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Abstract 

Despite many advances in the generation of high producing recombinant mammalian cell lines over 

the last few decades, cell line selection and development is often slowed by the inability to predict a 

cell line’s phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale 

(large volume bioreactors) using data from early cell line construction at small culture scale. Here we 

describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for 

mammalian cells early in the cell line construction process whereby the resulting mass spectrometry 

data is used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial 

Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a 

library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well 

plate stage of cell line development. The growth and productivity of these cell lines were evaluated in 

a 10 L bioreactor model of Lonza’s large-scale (up to 20,000 L) fed-batch cell culture processes. 

Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at 

the 10 L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell 

lines at the 10 L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This 

approach provides the basis for the very early prediction of cell lines’ performance in cGMP 

manufacturing-scale bioreactors and the foundation for methods and models for predicting other 

mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. 

 

Keywords: Cell line development, Chinese hamster ovary cells, whole cell MALDI-ToF mass 

spectrometry, PLS-DA modelling, cell line prediction 
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1.0 Introduction 

The majority of recombinant protein biopharmaceuticals are produced from cultured mammalian cells 

(Walsh, 2010), with the most commonly used industrial mammalian cell host being the Chinese 

hamster ovary (CHO) cell (Kim et al., 2012). Despite the development of high throughput methods 

that allow the screening of many recombinant cell lines to isolate those with desirable phenotypes (e.g. 

high growth and productivity), the ability of such methods to select or predict the performance of a 

given cell line at manufacturing scale remains limited with the best cell lines at a manufacturing scale 

often distributed across the phenotypic performance of cell lines at smaller-scale (Porter et al., 2010a; 

Porter et al., 2010b). As a result, early use of a simple productivity based approach does not 

necessarily allow the identification of high producers in the population of cell lines, and some 

potentially high producers are discarded early in the process (Porter et al., 2010b). In order to address 

this issue, a number of proteomic, transcriptomic and metabolic based studies have now been 

undertaken and the subsequent data used to develop models to predict the phenotype of a given cell 

line (e.g. Clarke et al., 2011; Clarke et al., 2012; Doolan et al., 2013; Jacob et al., 2010; Mead et al., 

2009; Mead et al., 2012; Meleady et al., 2011; Sanchez et al., 2014; Selvarasu et al., 2012), however 

these models are usually developed from cell line data at the end of the cell line development process. 

The goal of this work was to develop a screening system that would allow the selection of 

highly productive cell lines for monoclonal antibody (mAb) production early in the cell line 

development process that would use substantially less resource to achieve the same or better success 

rate as current methods. The vision was to be able to select a small number of cell lines based upon the 

analysis of data generated in multi-well plates, and take these straight to a lab-scale bioreactor-

evaluation stage (10 L) with a high probability that the selected cell lines were highly productive. The 

approach was based upon the use of intact cell MALDI-ToF mass spectroscopy (MS) to create 

‘fingerprints’ from cells in multi-well plates and then to use the information to predict their behaviour 

in lab-scale bioreactors.  

Intact whole cell MALDI-ToF mass spectrometry combined with discriminant analysis is 

routinely used as a method for characterising and discriminating between bacterial species and is an 

established method both in the clinical setting and research laboratory (e.g. see (De Bruyne et al., 
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2011; Franco et al., 2010; Lundquist et al., 2005; Munteanu and Hopf, 2013; Panda et al., 2013; Veloo 

et al., 2011; Warscheid and Fenselau, 2004) and has led to a fundamental shift in the characterisation 

of bacteria in the clinical microbiology setting (Clark et al., 2013). Commercial software has been 

developed that allows the comparison of test spectra with a library of known spectra to identify 

bacterial strains with high precision (Bright et al., 2002; Sogawa et al., 2011). Despite the sensitivity, 

success and simplicity of MALDI-ToF coupled with appropriate data analysis for characterising 

bacteria, this approach has not been routinely utilised for the analysis of mammalian cells. Whilst 

there have been several reports of applying intact cell MALDI-ToF for the analysis of different 

mammalian cell lines and processes (Hanrieder et al., 2011; Karger et al., 2010; Marvin-Guy et al., 

2008; Munteanu et al., 2012; Zhang et al., 2006) and to the analysis of CHO cells (Feng et al., 2011; 

Feng et al., 2010), none of these studies has attempted to use such an approach to predict across scale 

(e.g. use data early in the cell line construction process to predict a cells productivity at larger scale). 

A major challenge therefore remains with regard to developing methodologies that allow the 

prediction of phenotype based on intact cell MALDI-ToF mass spectrometry analysis. Indeed, a recent 

review describes how the limitations on using MALDI-ToF fingerprinting for mammalian cells lies 

around the facts that there is not currently a rigorous standardization of the approach utilized, 

automation will be necessary, information on the influence of cell numbers is scarce, there is a lack of 

an extensive database of fingerprints and that the identification of mammalian cell types requires a 

classification algorithm based on a high number of distinct mammalian cell types (Munteanu and 

Hopf, 2013). 

Here we set out to address these limitations with respect to Chinese hamster ovary (CHO) 

recombinant cell lines and described the development and evaluation of an intact cell MALDI-ToF 

mass spectrometry profiling and PLS-DA modelling method to predict the phenotype (productivity) of 

novel recombinant mammalian cell lines at the bioreactor scale (10 L) using data generated in multi-

well plates. This approach facilitates the exploitation of the heterogeneity of phenotypes in the cell line 

population by allowing the probabilistic prediction, early in the development programme, of the 

phenotype of cell lines in bioreactors. The approach used to generate an initial mass spectrometry 

training data set for building a Partial Least Squares - Discriminant Analysis (PLS-DA) model for the 
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prediction of productivity at the 10 L bioreactor scale, using MALDI-ToF mass spectrometry intact 

cell fingerprints from cells at the 96 deep well plate stage, is described. The model is based on a PLS-

DA algorithm, which is a binary formulation of the original PLS algorithm (Wold et al., 1987) 

whereby the output vector comprises the values 0 or 1 thereby classifying the training data into two 

groups. The resulting PLS-DA model can be used as a rapid screen to classify cell lines into high/low 

producers based on their MALDI-ToF mass spectrometry profile.  

 

2.0 METHODS 

2.1 Cell Line Construction 

Cell line construction was undertaken using a standard industrial process (Figure 1A) with subsequent 

bioreactors run under standard industrial conditions as previously described (Porter et al., 2010a; 

Porter et al., 2010b). In this way the GS expression system (Lonza) containing the mAb genes of 

interest for each of the three cell line constructions was introduced into the Lonza Biologics 

CHOK1SV host cell line.  

 

2.2 Collection of Cell Pellets 

Cell pellets of 6.25 x 104 total viable cells were collected 5-7 days after cell lines were plated out into 

96 deep well plates using a Vi-CELL Cell Viability Analyzer instrument (Beckman Coulter) to 

determine the concentration of viable cells. This number of cells gave good reproducible spectra 

whilst higher cell numbers gave poorer and less reproducible spectra and at lower cell numbers the 

number of peaks in the spectra was reduced (e.g. see Figure 2). 6.25 x 104 total viable cells was 

removed from each well and transferred to a 96 well plate format rack, centrifuged for 5 minutes at 

960 rcf and the supernatant removed. The cell pellet was washed with 0.5 ml of PBS and centrifuged a 

second time. The supernatant was again removed before the cells were washed with 0.5 ml of 0.35 M 

sucrose, centrifuged for 5 minutes and the supernatant removed. Cell pellets were then stored at -80°C. 

 

2.3 Preparation of Cell Pellets for Intact Cell MALDI-ToF Mass Spectrometry Analysis 

A 20 mg/mL (saturated) solution of sinapinic acid was prepared in matrix buffer (40% acetonitrile, 
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0.06% TFA) that was then placed in a sonicating water bath for 15 minutes before centrifugation. The 

prepared and washed cell pellets were removed from -80°C storage and allowed to equilibrate to room 

temperature for 15 mins. Matrix solution (50 µL) was then added to each cell pellet sample in which 

the cells were resuspended, then incubated at 4°C for 3 hours at which time the cells were resuspended 

by gently tapping the tube. 1 µL of each sample was then spotted onto a 384 MTP ground steel 

MALDI-ToF plate (Bruker). Samples were allowed to air dry before the plate was placed into the 

MALDI-ToF mass spectrometry instrument (Bruker Ultraflex). 

 

2.4 MALDI-ToF Mass Spectrometry Instrument Operation Conditions 

The MALDI-ToF ms instrument (Bruker Ultraflex) was calibrated before use with the commercially 

available Bruker Calibration Standard 1 protein mixture (Bruker, part number 206355). The spectra of 

the intact cell pellets were then collected using the MALDI-ToF ms instrument settings described 

below and the inbuilt calibration program for this calibration mixture provided with the instrument. 

The spectra were collected using the following settings on the mass spectrometer; Laser frequency: 20 

Hz; Polarity +ve; Ion sources: 1. 20 kV, 2. 17.25 kV, Lens 5.0 kV; Gating mode: maximum strength; 

Suppress @ 4000 Da; Pulsed ion extraction 550 nS; Range 5000-60000 Da; Sample rate 0.1 Gs/s; 

Resolution enhanced 100 mV electronic gain; Smooth high. For each sample 100 shots were summed 

and saved.  

 

2.5 Pre-Processing of MALDI-ToF Mass Spectrometry Data for PLS-DA Analysis 

The mass spectrometry data files were exported from the Bruker Flex Analysis software in ASCII 

format for pre-processing in MATLAB prior to the application of the PLS-DA technique. The 

following pre-processing steps were applied to the spectra prior to presenting the pre-processed data to 

the PLS-DA algorithm: 1. Resampling (up-sample to 50,000 to account for slight differences in m/z 

vector); 2. Baseline Correction (removes the effect of noise introduced by the matrix); 3. Filtering 

(Application of Savitzky -Golay filter to smooth the signal); 4. Alignment (Automatically select peak 

and align spectra based on height and over-segmentation filters); 5. Quality Control (Outlier detection 

and removal of “unusual spectra”); 6. Normalisation (normalisation of area under curve). Re-sampling 
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of the mass spectrometry profiles was performed using the ‘msresample’ function from the MATLAB 

Bioinformatics Toolbox (http://tinyurl.com/msresample). As mass spectra profiles typically exhibit a 

varied baseline due to issues such as chemical noise in the MALDI matrix and ion overloading 

(Monchamp et al., 2007), which is undesirable when using data analysis techniques to compare 

profiles, baseline correction was performed using the ‘msbackadj’ function in the MATLAB 

Bioinformatics Toolbox (http://tinyurl.com/msbackadj). As a typical mass spectra contains a mixture 

of both signal and noise, smoothing of the signal by use of a Savitzky-Golay filter, typically applied to 

mass spectrometry signals, was performed following baseline correction using the ‘mssgolay’ function 

from the MATLAB Bioinformatics Toolbox (http://tinyurl.com/mssgolay). Figure 3 shows a selection 

of representative 96DWP spectra before and after application of Savitzky-Golay filtering. Figures 3A 

and 3C show the full representative spectra before and after pre-processing whilst Figures 3B and 3D 

show a close-up area of the spectra before and after pre-processing. Peak alignment is then undertaken 

to correct for variation between the observed m/z value and true time of flight using the ‘msalign’ 

function from the MATLAB Bioinformatics Toolbox, (http://tinyurl.com/msalign). The final pre-

processing step was normalisation, which addresses the variation in the amplitude of the ion 

intensities. This was performed using the ‘msnorm’ function from the MATLAB Bioinformatics 

Toolbox, (http://tinyurl.com/msnormal).  

 

2.6 Generation of the Model and Analysis of Naïve Data to Predict Classification of Cell Lines 

Following pre-processing of the data, a model was built using the training data set, consisting of all 96 

Deep Well Plate MALDI-ToF spectra from cell lines with 10 L bioreactor productivity data, using 

PLS-DA (http://wiki.eigenvector.com/index.php?title=Plsda). We note that each cell line was only 

grown in 10 L bioreactors once to obtain productivity data. Training data was classified into high or 

low productivities depending on the classification boundary (typically set at 4000 mg/L in this work). 

Additional training samples are appended to the training data set as they become available from new 

cell line constructions. The model is then used to classify or predict naïve samples from their 96 deep 

well plate MALDI-ToF fingerprints as to whether they are ‘high’ or ‘low’ producers. The number of 

latent variables selected for each model was based on the total percentage variation in the y-block 

http://tinyurl.com/msresample
http://tinyurl.com/msbackadj
http://tinyurl.com/mssgolay
http://tinyurl.com/msalign
http://tinyurl.com/msnormal
http://wiki.eigenvector.com/index.php?title=Plsda
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captured in the model. The number of latent variables (LVs) for each model was selected such that the 

number of LVs that described more than 80% of the variation was chosen, this number being selected 

so as not to over-fit to the training data. 

 

3.0 RESULTS 

3.1 The MALDI-ToF Mass Spectrometry Intact Mammalian Cell Fingerprinting and Cell Line 

Phenotype PLS-DA based Prediction Workflow 

A classical recombinant cell line construction (CLC) process (see Figure 1 and (Porter et al., 2010b) 

aligned with sampling for MALDI-ToF mass spectrometry analysis forms the basis of the approach we 

outline here with the subsequent development of a partial least squares discriminant analysis (PLS-

DA) model to predict the performance of recombinant cell lines at the 10 L bioreactor scale from 

samples taken at the multi-well plate stage of CLC. The classical approach to the selection of 

recombinant cell lines is based on the productivity of cell lines at multiple stages of cell line 

development, however various studies have demonstrated that productivity measurements alone at any 

one stage of CLC do not necessarily reflect the performance of a given cell line under different 

conditions further along the CLC process (e.g. switching between static and shaken cultures, 

controlled bioreactor and shake flasks, batch vs fed-batch and different culture durations;(Porter et al., 

2010a; Porter et al., 2010b). The methodology here moves away from multiple rounds of screening for 

productivity characteristics to a ‘collapsed’ single round of mass spectrometry based screening where 

there is a high probability of selecting cell lines with the required phenotypic attributes. The approach 

involves sampling of cells at the 96 deep well plate (DWP) stage of CLC, this step being the preferred 

early stage of CLC for sampling as at this time all cell lines have already been selected for suitable 

growth in suspension cultures. The cell samples are then subjected to intact cell MALDI-ToF mass 

spectrometry analysis and the resulting data used to develop a PLS-DA model that maximizes the 

separation between samples in a training library based on a classification of the spectra into ‘high’ and 

‘low’ producers at the 10 L stage. Thus, the historical database or library of spectra was created from 

cell lines whose MALDI-ToF profile was collected at the 96 DWP stage, ensuring that cell lines from 

across the productivity range were represented in these samples (i.e. we took cell lines from all 
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productivity classes as determined by Protein A ELISA at the 96 DWP scale to represent the widest 

range of productivity phenotypes which were classified into ‘high’ or ‘low’ producers at the 10 L 

scale; high being greater than 4000 mg/L) and these cell lines were subsequently carried through the 

CLC process to the 10 L bioreactor stage to assess productivity characteristics. Naïve cell lines were 

then assessed against the historical model to provide an early indication (at the 96 DWP stage) of their 

classification (high or low) without the need for extensive scale-up experiments. 

 

3.2 Cell Sampling, MALDI-ToF Data Collection and Pre-Processing of MALDI-ToF Mass 

Spectrometry Data before use in PLS-DA Modelling 

The time of cell sampling, nature of cell samples and their preparation could potentially all influence 

the subsequent MALDI-ToF data generated, which forms the basis of the PLS-DA model. Each of the 

steps involved were investigated sequentially, including the MALDI-ToF instrument parameters. For 

the MALDI-ToF mass spectrometry analysis of recombinant cell lines, cell samples (6.25 x 104 viable 

cells per pellet) are collected at the 96 DWP stage 5-7 days after the cells are placed in shaking 96 

DWPs. This low number of cells means this analysis can be undertaken early in the CLC process. A 

range of viable cell numbers per pellet was investigated for analysis and at higher cell numbers (above 

1-2 x 106 viable cells per pellet) spectra were poor in quality (see Figure 2). The cell pellets are 

washed upon collection once with PBS followed by a wash with 0.35 M sucrose, this washing 

procedure gave more reproducible spectra than those in the absence of the washing procedure or with 

PBS alone as determined by principal component analysis (PCA). It was found that incubating cell 

samples in the saturated matrix solution at 4oC for 3 h prior to spotting onto the MALDI-ToF target 

plate decreased the variation between samples and resulted in more reproducible spectra.  

 Before the MALDI-ToF mass spectrometry data were analysed it was necessary to pre-process 

the data as described in the methods section. The data files were exported from the Bruker Flex 

Analysis software in ASCII format for pre-processing into MATLAB, before application of the PLS-

DA algorithm. The goal of the pre-processing step is to remove uncontrolled sources of variation 

caused by factors including contamination from the MALDI matrix, ‘drift’ in the instrument and 

differences in the amount of absorbed energy from the laser during ionisation. Figure 3 shows 
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representative spectra highlighting the difference between the spectra of samples prior to and post pre-

processing.  

 

3.3 Generation of the Initial Training Data Sets and Model using a Classical Cell Line 

Construction Approach 

Using the CLC workflow described above, a naïve CLC (here after referred to as CLC1) was initially 

undertaken (see process outlined in Figure 1A) to generate recombinant GS-CHO cell lines 

expressing the IgG4 monoclonal antibody cB72.3 that is routinely used at Lonza as a model system 

(Smales et al., 2004; Tait et al., 2012). After the initial transfection procedure and FACS sorting, 119 

unique cell lines were taken from the initial transfection stage to the multi-well plate stage whereby 

cell samples were collected for MALDI-ToF analysis. All of these samples were subsequently 

analysed by intact cell MALDI-ToF mass spectrometry analysis. It was not practical to carry all these 

cell lines through the remainder of the CLC process to assess their productivity at the 10 L bioreactor 

scale. As such, a selection of cell lines (n = 29) with different productivities at the 96 DWP stage as 

determined by Protein A HPLC analysis were expanded from the 96DWP stage through the work flow 

in Figure 1A to the 10 L fermenter scale. Within these 29 cell lines were included the highest 

producers, but also a pseudo-random selection of low and intermediate producers to ensure coverage 

of the original productivity distribution so that MALDI-ToF fingerprints representative of the range of 

productivities were available to generate the initial PLS-DA models. These cell lines were grown over 

a period of 14 days under fed-batch conditions in 10 L bioreactors before being harvested and then the 

productivity determined by Protein A HPLC to provide a training set for modelling. The productivity 

data spread for these cell lines at the 10 L scale is shown in Figure 4A. 

The Partial Least Squares – Discriminant Analysis (PLS-DA) algorithm was then applied to 

the MALDI-ToF profiles of these cell lines to attain an initial model. The class boundary was set to 

indicate cell lines with ‘high’ productivity, i.e. 4000 mg/L as the antibody used in the cell line 

construction process was known to be well expressed. This binary classification is set to differentiate 

between MALDI-ToF mass spectrometry profiles of high producing cell lines from those classified as 

low producing (in practice this class includes cell lines producing at low and intermediate levels). The 
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actual expression level of high producers will differ between antibodies (see Figure 4B), and hence 

the class boundary can be adjusted for other molecules that are expressed at lower concentrations. 

However, the philosophy underlying the modelling approach assumes that there is information 

inherent in the spectra of high producing cell lines that differentiates these from low producing cell 

lines, regardless of the target molecule. To further allow for any target specific differences, after each 

CLC the MADLI-ToF data at the 96 DWP stage for those cell lines taken through to the 10 L 

bioreactor evaluation is appended to the historical database to potentially further improve the 

predictive power of the model for different targets. 

The 10 L bioreactors were not all run concurrently but in blocks and as each bioreactor set of 

productivities became available, this data was appended to the training data set that formed the basis 

of the PLS-DA model. Twenty samples were initially included in the training data set with this 

increasing to a final training set comprising 29 cell line productivities at the 10 L bioreactor scale. 

Once the PLS-DA model had been generated, the MALDI-ToF data from the remaining CLC1 

samples (those from the original 119 not used in building the model) were presented to the model to 

predict their position relative to the classification boundary. Figure 5A shows the PLS-DA latent 

variables (LV) scores plot of LV1 vs. LV2. These two latent variables capture the major sources of 

variation between the cell lines with concentrations ≥ 4000 mg/L and those < 4000 mg/L and hence 

have the strongest discriminatory power. Figure 5B shows the position of the discrimination boundary 

and the cell lines predicted as belonging to each class as determined by the PLS-DA model comprising 

5 LVs. Using this model a further 9 cell lines that had not already been assessed at the 10 L bioreactor 

scale were selected to assess their productivity at this scale based upon their predicted productivity 

classification. It is noted that the majority of the highest producing cell lines will have already been 

selected and used to generate the model and thus in all likelihood selection was from the second and 

third rank of producers. Of these 9 cell lines, 4 were initially run as a batch at the 10 L scale and the 

data incorporated into the model and then the following 5 run as an independent group to evaluate the 

predictions of these. From this it was identified that 3/5 (60%) predicted to be high producers (≥ 4000 

mg/L) from the PLS-DA model were correctly classified. This compares favourably with the 11/31 

(35%) of cell lines that were classed as high producers (of which 29 were used for the building of the 
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model - 2 were not used as the productivity data came from a different day compared to the rest of the 

cell lines) even though high producers had been consciously selected for the building of the model 

alongside a range of other producers and thus the majority of high producers from the CLC1 cell lines 

had potentially been removed. Furthermore, previously studies have demonstrated that a classical 

approach based upon productivity screening, similar to that used to select the cell lines for the 

generation of the model here, preforms much better than the random selection of cell lines (Porter et 

al., 2010b). The data in this analysis suggests that even without the inclusion of some of the highest 

producers the MALDI-ToF PLS-DA model was able to perform at least as well as this approach.  

 

3.4 Validation of Intact Cell MALDI-ToF MS Fingerprinting of Recombinant GS-CHO Cell 

Lines and Subsequent PLS-DA Productivity Model Predictions  

Following the initial development of the PLS-DA model using data from CLC1 to predict productivity 

of recombinant cell lines, an experiment was undertaken to both assess the ability of the existing 

model to predict the performance of recombinant cell lines expressing a different monoclonal antibody 

molecule and to increase the size of the training data set. In this study a second CLC was undertaken 

with a second monoclonal antibody (IgG1, different antigen target). Once again, cell samples were 

collected from cell lines at the multi-well plate stage (n=84) and these were subjected to intact cell 

MALDI-ToF mass spectrometry analysis. A total of 28 cell lines were then progressed to the 10 L 

bioreactor stage with these grown in 4 blocks / sets of bioreactors. These 28 cell lines were selected to 

represent a cross-section of productivities based on the traditional productivity screen and the 

predictions from the MALDI-ToF PLS-DA model that was updated as new training data was made 

available from each of the 4 bioreactor blocks. In this way the 10 L bioreactor productivity and 

MALDI-ToF training data from the second CLC was combined with the first CLC data set to generate 

a new model (i.e. the model was trained on data from both the first and second CLC bioreactor 

productivities) using a classification of ≥4000 mg/L to denote a high producing cell line. The resulting 

model was then used to predict the productivity classification of the remaining cell lines in CLC2 and 

a further 5 cell lines then assessed at the 10 L bioreactor scale. Figure 5C shows the PLS-DA latent 

variables scores plot of LV1 vs. LV2 from this data set whilst Figure 5D indicates the position of the 
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discrimination boundary and the cell lines predicted as belonging to each class as determined by the 

model trained using the data from both CLC1 and CLC2 using an 8 LV model. Table 1 reports the 

predicted classification of the 5 cell lines from CLC2 selected for assessment and validation at the 10 

L bioreactor scale based upon the model predictions reported in Figure 5C and 5D. As indicated in 

Table 1, the final productivities determined agreed in each case with the classifications predicted by 

the model. Thus, the MALDI-ToF analyses and predictions from these reported in Table 1 show that 

in each case the model correctly predicted the classification of each recombinant cell line at the 10 L 

bioreactor scale (as a high or low producer). 

 

3.5 Experimental Validation of the Method in Classifying High Producing Recombinant Cell 

Lines at the 96 DWP Stage during a Naïve Cell Line Construction Process  

The model was then experimentally validated by undertaking a completely naïve CLC (CLC3) with a 

third monoclonal antibody molecule (IgG4) whereby the intact cell MALDI-ToF mass spectrometry 

spectra at the 96 DWP scale of CLC was used to select those cell lines to take forward to the 10 L 

bioreactor scale. In this validation experiment, classification predictions were made based entirely on 

the training data set from CLC1 and CLC2 and a classification boundary of ≥4000 mg/L retained 

although the ‘expressibility’ of this molecule was unknown at this time. Thus, the PLS-DA model to 

determine which cell lines from CLC3 had intact cell MALDI-ToF spectra most similar to the high 

titre training data set was developed using the database from CLC1 and CLC2. We did not expect the 

cell lines to necessarily have productivities of 4000 mg/L or greater but that these should be 

representative of high producing cell lines for this particular molecule in comparison to the titres 

observed at smaller scale and against the classical method of cell line construction. For this analysis 

the model was developed from 76 training samples (MALDI-ToF data at the 96 DWP scale and 

productivity data at the 10 L bioreactor scale from CLC1 and 2) and 220 test samples from CLC3 at 

the 96 DWP scale in duplicate or triplicate. Alongside the selection of cell lines to validate the model, 

selection was undertaken in parallel using the classical approach of productivity measurements at 

different stages of the process. From the whole cell MALDI-ToF spectra of 220 cell lines at the 96 

DWP scale, the PLS-DA model was used to predict the classification of these as high or low producers 
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at the 10 L bioreactor scale and from this 8 cell lines were selected to progress through to a 10 L fed-

batch bioreactor evaluation. The results from the models are shown in Figure 6 and the predicted and 

actual productivities of the cell lines assessed at the 10 L bioreactor scale are reported in Table 1.  

When the 8 cell lines were assessed at the 10 L bioreactor scale the highest producing cell line 

selected using the intact cell MALDI-ToF method had a productivity of 4946 mg/L and 3 of the cell 

lines returned productivities above 4000 mg/L (Table 1). The highest producing cell line was only 

ranked 32nd in terms of productivity of all cell lines at the 96 DWP stage as determined by Protein A 

analysis and hence would not normally have been selected to progress from this scale in a CLC 

process. Of the entire 8 cell lines selected by the intact cell MALDI-ToF PLS-DA prediction method, 

5/8 had titres >3600 mg/L (which within the variation of titres from industrial 10 L bioreactors if cell 

lines were run multiple times could be considered as within the range expected for a 4000 mg/L cell 

line) whilst 7/8 had titres >2400 mg/L (Table 1). The lowest antibody concentration from the MS 

selected cell lines was 1918 mg/L. The two highest cell line productivities at the 10 L bioreactor scale 

as determined using the classical approach were 5218 mg/L and 4917 mg/L, although neither of these 

were ranked as potentially top producers by the MALDI-ToF PLS-DA model. Despite this, the 

MALDI-ToF approach classified and selected recombinant cell lines with productivities in the same 

region as those selected using the classical approach, experimentally validating the MALDI-ToF 

approaches ability to predict and select high producing cell lines. Furthermore, all of the cell lines 

selected using the intact cell MALDI-ToF approach had industrially relevant high productivities, 

generally considered to be those greater than 2000 mg/L in fed-batch culture (Lonza Biologics, 

unpublished data). All cell lines selected using the MALDI-ToF approach came from across the 

ranking list at the 96 DWP scale as determined by Protein A analysis and none would have been 

considered for progressing further using the classical screening approach (Porter et al., 2010b).  

 

4.0 DISCUSSION  

Existing methods for the prediction of the productivity characteristics of recombinant mammalian cell 

lines in larger scale fed-batch bioreactors during early CLC rely heavily on the assessment of 

recombinant product concentrations in the early phases and subsequently throughout the remainder of 
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the CLC. Whilst these approaches generally result in the isolation of recombinant cell lines with 

acceptable productivities, the predictive power of this approach is limited with the productivities from 

cell lines at the earlier stages of CLC not necessarily reflecting those observed in the bioreactor at 

larger-scale. As such, the productivity ranking of clones early in cell line development is not usually 

maintained through to larger scale (Porter et al., 2010a; Porter et al., 2010b) and as a result, some 

potentially high producers are discarded early in the process and relatively poor producing clones can 

also be carried through the selection process. Thus, a sufficient number of clones must be taken 

through the cell line generation process to ensure that a clone with desirable productivity and growth 

characteristics in the bioreactor is ultimately produced. The goal of this research was to address this 

issue by developing a rapid, high throughput method that allows the characterisation and accurate 

prediction of multiple clones’ phenotype in the bioreactor early in the cell line development process 

such that high producers in the bioreactor can be identified early. The aim was not necessarily to 

identify and isolate the highest producing cell line, but to be able to reproducibly predict and select 

high producing cell lines from a screen early in the CLC process, utilising less resource than current 

screening technologies. 

Whilst a number of previous reports have shown on a small number of cell lines that whole 

cell MALDI-ToF fingerprints can be correlated to productivity, to date no study has developed a fully 

predictive model that has then been used in an industrial setting to select and develop high producing 

cell lines. An intact cell MALDI-ToF mass spectrometry approach aligned with PLS-DA modelling 

was developed to predict the productivity of recombinant cell lines at the 10 L bioreactor scale using 

MALDI-ToF data collected from cell lines at the 96 DWP scale. In the described method it is assumed 

that the spectra at the 96DWP scale contains information that allows the prediction of the productivity 

of the cell line at the 10 L bioreactor scale and makes no assumptions as to whether the MALDI-ToF 

fingerprint changes or is the same between the two scales for a given cell line. This approach has 

similarities to the use of intact cell MALDI-ToF profiling of bacterial strains that is used clinically, in 

biodefence and in the academic environment to classify and identify bacterial strains (De Bruyne et 

al., 2011; Lundquist et al., 2005; Panda et al., 2013; Veloo et al., 2011; Warscheid and Fenselau, 

2004). The proposed approach is straightforward and rapid and based around the development of a 
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historical database of MALDI-ToF spectra associated with subsequent productivity data at the 10 L 

scale to predict the performance of cell lines from the 96 DWP scale. A number of different CLCs and 

recombinant monoclonal antibodies were used to develop, refine and evaluate the approach. The data 

shows that the approach can be used to predict the performance of recombinant cell lines expressing 

different monoclonal antibodies and hence may be broadly applicable to the production of these high 

value biotherapeutics. The major advantages lie in the potential reduction of time to development of a 

production cell line (see Figure 7) as although high producing cell lines can be selected/predicted, the 

actual productivities of these did not prove to be better than those generated using a classic cell line 

construction process. In the future we anticipate that this approach and the historical database could be 

applied to the prediction of the productivity of other recombinant molecules. Importantly, cell lines 

isolated using this MALDI-ToF approach gave similar productivities to the highest producing cell 

lines selected using a classical selection approach and identified highly productive cell lines for mAb 

production early in the CLC process using substantially fewer screening steps than the classical 

productivity method. The approach and database of CHO cell lines we have developed therefore 

address some but not all of the issues reported as outstanding to apply MALDI-ToF whole cell 

fingerprinting to mammalian cells (Munteanu and Hopf, 2013) (at least CHO cells), including 

development of a rigorous standardization of the approach utilized, information on the influence of 

cell numbers, an extensive database of fingerprints and development of a classification algorithm 

based on a high number of distinct mammalian cell lines. 

Two rounds of CLC and MALDI-ToF analysis were carried out at an early stage after 

transfection (before significant scale up had occurred). The whole cell MALDI-ToF data and final 

productivities for these cell lines from both CLCs was used to derive a model to predict the 

productivities of other cell lines using the MALDI-ToF spectra data. Although the whole cell MALDI-

ToF spectra of cell lines obtained from the second CLC appeared different to those from the first, the 

scores plot of PC1 vs PC2 showed that much of the data from the cell lines occupied the same space 

but that there some data fell outside this space. This suggests that as further historical data is added to 

the database, the method and predictive power of the PLS-DA model may further improve. Regardless 

of this, the model was able to successfully predict and hence allow the isolation of high producing 
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recombinant cell lines in a third CLC process.  

Key drivers for industry with respect to CLC are to minimize timelines to first-in-human 

studies and to reduce costs. Potential benefits to industry of the method described here are (a) to 

reduce the time from transfection to having secured research cell banks and completed bioreactor 

evaluation; (b) to reduce the resource required by screening fewer cell lines that are more likely to be 

higher producers – the resulting resource could be used to search for cell lines making product with a 

particular set of critical quality attributes e.g. particular glycoprofiles; (c) being able to undertake a 

major screen on a small number of candidate cell lines in fully instrumented bioreactors. Figure 7(a) 

shows a representative timeline for the generation of a clonal GS-CHO cell line in a commercial 

environment. Research cell banks can be secured for a panel of candidate cell lines about 12 weeks 

after transfection. Further characterization against the production process in, for example, 

minibioreactors and a final process run-through of 1 to 3 cell lines at laboratory-scale takes a further 8 

weeks. Overall, transfection to completion of the laboratory-scale takes about 20 weeks. Use of the 

MS-fingerprint analysis method to select cell lines predicted to be high producers in laboratory-scale 

bioreactors eliminates the need to screen large numbers of cell lines (for example, up to 48 in the 

Ambr bioreactor system) against the bioreactor process. The switch to use of the MS-fingerprint has 

the potential to reduce the timeline by up to 7 weeks (Figure 7(b). It is more likely that cell lines that 

work well in cGMP processes are identified early, reducing failure rate, a major contributor to project 

failure in terms of being on-time or cost. 

Looking to the future, the approach described here allows for the rapid characterisation and 

prediction of the phenotypic performance of recombinant cell lines. We stress that this allows the early 

prediction of productivity unlike classical models of cell line development that require many more cell 

lines to be carried through the cell line construction process further. A common theme between such 

mammalian cell systems is the potential for large variations between cells and clones with inherent 

heterogeneity, making the phenotypic prediction or characterisation of specific cell lines or types 

difficult (Ouedraogo et al., 2010). We envisage that this methodology will not only be applied in the 

fields of CLC/clone selection and stem cell characterisation but also will be applied in high-throughput 

screens to follow cell line responses to various stimuli (including drug screening), to investigate cell 
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line resistance to drugs, and be applied in the wider areas of mammalian cell biology in the fields of 

basic biology, medicine and biotechnology. 
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Table 1. PLS-DA predicted classification for samples as ‘high’ class (> 4000 mg/L) for cell line 

construction 2 using MALDI-ToF data at 96 DWP scale to predict 10 L bioreactor productivity as 

determined by HPLC Protein-A titres. Cell lines from CLC3 predicted as being ‘high’ producers by 

either the MALDI-ToF PLS-DA classification method or a classical ELISA based method at the 96 

deep well plate stage and the subsequent productivities of these cell lines at the 10 L bioreactor scale 

are also reported. 

Cell Line 

Construction 2 

(CLC2) 

Y Pred Probability 

(High > 4000mg/L) 

10 L Bioreactor Titre 

(mg/L) 

CL016B5 No 116 

CL016F11 No 2519 

CL033D5 Yes 6024 

CL033G5 Yes 4155 

CL948G2 No 1592 

Cell Line 

Constriction 3 

(CLC3) 

Method for 

Selection of Cell 

Line 

Antibody 

Concentration in 96 

DWP Screen (mg/L) 

10 L Bioreactor Titre 

(mg/L) 

H03 

D08 

D06 

A09 

G12 

C11 

F10 

Classical 

MALDI-ToF 

Classical 

MALDI-ToF 

MALDI-ToF 

MALDI-ToF 

MALDI-ToF 

6540 

4280 

6430 

3870 

3720 

3010 

4270 

5218 

4949 

4917 

4479 

4341 

3791 

3677 

G05 MALDI-ToF 1460 2449 

G04 MALDI-ToF 1820 2438 

C04 MALDI-ToF  1250 1918 
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Figure 1. The classical cell line construction workflow utilzed for the construction of naïve 

recombinant GS-CHOK1SV cell lines expressing various monoclonal antibodies (mAb) in this study 

indicating where samples were taken for whole cell MALDI-ToF mass spectrometry analysis (A) and 

the subsequent application of a database PLS-DA modelling approach to classify unknown cell lines 

as either high or low mAb producers (B). 



 23 

 Figure 2. Representative raw MALDI-ToF mass spectrometry data with varying cell number. 

The cell numbers used for analysis are as follows; (A) 3x106 viable cells, (B) 2x106 viable 

cells, (C) 1x106 viable cells, (D) 0.5x106 viable cells, (E) 0.25x106 viable cells, (F) 0.125x106 

viable cells, and (G) 0.0625x106 viable cells. Each cell sample was taken up in 50 µl of 

matrix buffer and 1 µl was spotted on the MALDI-ToF target plate for analysis as described 

in the methods section. 
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Figure 3. Representaive MALDI-ToF mass spectrometry data before and after pre-processing before 

analysis. Representative raw mass spectra (Figure 3A) were subjected to the following pre-processing 

steps in the order indicated. (1) Resampling (up-sample to 50,000 data points), (2) Baseline Correction 

(removes the effect of noise introduced by the matrix), (3) Filtering (application of Savitzky-Golay 

filter to smooth the signal), (4) Alignment (automatically selects peak and align spectra based on 

height and over-segmentation filters), (5) Normalisation (normalisation of area under curve for 

replicate samples). The influence of pre-processing on the entire spectrum is shown in Figure (C). 

Figures (B) and (D) show a zoomed in area of a selection of spectra before (B) and after (D) pre-

processing. Different representative spectra are shown in different colours. 
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Figure 4. (A) The distribution of monoclonal antibody (mAb) productivity in 10 L fed-batch 

bioreactors of the recombinant CHO-K1SV cell lines from cell line construction 1 of which 29 were 

used to generate the initial PLS-DA models. These cell lines were selected at the 96 DWP stage to 

include the highest producers, but also a pseudo-random selection of low and intermediate producers 

to ensure coverage of the original productivity distribution so that MALDI-ToF fingerprints 

representative of the range of productivities were available to generate the initial PLS-DA models. 
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MALDI-ToF mass spectra were collected for each cell line at the 96 DWP stage and then these cell 

line progressed and grown over a period of 14 days under fed-batch conditions in 10 L bioreactors 

before being harvested and the productivity determined by Protein A HPLC to provide a training set 

for modelling. Two cell lines were excluded from the model, as the productivity data available was 

from later in culture than day 14. (B) Although we set a classification boundary to indicate cell lines 

with ‘high’ productivity at 4000 mg/L as the antibody used in cell line construction 1 was known to be 

well expressed, the actual expression level of high producers will differ between antibodies as 

demonstrated by historical fed-batch data from Lonza Biologics for different antibodies (see Figure 

4B). Hence, the class boundary could be adjusted for other molecules that are expressed at lower 

concentrations.  
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Figure 5. A PLS-DA model was initially generated using a training set comprising 29 cell lines from 

CLC1 whereby the 10 L bioreactor scale productivities and relevant 96 DWP whole cell MALDI-ToF 

data was available using a classification of high productivity as ≥4000 mg/L. Once the PLS-DA model 

had been generated, the MALDI-ToF data from the remaining CLC1 samples (those from the original 

119 not used in building the model) were presented to the model to predict their position relative to the 

classification boundary. Figure 5A shows the PLS-DA latent variables (LV) scores plot of LV1 vs. 

LV2 and Figure 5B shows the position of the discrimination boundary and the cell lines predicted as 

belonging to each class as determined by the PLS-DA model comprising 5 LVs of the CLC1 cell lines 

of unknown productivity (shown in blue). Figures 5C and 5D show the PLS-DA latent variables (LV) 

scores plot of LV1 vs. LV2 (5C) and position of the discrimination boundary and the cell lines 

predicted as belonging to each class as determined by the PLS-DA model (5D) for the CLC2 cell lines 

as determined by the model trained using the data from both CLC1 and CLC2 using an 8 LV model as 

described in the text. A selection of cell lines from CLC2 was then taken for analysis at the 10 L 

bioreactor scale based upon the class they were predicted to belong to and these are labelled in 5C and 
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5D. Note that replicate MALDI-ToF data is represented in the figures, cell line data used to build the 

PLS-DA model is coloured red (high producers ≥4000 mg/mL) or green (low producers < 4000 

mg/mL) whilst unknown samples are shown in blue. 
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Figure 6. The PLS-DA latent variables (LV) scores plot of LV1 vs. LV2 (A) and position of the 

discrimination boundary and the cell lines predicted as belonging to each class as determined by the 

PLS-DA model (B) for the CLC3 cell lines as determined by the model trained using the data from 

both CLC1 and CLC2, a classification boundary of high as ≥4000 mg/L and an 8 LV model as 

described in the text. From the PLS-DA model 8 cell lines were selected to progress through to a 10 L 

fed-batch bioreactor evaluation (labeled on Figure 6B). 
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Figure 7. Representative timelines for the generation of clonal GS-CHO cell lines. (A) Timeline for 

generation of cell lines using the classical approach. (B) Timeline using the MALDI-ToF mass 

spectrometry fingerprinting approach described in this manuscript. 

 


