix, Gl(s), then satisfies




—_——4—

_17_
k,-1 k k. -1
“y = 1 =¥ L ™% 1 " 4 .
G, (s) = (CA B) " [s L, = Akll vee = 8Ay All] (33)

Similarly, if S(Ai’Bi’Ci) is of uniform rank ki’ for 2 ¢ 1 ¢ g, then

~

S(Ai’Bi’Ci) as defined in Section 2.3 take the form

o X k,""l 3
" A f i ~ -
Ai & [o O s 0 Ali . Bi = CiAi Bi % Ci = 0...OIHJ
Im O 0 AZi 0
34
6 I 0 A3i 0 (34)
0 0 In Akii 0

for some matrices Aji (153 g ki).

S Illustrative Example

Consider the following 2 - input, 2 = output 16th order linear
system, S = S(A,B,C), derived from linearisation of a flow-controlled
counterflow heat exchanger with normalised variables,

The matrices A,B,C have a simple parametric form as follows:

A= |X ¥ , where the 8 x 8 matraices X = (Xij)’ Y = (y..)

are defined by

J— 59.0 if 1 =3
%, = 4B SRR AL 5 gy Jil.o 1F 4 = A4l
l 0.0 elsewhere [ 0.0 elsewhere
B = (bij) is defined by
. by = jll.O l<is8 , by, = 0,0 1g<j<8
| 0.0 :9 &5 <16 11,6 0 ¢ {6

and C = o ) i =
(clj) is a matrix of zeros except for €18 = C99
Applying the state-space decomposition of Section 2, it is found
that each successive loop has uniform rank 1, so that the system can be

decomposed into eight loops, each having a state-space representation

S(Ai,Bi,Ci) of state dimension 2. Choosing bases as described in
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= n
Section 4 so that Gy m I2 (1 < i ¢ 8), the matrices Ai’Bi for the i
f

first 4 loops of the decomposed system are found to be

A f A
- By = | SUIE 0 ; B, = (11 o0
0 =5.5 : 0 -11
=] .
wh T ( \
5 = |7 83 -22 5 B2 = 0 48
L—Z.?S ~T 75 L-12 0
A [ A ( )
R L , By m | 545, AR
=55 ==58.5 =2 :75°=22
4 \ J
. ( . [
A4 = -84.22 =24,44 ‘ B4 = -10.67 42.67
-2.139 -76.28 -6.67 2.67
L \
1 - (t)
Table 1 shows theoutputsyi(t) = {711 s L' £1 <4 (i.es’the
yo. (£)
. 2i

outputs of the first 4 loops of the decomposed system for a unit step

input to channel 1, as defined in section 3.4), and Table 2 displays
; 2 ; : :

the corresponding outputs yi(t), 1 <1¢g 4, for a unit step into

. 1 1 2 2
channel 2. It can be seen that: (i) yll(t) >>yi3(thndy2{t) >> yzgt)

1
Y92

t > o. Observation (i) suggests that loops j, for j > 2, may be having

for all times t > o; and (ii) in(t)’ (t), y%z(t) are small for all

only a small effect on the system input-output behaviour, or at least
on the direct input-output transmission in each channel. Retaining the

first two loops and taking the constant steady-state approximation

Héa)(s) = Hz(o) to Hz(s), as described in Section 3.5, gives the Ath—
- (al) (al) (al)
order reduced model §; = SitA- ==+ B ;€ ) where

fay ) i ; \ (a) _ r w (a))
A = |-11:- O 11 (0] , B 11 0 ; C =|1L0 00O
0 =555 0 =11 0 -11 Q71 <0 0
0 48 -116.8 :57.66 0 0
E—lz 0 7:207 —58.41J L0 0
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The open-loop step responses of the original system, So, and the

reduced system, Sl’ are compared in Figures 3 and 4 (for step inputs

to channel 1 and channel 2 respectively) and it is seen that the reduced
P model is a good open-loop representation of the original system.

Figures 5 and 6 compare the closed-loop step-responses of S_ and Sl’
1

under the action of the forward path pre-compensator K = a1 0
P |
QAT

(chosen to retain the low level of interaction of high frequencies),
diagonal loop gain matrix p 12(p = 10), and unity negative feedback.
It is clear that the reduced model is an adequate system representation
for feedback design. The reduced system S1 has zeros at -123.2, -52.0,
and poles at =124.7, -47.4, -15.1, -4.5. The root-loci of S0 and S1
are illustrated in Figures 7 and 8 respectively. Although of apparently
different form, the tabular comparison of Table 3 verifies.that the
. unbounded (dominant) poles are virtually indentical at high gains p =+ + «
(see Section 3.2).
Finally, observation (ii), and the closeness of the zeros to two

of the poles in Sl, suggest that there may still be some redundancy in

this model, and that a simple 'first—order-like'(6) approximation to the

(a)

original system may be adequate. Taking Hl

(s) = H{o) gives the second-
(az)éaz) (a,)

order system, S, = SR T ,C ), where
(a,) (a,) (a,)
A = -12.19 4,812 s B = 11 0 : € & 1 0
- 2.406 -6.094 0 -11 : 0 A

which has poles at -13.7, -4.6. The open- and closed-loop step responses

of S, are almost identical to those of Sl’ and are illustrated in

2
Figures 9 - 12, The root locus of 32 consists simply of two branches
going to-* along the negative real axis, and Table 3 illustrates that

the unbounded closed-loop poles of 52 and S0 (with forward path

precompensator K as defined above) are again almost identical at high gains.




Conclusions

Using simple algebraic and geometric techniques, previously pub-
lished results on the reduction of - single-input/single—output systems
have been generalised to the case of square invertible multi-input/
multi-output linear time-invariant systems. It has been shown that
such systems admit a natural decomposition into the form of a forward
path system, having no invariant zeros, and a single feedback path,
with strictly proper transfer function matrix, characterising the in-
variant zeros of the original system. Under certain generically
satisfied conditions, repeated application of this decomposition allows
the system to be represented as a nested sequence of feedback loops,
to which there corresponds an equivalent state-space representation
in block canonical form.

This multi-loop decomposition p;ovides a convenient technique for
obtaining reduced order models which has strong intuitive appeal, in
that those loops which appear to be of least significance in terms of
the system input/output behaviour can be simply neglected, or replaced
by some simple (e.g. constant) approximation. The significance of
each loop can be assessed by inspection of simulated time-responses
of the system in decomposed canonical form, and moreover this will
often suggest a choice of reduced model order. The most important
feature of the proposed reduction technique is that by retention of
the first loop of the decomposed system the reduceé—order models
obtained are guaranteed to preserve the asymptotic unbounded root-
locus properties of the original system and can give a good represen-
tation of the dominant system zeros. They may therefore be used with
confidence as the basis for high—gain closed-loop controller design.
The method is given added flexibility by the freedom to retain dominant

zeros explicitly in the reduced-order models, and the ability to match
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an arbitrary number of moments about |s| = » and s = o by suitable
application and appropriate choice of approximation to the lower loops
of the decomposition. As illustrated in the example of Section 5, the
techniques presented in this paper offer a methodical approach to
model reduction, applicable to 'almost all' square multivariable systems,
and can be used to generate models which give a good representation of

both the open—loop and closed-loop properties of the system.
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Appendices
Appendix 1

The state-space representation S(A,B,C) of G(s) defined by equation
(6) is minimal.

Proof: (i) Observability

Suppose that

Al B1C2 X = A X 3 [Cl O] X =0

B,C, A, x, %, lx2 (35)
Then

Ajx, + B,Cox, = A x; (36)

A2x2 + Bzclx2 = XX (37)

Clx1 =0 (38)
(36) implies Alxl = Axl - Bl(C2x1 , and hence by (38) it follow that
x = Bl(szz) =0, as S(Al,Bl,Cl) has no zeros. Therefore szz = 0,

as B1 has full rank (by invertibility of Gl(s)). But (37) and (38)
imply that Ak, = A X, Hence X, = 0 (by observability of S(AZ’BZ’CZ))'

Thus X;/= 0, and S(A,B,C) is observable.

-

(ii) Controllability

The observability of the dual system S(A:,CT,BT) can be proved as
in (i) above, from which the controllability of S(A,B,C) follows.

Appendix 2. Proof of Theorem 1

(4)

As S(A,B,C) is invertible, it follows from Morse that there

*
exists a suitable choice of basis for {1,v } and matrices F,K of dimension

mxn, nxm respectively such that the transformed system S(&,B,C) takes

the form &
. " A O A B, : i
A + BF + KC = , B = ,c=[c_1L 0] (39)
0 A 0




8.3

- 24 =

2 ; - ~ ~ * 2
where AI’AZ are the restrictions of A + BF # KC to t,v respectively

and Bl’cl are some matrices of dimension n, Xm, mxn, respectively.
K :
Partitioning F = [Fl’F2] , K= 1| gives
K
2
A= [A -BF -KC ~ B ¥, (40)
o By Ay
and setting R 4a - B.F, - K & C 4_r .8 g K, gives the
g | 11 L1722 22 72 2

required form (9). Furthermore it is easily seen that transformations

%
.0f the bases for T and v leave the form of equations (9) unchanged.

7

The geometric criterion for the invertibility of S(A,B,C) is that
lv*r\R(B) = {0} and dim R(B) = m. The nature of the state—space decom
position implies that the maximal (Al,ﬁl) - invariant subspace in the
kernel of 61 is zero, so that sch,ﬁl,él) has no zeros and is invertible
(as dim R(ﬁl) = dim R(B) = m). Again, as S(Rl,ﬁl,al) has no zeros it
has no uncontrollable or unobservable modes. Controllability (resp.
observability) of S(A,B,C) obviously implies the corresponding property

in S(A ), and the proof of the reverse implication follows the

3590
proof used (in Appendix 1) to establish the minimality of the state-
space system (6).

Appendix 3. Algorithm to Generate a Basis Matrix for t.

For an mxm invertible system S(A,B,C) the following algorithm may
be used to generate a basis matrix for the subspace t defined in

Section 2.2,

B. Set 1 =1

1

(i) Define B1

(ii) 1If P,

ne

rank C Bi =m , stop.
If p;< m, choose an mxm non-singular matrix Ti such that
.)T. = |E. 1
(c BT, = [E, 0] (41)

where Ei has P colums (and hence full rank pi).
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(iii) Define

3; 5] g BT (42)

Where.ﬁi has P; columns and.Bi has m - P colums

(iv) Define
A
i+l°

(v) Set i = i+l, Go to (ii)

B [B; A8, ] (43)
Theorem 2:
For an mxm invertible system S(A,B,C), of state dimension n,

the above algorithm terminates for some integer i = io <omi(ives

p; =m for some iO < n), and then the matrix
0 = - 7 -
[BysBpseeeuBy ps By o
o o

has full rank and its columns span 1, i.e. it is a basis matrix for T

(Note; This algorithm is effectively the dual of an algorithm presented

(13)

by Silverman for constructing an inverse of a linear multivariable

system).. To prove the theorem the following two results are required.

(4))

‘Lemma 1: (c.f. Morse

The sequence of subspaces T, (o € 1 € n) defined by

T, 2o}, 1, & AN T, ) +RE) A <i<n) (45)
satisfies T.C T (o 1 ¢<n=-1) and converges for some integer
i g<n, and then 1 = 1. = 1_ (where N = Ker C)
0 1 n

Lemma 2: With the notation of Lemma 1, if S(A,B,C) is invertible and Pi

is a subspace satisfying

Ty M2, s AN BT, (46)

h

for some 1 ¢ i ¢ n, then

T
i+1

=AC, NN @, ' (47)
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Proof From equaion (45)

T

el A(Ti{\ N) + R(B)

i [( I® (t,_ AN N] +R(B) (by- assumption)

AAN @ NM] + RE®)

AT, N) + A(T,_,MN N) + R(B)

A(LAN) + T (by (45)) (48)
To show that this sum is direct, suppose that xe A(Iir\ N) N T
Then (by (46)) x = Ag = At + b for some ge ri NN, tetT, (H\N,

; *
be R(B),so that A(g-t) =be R(B), and gt ¢ N. Hence, g -t ¢ v
Also, g - t ¢ L+ Ly C T But system invertibility implies that

*
\J-m‘l"_" {o}. Hence g - t = o0, so that g =teg Ti_ln Nf\.I‘i =40}

(by assumption), giving x = Ag = 0. Thus the sum (48) is direct.

Proof of Theorem 2.

Note that equations (41) and (42) imply that ﬁi has full rank
P and that R(gi)f\ R(ﬁi) = 0, (For if Ei X = ﬁi y, then
dﬁix = Cﬁi y =0, and hence x = 0 as C Ei = Ei which has full rank)

We first show that if pj < m, for o ¢ j < 1, then

T, = R(3,) OR(B) S ... ®RE,_;) ORE,) (49)
For i=1, R(B;) = R(B) =7, (iy definition), so that (49) holds for
i=l. Next suppose that (49) holds for i = r. Then if p.<m,

noting that R(ﬁj)c N, NF\R(EJ.) =0 (1 ¢jgr), it follows (by
assumption) that

T =RBD@... ORB,_) ORGI (< § < 1)

R(B) @ ... @R(Bj_l) @(R(Bj) @R(Ej)) lLgijigr (50
and .V N = R(Bl) @ ... @R(Bj_l) @—)R(Bj) (L.g:3 2. 50 (51}
Hence £ = R(ﬁl) @ ... @R(ﬁr) @RE)

()N N ® ®RE) @RE)

I
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and so by Lemma 2,

T, WARE) @RE))N W)

T r+l

By @A R(Br) .

R(B) @ ... ORB) ORE) @A R(B)

R(B) @ ... ORB) @R (B_,) by (43))
which by induction: proves the given assertion,
We now consider conditions under which the given algorithm terminates.
As S(A,B,C) is invertible, R" = Wt , and hence N = N(\ R" = v*(D
(tMN).Thus if X is any ‘Fubspace satisfying (t N\N) @ X = 1, it follows
that
RY = v @M@ =¥ @x
so that
dim X = n-dim N = n-(n-m) = m (52)
Again suppose that pj< m for 1 ¢ j < i. Then by equations (50) and (51)
we have |
T = (AW @R(’fs"j)
But dim R(ﬁ&) = pj 4 m, so that Tj #- o, by (52).
1 T -0 then equations (49) and (51) imply that
1o iy = (Ti_lf\ N) ® R(Bi)'
But R(Bi) < m, and hence by (52) it follows that R(Bi)f\ N = {o},
and p = dim R(Bi) = m,
Conversely, if pj g m, 1l €74 <1, and p; = m, then R(Bi)(\ N = {o}
by assumption, and as Ty = (Ti_lf\ N) ()IR(Bi), Lemma 2 implies that
Ty = T QARBH NN = 7

Thus the given algorithm coverges precisely for i = io’ where io is

the smallest integer satisfying T, =T 4 T
o o
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It remains to show that the matrix (44) has full rank, as equations
(49) implies that its colummns span.t. But, for 1 g j < io’ equations
(42) and (43) imply that

rank (Bj+1) = rank LBj,A Bj]

N

rank (fj) + rank (A BJ.)

N

rank (Ej) + rank (Bj)

rank [Ej Bj] (as R(ﬁj)r\ R(Bj) = {o})

[}

9

rank B..
' J
Thus m = rank (Bl) > rank (Bz) > i3 rank (Bi ) = m, so that Bj has

o
full rank m, 1 € j < io’ and in particular Bj’ 1% A io’ and Bi have
(o]

full rank. Hence by equation (49), the matrix (44) is full rank and is

a basis matrix for T as required.
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Time yil(t) yél(f) yiz(t) yéz(t> y}3(t) Y;B(t) Yi4(t) Y;4(t)
Ol .683 .049 035 ~.110 .098 ~.042 .518 .124
0.2 . 904 .159 .007  -.185 . 329 -.229 409 .158
0.3 .981 .265 .030  -.214 .407  -.306 .100 .198
0.4 1.02 v 337 .049 -.218 <371 -. 349 -.054 227
0.5 1.04 377 .059 -.215 . 329 -,373 | Fal0ge 240
0.6 1.06 .399 064 -.213 .304 -.385 -.128 245
0.7 1.06 .410 .066  -.212 .292 -.392 -.138 .248
0.8 1.07 416 .068 -.212 . 285 =395 -.144  .250
0.9 1.07 419 .068: -.211 .282  -.397 | -.147 .251
1.0 1.07 . 420 .069 -.211 . 280 -.398 | -.148 .251
: Table 1: Loop outputs of decomposed system for step input into channel 1.
Time | y11(0) v5,(0 | 52,0 ¥, (0) y13() via® | ¥2, (0 y5,(®)
0.1 -.169 ~-.861 | =-.434 ,047 =104 057 .029 -.054
0.2 =449 -1.41 | -.665 .106 -.105  .286 .707  -,269
0.3..17=.832" =198 Tl o788 13 J15% 484 1.32 -.400
0.4 | -.733 -1.94 |-.798 .087 :363 . .592 1,53 #4852
0.5 ~.786" ©=2,03 | -, 820 078 474 .648 1.61 -.476
0.6 -.813 -2.08 |-.832 .074 .530 .677 1.66  -.488
s =,828 ~ ~2.11 |-.838 ~ .072 358 .0 L6903 .. |1, 68 14405
E 0.8 | -.83% -2.12 |-.81 .071 .574 .701 1.70 -.499
0.9 -.840 -2,13 [-.843 .070 .582 .705 1.70 -.501
1.0 -.842  =2,13 [|-.843 .,070 .586 . 708 1.7 -.502

Table 2:

Loop—-outputs

of decomposed system for step input into channel 2.




100 ~117.4 + 14.7j -102.8 + 5.5] -113.7
~117.4 - 14.7] -102.8 =5.5] -104.6
200 ~204.7 -204.,9 -204.6
-211.5 -212.3 ~213.7
500 -505.4 -505.4 ~504.6
-511.1 <B1T.1 -513.7
1000 -1011 -1011 -1014
-1005 ~1005 ~1005

Table 3: Closed-loop poles of So,Sl,S?_ at high gains, with

precompensator K
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