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SUMMARY  

This paper examines the effects of strength distribution pattern on seismic response of tall 

buildings. It is shown that in general for a MDOF structure there exists a specific pattern for height 

wise distribution of strength and stiffness that results in a better seismic performance in comparison 

with all other feasible patterns. This paper presents a new optimization technique for optimum 

seismic design of structures. In this approach, the structural properties are modified so that 

inefficient material is gradually shifted from strong to weak areas of a structure. This process is 

continued until a state of uniform deformation is achieved. It is shown that the seismic performance 

of such a structure is optimal, and behaves generally better than those designed by conventional 

methods. The optimization algorithm is then conducted on shear-building models with various 

dynamic characteristics subjected to a group of severe earthquakes. Based on the results, a new 

load pattern is proposed for seismic design of tall buildings that is a function of fundamental period 

of the structure and the target ductility demand. The optimization method presented in this paper 

could be useful in the conceptual design phase and in improving basic understanding of seismic 

behavior of tall buildings. 
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1.  INTRODUCTION 

 

Seismic design is currently based on force rather than displacement, essentially as a consequence 

of the historical developments of an understanding of structural dynamics and, more specifically, of 

the response of structures to seismic actions and the progressive modifications and improvement of 

seismic codes worldwide. Although design procedures have become more rigorous in their 

application, this basic force-based approach has not changed significantly since its inception in the 

early 1900s. Consequently, the seismic codes are generally regarding the seismic effects as lateral 

inertia forces. The height wise distribution of these static forces (and therefore, stiffness and 

strength) seems to be based implicitly on the elastic vibration modes (Green, 1981; Hart, 2000).  

Recent design guidelines, such as FEMA 356 and SEAOC Vision 2000, place limits on acceptable 

values of response parameters, implying that exceeding of these acceptable values represent 

violation of a performance objective. Further modifications to the preliminary design, aiming to 

satisfy the Performance Objectives could lead to some alterations of the original distribution pattern 

of structural properties. As structures exceed their elastic limits in severe earthquakes, the use of 

inertia forces corresponding to elastic modes may not lead to the optimum distribution of structural 

properties.  

Many experimental and analytical studies have been carried out to investigate the consequences of 

using the code patterns on seismic performance of tall buildings (Anderson et al., 1991; Gilmore 

and Bertero, 1993; Naeim et al., 2000; Ventura and Ding, 2000). Lee and Goel (2001) analyzed a 

series of 2 to 20 story frame models subjected to various earthquake excitations. They showed that 

in general there is a discrepancy between the earthquake induced shear forces and the forces 

determined by assuming distribution patterns. Chopra (2001) evaluated the ductility demands of 

several shear-building models subjected to the El- Centro Earthquake of 1940. The relative story 

yield strength of these models was chosen in accordance with the distribution patterns of the 

earthquake forces specified in the Uniform Building Code
 
(UBC). It was concluded that this 

distribution pattern does not lead to equal ductility demand in all stories, and that in most cases the 



ductility demand in the first story is the largest of all stories. The first author (1995, 1999) 

proportioned the relative story yield strength of a number of shear building models in accordance 

with some arbitrarily chosen distribution patterns as well as the distribution pattern suggested by the 

UBC1997. It is concluded that: (a) the pattern suggested by the code does not lead to a uniform 

distribution of ductility, and (b) a rather uniform distribution of ductility with a relatively smaller 

maximum ductility demand can be obtained from other patterns. These findings have been 

confirmed by further investigations (Moghaddam et al., 2003; Moghaddam and Hajirasouliha, 2004; 

Karami et al., 2004), and led to the development of a new concept: optimum distribution pattern for 

seismic performance that is discussed in this paper. An effective optimization algorithm is 

developed to find more rational criteria for determination of design earthquake forces. It is shown 

that using adequate load patterns could result in a reduction of required structural weight and a 

more uniform distribution of deformations. 

 

 

2.  MODELING AND ASSUMPTIONS 

 

Among the wide diversity of structural models that are used to estimate the non-linear seismic 

response of building frames, the shear-beam models are the one most frequently adopted. In spite 

of some drawbacks, they are widely used to study the seismic response of multi-story buildings 

because of their simplicity and low computational requirements, thus permitting the performance of 

a wide range of parametric studies (Diaz et al., 1994). Lai et al. (1992) have investigated the 

reliability and accuracy of such shear-beam models.  

To investigate the seismic behavior of tall buildings, shear-building models with fundamental period 

varying from 1 sec to 3 sec, and target ductility demand of 1 (elastic), 1.5, 2, 3, 4, 5, 6 and 8 have 

been used in the present study. In the shear-building models, each floor is assumed as a lumped 

mass that is connected by perfect elastic-plastic shear springs. The total mass of the structure is 

distributed uniformly over its height as shown in Figure 1. The Rayleigh damping is adopted with a 



constant damping ratio 0.05 for the first few effective modes. In all MDOF models, lateral stiffness is 

assumed as proportional to shear strength at each story, which is obtained in accordance with the 

selected design lateral load pattern. 

Fifteen selected strong ground motion records, including 6 components of Imperial Valley 1979 and 

9 components of Northridge 1994 are used for input excitation as listed in Table 1. All of these 

excitations correspond to the sites of soil profiles similar to the SD type of UBC 1997 and are 

recorded in a low to moderate distance from the epicenter (less than 45 km) with rather high local 

magnitudes (i.e., Ml>6.6). Due to the high intensities demonstrated in the records, they are used 

directly without being normalized. 

The above-mentioned models are, then, subjected to the seismic excitations and non-linear 

dynamic analyses are conducted utilizing the computer program DRAIN-2DX (Prakash et al., 1992). 

For each earthquake excitation, the dynamic response of models with various fundamental periods 

and target ductility demands is calculated. 

 

2.1.  Lateral loading patterns 

 

In most seismic building codes
 
(Uniform Building Code, 1997; NEHRP Recommended Provisions, 

1994; ATC-3-06 Report, 1978; ANSI-ASCE 7-95, 1996; Iranian Seismic Code, 1999), the height 

wise distribution of lateral forces is to be determined from the following typical relationship:  
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Where wi and hi are the weight and height of the i
th
 floor above the base, respectively; N is the 

number of stories; and k is the power that differs from one seismic code to another. In some 

provisions such as NEHRP-94 and ANSI/ASCE 7-95, k increases from 1 to 2 as period varies from 

0.5 to 2.5 second. However, in some codes such as UBC 1997 and Iranian Seismic Code (1999), 

the force at the top floor (or roof) computed from Equation (1) is increased by adding an additional 



force Ft=0.07TV for a fundamental period T of greater than 0.7 second. In such a case, the base 

shear V in Equation (1) is replaced by (V-Ft).   

Karami et al. (2004) introduced an �optimum� loading pattern as a function of the period of the 

structure and target ductility. This loading pattern is a rectangular pattern accompanied by a 

concentrated force αTV at the top floor, where α is a coefficient that depends on the fundamental 

period, T, and the target ductility, µt. Based on the nonlinear dynamic analyses on shear-building 

models subjected to twenty-one earthquake ground motions; the following expression is suggested 

for α ( Karami et al., 2004): 
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In this study, the adequacy of the above loading patterns to seismic design of tall buildings is 

investigated  

 

2.2.  Modal analysis 

 

The modal superposition method is a general procedure for linear analysis of the dynamic response 

of structures. In various forms, modal analysis has been widely used in the earthquake-resistant 

design of special structures such as very tall buildings. In this method, the distribution of the seismic 

lateral forces over the building is based on properties of the natural vibration modes (Chopra, 

2001).  

The peak value of any response quantity, Rn0, of the n
th
 mode contribution can be expressed as: 
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where Rn
st 

denotes the modal static response and Sa,n is the spectral acceleration for the n
th
 mode. 

For a given N story building, the effective weight, βn, of the n
th
 mode is governed by: 
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where Wi = mi .g is the weight of the i
th
 story and φin represents the mode shape corresponding to 

the n
th
 mode. Consequently, the total base shear Vn for the n

th
 mode is calculated from: 
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And the force Fin at the i
th
 story can be obtained by following equation: 
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Because the peak modal responses do not occur at the same time for each mode of vibration, the 

maximum story shears have been combined by the SRSS (square root sum of squares) rule. 

According to the most seismic building codes, a modal response spectrum analysis shall be 

performed for the structures using sufficient modes to capture 90% mass participation. In the 

present study, we investigate how the adequacy of design loading patterns with one, two, and three 

modes included vary with the ductility demand imposed by the ground motion. 

 

 

3.  HEIGHT WISE DISTRIBUTION OF DUCTILITY DEMANDS 

 

It is generally endeavored to induce a status of uniform deformation throughout the structure to 

obtain an optimum design as in Gantes et al. (2000). Karami et al. (2004) showed that for a given 

earthquake, the weight of seismic resistant system required to reach to the prescribed target 

ductility is correlated with the cov, the coefficient of variation, of the story ductility demands and the 

two minimize simultaneously. Therefore, they concluded that the cov of ductilities could be used as 

a means of assessing the adequacy of design load patterns to optimum use of material. 

To investigate the efficiency of conventional loading patterns to lead to the equal ductility demands 

in all stories, shear-building models with various periods and ductility demands are subjected to 15 

selected ground motions (Table 1). In each case, strength and stiffness are distributed within the 



stories according to the lateral load pattern suggested by UBC 1997. Subsequently, the stiffness 

pattern is scaled to obtain the prescribed fundamental period. Maximum ductility demand is then 

calculated by performing non-linear dynamic analysis for the given exaction. By an iterative 

procedure, the total strength of the model is scaled (without changing it�s distribution pattern) until 

maximum ductility demand gets to the target value with less than 1 % error. Finally, cov of the story 

ductility demands is calculated for each case. Figure 2 illustrates the average of cov obtained in 15 

earthquakes versus fundamental period and for various target ductility demands. Based on the 

results presented in Figure 2, it is concluded that, in average, using the strength pattern suggested 

by UBC 1997 leads to an almost uniform distribution of ductility demands for the structures within 

the linear range of behaviour.  However, the adequacy of conventional load patterns is reduced in 

non-linear ranges of vibration. It is shown that increasing the target ductility is always accompanied 

by increasing in cov of story ductility demands. While conventional loading patterns suggested by 

most seismic codes are not a function of the target ductility demand, Figure 2 indicates that in the 

structures with long fundamental period (i.e. greater than 1 sec), cov of ductilities is more 

dependent on the maximum ductility demand than the fundamental period of the structure. 

 

 

4.  CONCEPT OF THEORY OF UNIFORM DEFORMATION 

 

As discussed in previous section, using distribution patterns for lateral seismic force suggested by 

seismic codes does not guarantee the optimum performance of structures. Current study indicates 

that during strong earthquakes the deformation demand in structures does not vary uniformly. 

Therefore, it can be concluded that in some parts of the structure, the deformation demand does 

not reach the allowable level of seismic capacity, and therefore, the material is not fully exploited. If 

the strength of these strong parts decreases, the deformation would be expected to increase 

(Riddell et al., 1989; Vidic et al., 1994). Hence, if the strength decreases incrementally, we should 

eventually obtain a status of uniform deformation. At this point, the material capacity is fully 



exploited. As the decrease of strength is normally obtained by the decrease of material, a structure 

becomes relatively lighter in the case of uniformly distributed deformations. Therefore, in general it 

can be concluded that a status of uniform deformation is a direct consequence of the optimum use 

of material. This is considered as the Theory of Uniform Deformations (Moghaddam and 

Hajirasouliha, 2004). This theory is the basis of the studies presented in this paper. 

  

 

5.  OPTIMUM DISTRIBUTION OF DESIGN SEISMIC FORCES 

 

The Theory of Uniform Deformation can be employed for evaluation of optimum distribution of 

structural properties for shear building like structures. To accomplish this, an iterative optimization 

procedure has been adopted. In this approach, the structural properties are modified so that 

inefficient material is gradually shifted from strong to weak areas of a structure. This process is 

continued until a state of uniform deformation is achieved. It should be noted that there is a unique 

relation between the distribution pattern of lateral seismic forces and the distribution of strength (as 

the strength at each floor is obtained from the corresponding story shear force). Hence, for shear 

buildings, we can determine the optimum pattern for distribution of seismic lateral loads instead of 

distribution of strength. Assume that one is to evaluate the most appropriate lateral loading pattern 

to design a 10-story shear building, shown in Figure 1, with a fundamental period of 1 sec such that 

it sustains the Northridge earthquake of 1994 (CNP196) without exceeding a maximum story 

ductility demand of 4. Considering the Theory of Uniform Deformation, the following optimization 

procedure is used: 

1. Arbitrary initial patterns are assumed for height wise distribution of strength and stiffness. 

However, for shear building models we can assume that these two patterns are similar, and 

therefore, an identical pattern is assumed for both strength and stiffness. Here, the uniform 

pattern in is chosen for the initial distribution of strength and stiffness. 

2. The stiffness pattern is scaled such that the structure has a period of 1 sec. 



3. The structure is subjected to the given excitation, and the maximum story ductility is 

calculated, and compared with the target value. Consequently, the strength is scaled 

(without changing the primary pattern) until the maximum deformation demand reaches the 

target value. This pattern is regarded as a feasible design, and referred to as the first 

acceptable pattern. For the above example, story strength and maximum story ductility 

corresponding to the first feasible answer are given in Table 2.  

4. The cov (coefficient of variation) of story ductility distribution within the structure is 

calculated. The procedure continues until cov decreases down to a prescribed level. The 

cov of 0.719 was obtained for the first feasible pattern, which is high, hence the analysis 

continues. 

5. At this stage the distribution pattern is modified. Using the Theory of Uniform Deformation, 

the inefficient material should be reduced to obtain an optimum structure. To accomplish 

this, stories in which the ductility demand is less than the target values are identified and 

weakened by reducing strength and stiffness. Investigations show that this alteration should 

be applied incrementally to obtain convergence in numerical calculations. Hence, the 

following equation is used in the present studies: 
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Where µi is the ductility demand at i
th
 story, and µt is the target ductility taken to be 4 for all stories. 

Si is the shear strength of the i
th
 story, n denotes the step number, and α is the convergence 

coefficient ranging from 0 to 1. For the above example, an acceptable convergence has been 

obtained for a value of 0.2 for α. Now, a new pattern for height wise distribution of strength and 

stiffness is obtained. The procedure is repeated from step 2 until a new feasible pattern is obtained. 

It is expected that the cov of ductility distribution for this pattern is smaller than the corresponding 

cov for the previous pattern. This procedure is iterated until cov becomes small enough, and a 



status of rather uniform ductility demand prevails. The final pattern is considered as practically 

optimum.  

Story ductility pattern for preliminary and final answers are compared in Table 2.  According to the 

results, the efficiency of utilizing this method to achieve a structure with uniform ductility demand 

distribution is demonstrated. Figure 3 illustrates the variation of cov and total strength from first 

feasible answer toward the final answer. Figure 3 shows the efficiency of the proposed method that 

resulted in reduction of total strength by 41% in only five steps. It is also shown in this figure that the 

proposed method has the property of converging to the optimum pattern without any oscillation. It 

can be noted from Figure 3 that decreasing the cov is always accompanied by reduction of total 

strength. Here the total strength is proportional to the total weight of the seismic resisting system. 

Furthermore, the results confirm the efficiency of the Theory of Uniform Deformation. 

Table 2 shows the results of analysis for the first and the final step. The height wise distribution of 

strength can be converted to the height wise distribution of lateral forces. Such pattern may be 

regarded as the optimum pattern of seismic forces for the given earthquake. Figure 4 enables one 

to compare this optimum pattern with the conventional lateral load patterns suggested by seismic 

design codes. The results indicate that to improve the performance under this specific earthquake, 

the frame should be designed based on an equivalent static lateral load pattern relatively different 

from the suggested conventional code patterns, e.g. that of UBC 1997 guideline.  

 

5.1. Effect of initial pattern on the optimum load pattern 

 

As described before, an initial strength distribution is necessary to begin the optimization algorithm. 

In order to investigate the effect of this initial load (or strength) pattern on the final results, for the 

previous example four different initial load patterns have been assumed: 

1) A concentrated load on the roof level; 

2) Triangular distribution similar to the UBC code of 1997; 

3) Rectangular distribution; and 



4) An inverted triangular distribution with maximum lateral load on the first floor and the minimum 

lateral load at the roof level. 

For each case, the optimum lateral load pattern was derived for Northridge 1994 (CNP196) event. 

The comparison of the optimum lateral load pattern for each case is depicted in Figure 5. As shown 

in this figure, the optimum lateral force pattern is not dependent on the initial strength pattern. 

However, the convergence speed of the algorithm is to some extent dependant on this initial 

pattern. This conclusion has been confirmed by analysis of several different shear buildings and 

ground motions. 

 

 

6.  ADEQUACY OF SEISMIC LOADING PATTERNS 

 

To investigate the validity and accuracy of the proposed optimization method, the foregoing 

procedure has been applied to find the optimum pattern for shear-building models with various 

fundamental periods and target ductility demands subjected to 15 synthetic earthquakes 

representing a design spectrum. These seismic motions are artificially generated using the SIMQKE 

program, having a close approximation to the elastic design response spectra of UBC 1997 with a 

PGA of 0.44g as shown in Figure 6. In this study, the maximum story ductility is considered as the 

failure criterion, implying that exceeding of the target ductility represents violation of the 

performance objective. Therefore, according to the Theory of Uniform Deformation, it is expected 

that seismic performance be improved by a uniform distribution of ductility demands. It is 

demonstrated in previous section that the proposed method is very efficient to reach to the uniform 

distribution of ductility demands.  

To evaluate the weight of the seismic resistant system for MDOF structures, it is assumed that the 

weight of lateral-load-resisting system at each story, WEi, is proportional to the story shear strength, 

Si. Therefore, the total weight of the seismic resistant system, WE, can be calculated as: 
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where λ is the proportioning coefficient. It is of interest to compare the required structural weight for 

structures of identical period and ductility ratio that have been designed for different seismic loading 

patterns, and, therefore, assess the relative adequacy of the chosen loading patterns. The loading 

pattern that corresponds to the minimum required structural weight would be regarded as the most 

adequate loading pattern. To accomplish this, the total weight of the seismic resistant system has 

been calculated for shear-building models with various fundamental period and target ductility 

demands, designed according to UBC 1997, NEHRP 1994, Karami et al. (2004) proposed load 

pattern and loading patterns with one, two, and three modes included; subjected to 15 synthetic 

earthquakes. Subsequently, the ratio of required structural weight to the structural weight of the 

corresponding optimum model, (WE)/(WE)opt, has been calculated for all cases. Figure 7 shows the 

median values of (WE)/(WE)opt as a function of ductility demand, and for shear-building models with 

fundamental period of 1, 2 and 3 sec. This figure has been obtained by averaging the responses of 

15 synthetic earthquakes. According to the results illustrated in Figure 7, it is concluded that: 

1. Having the same period and ductility demand, structures designed according to the 

optimum load pattern always have less structural weight compare to those designed 

conventionally. Therefore, the adequacy of optimum loading patterns is emphasised. 

2. In the elastic range of vibration (µt=1), the total structural weight required for the models 

designed according to the seismic design guidelines are in average 10% above the 

optimum value. It is also shown that, in average, there is not a big difference between 

different conventional code type load patterns when structures remained in elastic range. 

Hence, it can be concluded that for practical purposes, using the conventional loading 

patterns could be satisfying within the linear range of vibrations. 

3. Increasing the ductility demand is generally accompanied by increasing in the structural 

weight required for the conventionally designed models compare to the optimum ones. This 

implies that conventional loading patterns loose their efficiency in non-linear ranges of 



vibration. It is illustrated that for high levels of ductility demand, the required structural 

weight for the models designed according to NEHRP 1994 could be more than 70% above 

the optimum weight. 

4. Loading pattern proposed by Karami et al. (2004), in average, results better than code type 

loading patterns for tall buildings in highly inelastic ranges (i.e. 3ȝ t ≥ ), however; it looses 

its efficiency for the buildings behave almost linearly (i.e. 2ȝ t ≤ ).   

5. The required structural weight for the models designed according to the loading patterns 

with two or three modes included are generally smaller than those designed with UBC 1997 

and NEHRP 1994 loading patterns. However, in non-linear ranges of vibration the results 

are in average 30% above the optimum weight. It is shown that significant improvement is 

achieved by including response contributions due to the second mode, however, the third 

mode contributions do not seem especially important.  

 

 

7.  MORE ADEQUATE LOADING PATTERNS TO DESIGN TALL BUILDINGS 

 

It is well known that there are many uncertainties in seismic loading and seismic design of 

structures. One of the most random parameters is the seismic event that might occur in a place; 

therefore, the selection of only one ground motion for seismic design of a structure might be a great 

risk. As described before, to improve the performance under a specific earthquake, structures 

should be designed in compliance with an optimum load pattern different from the conventional 

patterns. This optimum pattern depends on the earthquake, and therefore, it varies from one 

earthquake to another. However, there is no guarantee that the structure will experience seismic 

events, which are the same as the design ground motion. While each of the future events will have 

its own signature, it is generally acceptable that they have relatively similar characteristics. 

Accordingly, it seems that the designed model with optimum load pattern is capable to reduce the 



deformation demands experienced by the model after similar ground motions. It can be concluded 

that for design proposes, the design earthquakes must be classified for each structural performance 

category and then more adequate loading pattern must be found by averaging optimum patterns 

corresponding to every one of the earthquakes in each group.  

To verify this assumption, 15 strong ground motion records with the similar characteristics, as listed 

in Table 1, were selected. Time history analyses have been performed for all earthquakes and the 

corresponding optimum pattern has been found for shear-building models with various fundamental 

periods and target ductility demands. Consequently, about 1000 optimum load patterns have been 

determined at this stage. For each fundamental period and ductility demand, a specific matching 

load distribution has been obtained by averaging the results for all earthquakes. Subsequently, 

these average distribution patterns used to design the given shear building models. Then the 

response of the designed models to each of the 15 earthquakes was calculated. In Figure 8, the 

ratio of required structural weight to the optimum weight, (WE) / (WE)opt, are compared for the 

models designed with the UBC 1997 load pattern, average of optimum load patterns, and Karami et 

al. (2004) proposed load pattern. This figure has been obtained by averaging the responses of 

shear-building models with fundamental period of 1 sec to 3 sec, subjected to 15 earthquake 

ground motions. It is illustrated in Figure 8, having the same period and ductility demand, structures 

designed according to the average of optimum load patterns require less structural weight compare 

to those designed conventionally as well as those designed according to the Karami et al. (2004) 

proposed load pattern. 

Karami et al. (2004) proposed load pattern (Equation (2)) suggests that the value of the 

concentrated force to be applied at the top of the structure decreases as the period of vibration 

increases. Considering the influence of higher modes effects, this is opposite to what one would 

expect for multi-story buildings with linear behaviour. Therefore, it is expected the Karami et al. 

(2004) proposed loading pattern would not be adequate for small level of inelastic behaviour. It is 

shown in Figure 8 that using Karami et al. (2004) proposed load pattern results better than 



UBC1997 load pattern for the structures in highly inelastic ranges (i.e. 3ȝ t ≥ ), however; it looses its 

efficiency for the structures with linear or nearly linear behaviour (i.e. 2ȝ t ≤ ).   

The effectiveness of using average of optimum load patterns to reduce required structural weight is 

demonstrated in Figure 8 for both elastic and inelastic systems. However its efficiency is more 

obvious for the models with high ductility demand. It is shown in this figure that using the average 

load pattern for seismic design of tall buildings could be resulted in more than 50% reduction in the 

total structural weight compared to using conventional load patterns. Such a load pattern is 

designated as �more adequate load pattern�. The proposed approach can be utilized efficiently to 

determine more adequate load patterns for any set of earthquakes with similar characteristics. At 

present, the seismic load patterns suggested by most seismic codes do not depend on the ductility 

demand of the structure. However, the present study shows that more adequate loading patterns 

are a function of both the period of the structure and target ductility demand. According to the 

results of this study, more adequate loading patterns for seismic design of tall buildings could be 

illustrated in two different categories as follows: 

• Parabolic load pattern 

As shown in Figure 9, in general, parabolic load patterns are appropriate to seismic design of tall 

buildings with fundamental period longer than 1 sec and small ductility demand (i.e. 3ȝ t ≤ ). It 

should be noted that the rectangular pattern accompanied by a concentrated force at the top floor, 

which is suggested by Karami et al. (2004), could be similar to this load pattern. However, it is 

shown above that Karami et al. (2004) proposed load pattern is not adequate to design tall buildings 

with linear or nearly linear behavior (i.e. 2ȝ t ≤ ).  As Figure 9 indicates, for the same ductility 

demand, loads at the top stories are increasing as the fundamental period of the structure 

increases. It is also shown in Figure 9 that, in general, increasing the ductility demand results in 

decreasing the loads at the top stories and increasing the loads at the lower stories. For higher 

levels of ductility demand, optimum load patterns corresponding to the models with fundamental 

period longer than 1 sec, change to the hyperbolic shape. 



• Hyperbolic load pattern 

As illustrated in Figure 10, more adequate load patterns are in hyperbolic shape for structures with 

high levels of ductility demand ( 3ȝ t ≥ ) and fundamental period longer than 1 sec. It is also shown in 

this figure that increasing the ductility demand results in decreasing the loads at the top stories and 

increasing the loads at the lower stories. It can be noted from Figure 10 that for the optimum 

loading patterns corresponding to the structures with long periods and high levels of ductility 

demand ( 5.2≥T  sec and 5ȝ t ≥ ), loads assigned to the lower stories could be greater than those 

assigned to the top stories. Therefore in this case, optimum loading patterns are completely 

different with the conventional lateral loading patterns suggested by most seismic codes (e.g. 

triangular pattern). However, it should be mentioned that this condition is beyond the most practical 

designs. 

It should be noted that there is not a definite boundary between two categories of more adequate 

load patterns and they convert to each other very smoothly. While more adequate load patterns 

could be very different in their shape, it is possible to establish some general relationships. 

According to the illustrated results, increasing the fundamental period is usually accompanied by 

increasing the loads at the top stories caused by the higher mode effects. On the other hand, in 

general, increasing the ductility demand results in decreasing the loads at the top stories and 

increasing the loads at the lower stories. By changing both the fundamental period of the structure 

and the target ductility demand, these two contrary effects are combined with each other.  

More adequate load patterns introduced in this paper are based on the 15 selected earthquakes, as 

listed in Table 1. However, discussed observations are fundamental and similar conclusions have 

been obtained by further analyses on different models and ground motions (Hajirasouliha, 2004). 

Despite obvious variation between the adequate load patterns proposed for different conditions, for 

each story there is generally a specific relationship between the optimum load pattern, fundamental 

period of the structure, and target ductility demand. Based on the results of this study, the following 

equation has been suggested: 



)()( i
dT

i
cbTaF tiii

++= µ                                              (9) 

Where Fi is the optimum load component at the i
th
 story; T is the fundamental period of the 

structure; µt is target ductility demand; ai,bi,ci, and di are constant coefficients at i
th
 story. These 

coefficients could be obtained at each level of the structure by interpolating the values given in 

Table 3. Using Equation (9), the optimum load pattern is determined by calculating optimum load 

components at the level of all stories. The comparison of the load patterns obtained by Equation (9) 

and the corresponding load patterns obtained by nonlinear dynamic analysis is shown in Figure 11. 

As shown in this figure, the agreement between Equation (9) and analytical results is excellent and 

this equation has good capability to demonstrate different categories of optimum load patterns. 

Hence, the proposed expression can be efficiently used to determine optimum load patterns for 

seismic design of tall buildings. The optimization method introduced in this paper, can be used for 

any set of earthquakes, and can provide an efficient optimum performance-based seismic design 

method for building structures. However, more adequate loading patterns proposed in this paper 

should prove useful in the conceptual design phase, and in improving basic understanding of 

seismic behavior of tall buildings.  

 

 

8.  CONCLUSIONS 

 

1. This paper presents a new method for optimization of dynamic response of structures 

subjected to seismic excitation. This method is based on the concept of uniform distribution 

of deformation. 

2. It is shown that using the load pattern suggested by seismic codes does not lead to a 

uniform distribution of deformation demand in tall buildings, and, it is possible to obtain 

uniform deformation by shifting the material from strong to weak parts. It has been shown 

that the seismic performance of such structure is optimal. Hence, it can be concluded that 



the condition of uniform deformation results in optimum use of material. This has been 

denoted as the Theory of Uniform Deformation. 

3. By introducing an iterative method, Theory of Uniform Deformation has been adapted for 

optimum seismic design of shear buildings. It is concluded that this can efficiently provide 

an optimum design. It has been demonstrated that there is generally a unique optimum 

distribution of structural properties, which is independent of the seismic load pattern used 

for initial design. 

4. For a set of earthquakes with similar characteristics, the optimum load patterns were 

determined for a wide range of fundamental periods and target ductility demands. It is 

shown that, having the same story ductility demand, models designed according to the 

average of optimum load patterns have relatively less structural weight in comparison with 

those designed conventionally. 

5. Based on the results of this study, a more adequate load pattern is introduced for seismic 

design of tall buildings. This pattern is a function of the fundamental period of the structure 

and the target ductility. It is shown that the proposed loading pattern is superior to the 

conventional loading patterns suggested by most seismic codes.  
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Figure 1. Typical 10-story shear building model 
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Figure 2. Cov of story ductility demands, average of 15 earthquakes 
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Figure 3. Cov of story ductility demands and total story strength for feasible answers, 10-story 

shear building with T=1 Sec and µt=4, Northridge 1994 (CNP196) 
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Figure 4. Comparison of UBC 1997 & optimum lateral force distribution, 10-story shear building 

with T=1 Sec and µt=4, Northridge 1994 (CNP196) 
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Figure 5. Optimum load pattern for different initial strength distributions, 10-story shear building 

with T=1 Sec and µt=4, Northridge 1994 (CNP196) 
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Figure 6. UBC design spectrum and response spectra of 15 synthetic earthquakes (5% damping) 
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Figure 7. The ratio of required structural weight to the optimum weight, (WE) / (WE)opt, for the 

models designed according to different load patterns, Average of 15 synthetic earthquakes 

T= 1 Sec 

T= 2 Sec 

T= 3 Sec 
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Figure 8. The ratio of required structural weight to the optimum weight, (WE) / (WE)opt, for the 

models designed with the UBC 1997 load pattern, average of optimum load patterns, and Karami 

et al. (2004) proposed load pattern, Average of 15 earthquakes. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Optimum load patterns in parabolic shape 
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Figure 10. Optimum load patterns in hyperbolic shape 
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Figure 11. Correlation between Equation 9 and analytical results 
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Table 1.  Strong ground motion characteristics 

 Earthquake Station Ms PGA (g) USGS Soil 

1 Imperial Valley 1979 H-E04140 6.9 0.49 C 

2 Imperial Valley 1979 H-E04230 6.9 0.36 C 

3 Imperial Valley 1979 H-E05140 6.9 0.52 C 

4 Imperial Valley 1979 H-E05230 6.9 0.44 C 

5 Imperial Valley 1979 H-E08140 6.9 0.45 C 

6 Imperial Valley 1979 H-EDA360 6.9 0.48 C 

7 Northridge 1994 CNP196 6.7 0.42 C 

8 Northridge 1994 JEN022 6.7 0.42 C 

9 Northridge 1994 JEN292 6.7 0.59 C 

10 Northridge 1994 NWH360 6.7 0.59 C 

11 Northridge 1994 RRS228 6.7 0.84 C 

12 Northridge 1994 RRS318 6.7 0.47 C 

13 Northridge 1994 SCE288 6.7 0.49 C 

14 Northridge 1994 SCS052 6.7 0.61 C 

15 Northridge 1994 STC180 6.7 0.48 C 

 

 
 
 

 



 

Table 2. The preliminary and final arrangement of strength and stiffness 

Story 

Preliminary Arrangement Final Arrangement 

Story Strength 

(ton.f) 

Story 

Ductility 

Story Strength 

(ton.f) 

Story 

Ductility 

1 1753 4 1435 3.98 

2 1753 2.46 1351 3.99 

3 1753 1.78 1229 3.99 

4 1753 1.41 1089 4.00 

5 1753 1.38 953 4.00 

6 1753 1.19 808 3.99 

7 1753 0.98 662 3.99 

8 1753 0.82 512 3.99 

9 1753 0.59 371 3.97 

10 1753 0.31 204 3.99 

Cov  0.719  0.002 

Total 

Strength 
17532  8614  

                  Cov: Coefficient of variation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Table 3. Constant coefficients of Equation 9 as a function of relative height 

Relative 

height 
a b  100 c  100 d 

0 -5.3 38.8 23.7 39.9 

0.1 -8.2 49.0 22.2 29.6 

0.2 -10.6 59.2 19.6 18.4 

0.3 -12.7 70.5 16.5 9.8 

0.4 -12.3 81.0 9.8 5.4 

0.5 -10.5 91.3 4.0 2.2 

0.6 -8.4 103.2 0.1 -1.4 

0.7 -0.8 114.6 -5.4 -3.9 

0.8 10.3 127.2 -8.5 -7.2 

0.9 26.1 140.9 -10.7 -10.0 

1 49.8 157.0 -12.5 -12.1 
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