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Abstract. We study limiting distributions of exponential sunss; (t) = Zfil et as

t — oo, N — oo, where(X;) are i.i.d. random variables. Two cases are considered:
(A) esssupX; = 0 and (B)esssup X; = oo. We assume that the functidnz) =
—log P{X; > z} (case B) orh(z) = —logP{X; > —1/z} (case A) is regularly vary-
ing atoo with index1 < p < oo (case B) o0 < ¢ < oo (case A). The appropriate
growth scale ofV relative tot is of the forme*0() (0 < X < o), where the rate func-
tion Hy(t) is a certain asymptotic version of the functiéf(t) = log E[e'*] (case B) or
H(t) = —log E[e'™¢] (case A). We have found two critical points, < X2, below which

the Law of Large Numbers and the Central Limit Theorem, respectively, break down. For
0 < A < A2, under the slightly stronger condition of normalized regular variatioh we
prove that the limit laws are stable, with characteristic exponeata(p, A) € (0,2) and
skewness parametgr= 1.

1. Introduction
1.1. The problem

In this work, we are concerned with partial sums of exponentials of the form

N
Sn(t)=> e, (1.1)
=1

where(X;) is a sequence of independent identically distributed random variables
and botht and N tend to infinity. Our goal is to study the limiting distribution of
Sn(t) and to explore possible ‘phase transitions’ due to various rates of growth of
the parametersandN.
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In such analysis, two cases are naturally distinguished according to whether
X, are bounded abovedse A or unbounded abovedse B. In the former case,
without loss of generality we may and will assume that the upper edge of the
support ofX; is zero,esssup X; = 0.

One can expect that the results will depend on the structure of the upper dis-
tribution tail of X;. In this paper, we focus on the class of distributions with the
upper tail of theeibull/Fréchetform

exp(—cz?) asx — +oo (case B)

P{X; >z}~ { 1.2)

exp(—c(—z)7?) asxz—0— (caseA)

wherel < p < oo (case B) o0 < p < oo (case A). More precisely, we will
be assuming that the functidng P{X; > z} is regularly varying in a vicinity
of esssup X; with index g € (1,00) (case B) or—p € (—o0,0) (case A). For
example, a normal distribution is contained in this class (cage=B2).

1.2. Motivation

1.2.1. Topics in Probability. One motivation for this study is quite abstract and
purely probabilistic. In fact, such a setting provides a natural tool to interpolate
between the classical limit theorems concerning the bulk of the sample, i.e. the
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT), on the one
hand, and limit theorems for extreme values, on the other hand. It is clear that the
asymptotic behaviour of y (t) is largely determined by the relationship between
the parameters and N. If, for instance, one letéV tend to infinity with¢ fixed
or growing very slowly, then, under appropriate (exponential) moment conditions,
the usual LLN and CLT should be valid. In contrast, if the growth ratévois
small enough as compareditothen the asymptotic behaviour of the six (¢)
is dominated by its maximal term. We will see that when botnd N tend to
infinity, a rich intermediate picture emerges made up of various limit regimes.

In this connection, let us mention a recent paper by Schlather [16] who stud-
ied the asymptotics of thig-norms of samples of positive i.i.d. random variables,

Yinll, = 0, Yf)l/p, where the norm order = p(n) grows together with the
sample sizex. The link with our setting becomes clear if one plits= eX+. Quali-
tatively speaking, in [16] it was demonstrated that under a suitable parametrization
of the functional relation betweenandn, there is a ‘homotopy’ for the limit dis-
tributions of ||Y3,, ||, extending from the CLT to a limit law for extreme values.
The situation where = p(n) — oo asn — oo arises if the random variablés
are bounded above and, in the sense of extreme value theory, belong to the domain
of attraction of the Weibull distributiof,, (x) = exp (—(—2)*) (o > 0, 2 < 0)
[16, Theorem 2.3].

Application of our work to the limit distribution of,-norms is discussed in
[4]. Let us point out that our results are complementary to [16], since for random
variablesX; with the Weibull/FEchet tails (1.2) the distribution of the maximum
of eX1,..., eX» can be shown to converge to the Gumbel (double exponential)
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distribution A(z) = exp(—e~*), x € R (see [4]). Note that in the case of at-
traction toA, [16, Theorem 2.4] gives only a partial result for exponential random
variables.

1.2.2. Branching populations. The second motivation (in fact, the most impor-
tant one) is related to long-term dynamics in random media. In the simplest situa-
tion, exponential sums emerge as the (quenched) mean population size of a colony
of non-interacting branching processes with random branching rates. Indeed, con-
sider N branching processés; (t) driven by branching rateX; = X;(w) (i =
1,...,N). More precisely, for a fixedguenchedl environmentv, eachZ;(t) is

a Markov continuous-time branching process such that duringdime 0, with
probability| X;| dt a particle may split into two (if; > 0) or die (if X; < 0). Note

that the functionm, (¢) := E*[Z;(t)] satisfies the differential equation, = X, m;

(see [2, p. 108]). Assuming that (0) = 1 we obtainm,(t) = e!X¢, and hence the

total quenched mean population size is given by the sum (1.1).

In more interesting and realistic situations, there is spatial motion of particles
and hence interaction between individual populations. We believe that the problem
of long-term dynamics for such systems can be essentially reduced, in each par-
ticular case, to sums involving random exponentials, and therefore various asymp-
totic regimes that we establish in the present paper will provide a basic building
block for the understanding of new dynamical phase transitions for branching pro-
cesses in random media. In general, such exponential sums may contain random
weights, thus having the foriy (¢t) = Zﬁil Y; e!Xi. Here, the parametey will
characterize the spatial span of the initial population, while the random variables
X, andY; represent the local (spectral) characteristics of the quenched branching
process, according to the mechanisms of dynamical randomness in the medium.
Typically, the weightgY;) are expected to be mutually independent when condi-
tioned on thg X;). These more difficult questions, including a more general type
of the abstract problem, will be addressed elsewhere.

1.2.3. Random Energy Model A completely different example is provided by
the Random Energy Model (REM) introduced by Derrida [7] as a simplified ver-
sion of the Sherrington—Kirkpatrick model of spin glass. The REM describes a
system of sizex with 2™ energy levels; = /nX; (i = 1,...,2"), where(X;)
are i.i.d. random variables with standard normal distribution. Thermodynamics of
the system is determined by the partition funct®n3) := Zf; PV Xi 'which
exemplifies the exponential sum (1.1) with= 2", t = 5/n.

The free energy for the REM, first obtained in [7] using heuristic arguments,
is given by

n— o0 n

2 2 H
F(B) = lim log Z,(3) | B°/2+62/2 ff 0<B<Be, (13)
BB it 8> p,
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where 3. = /2log?2. Eisele [8] and Olivieri and Picco [13] have rigorously
derived the limit (1.3) (in probability and a.s.) and also extended this result to the
case whereX; have the Weibull-type tail (1.2) (case B).

Recently, a detailed analysis of the limit laws 8, (3) in the Gaussian case
has been accomplished by Bovier et al. [6]. In particular, is has been shown that
in addition to the phase transition at the critical pafpt manifested as the LLN
breakdown forg > (., within the regiong < (. there is a second phase tran-
sition atf3. = +/log 2/2 = %ﬁc, in that for 3 > J3, the fluctuations o2, (8)
become non-Gaussian. In the present work, we extend these results to the class of
distributions with Weibull/Fechet-type tails of the form (1.2). As compared to the
paper [6] which proceeded from extreme value theory, we use methods of theory of
summation of independent random variables. This general and powerful approach
simplifies the proofs and in particular reveals that non-Gaussian limit laws are in
fact stablé

1.2.4. Risk theory. Finally, let us point out one application related to insurance.
A basic quantity in risk theory is the aggregate claim amaugt) := Zfﬁf) U;,
where(U;) is a sequence of i.i.d. claim sizes aht) is a claim counting pro-
cess independent ¢t/;) [15, Sect. 5.1.4]. A common problem is to estimate the
moment generating functiomy; (s) := E[e*V], in particular for larges. Such a
guestion arises, for example, in connection with the Lundberg bounds for the talil
distribution of Y'(¢).2 The Lundberg bounds are constructed using the soatf
the equationmy (s) = 1/p > 1 (see [15, p. 125]), where the parametédras the
meaning of the claim arrival rate. Hence, the case 0 (and thereforg* — o)
corresponds to the practically important situation of small ‘claim load’.

The statistical method for estimating the unknown solutibnan be based on
the empirical moment generating function, (s) := n=* > | e*Yi (cf. (1.1)).
A natural estimatog defined by the equatiomy (5) = 1/p has nice asymptotic
properties including a.s.-consistency and asymptotic normality, providipgds
fixed or bounded [15, p. 130]. However, the asymptotic behaviodrvdien both
n andl/p are large does not seem to have been addressed so far.

2. Statement of the main results
2.1. Regularity and scaling

Denotewx := esssup X = sup{z : P(X > z) > 0}. Therefore, cases A and B
mentioned in Section 1.1 correspondutg = 0 andwyx = +oo, respectively. In
view of the above interpretation of the problem in terms of branching populations

! Distributions considered in [8,13] are subject to the conditiof h(z) — const > 0
asz — +oo, whereh(z) = —logP{X; > z} and1l < p < oo (see [8, Theorem 2.3]),
which is more restrictive than our assumption of regular variatiaf(of

2 Some applications of our results to the REM are discussed in [4].

3 Similar questions are of interest in other areas such as queueing theory (the equilibrium
waiting time inM/G/1 queue, see [1, p. 269, 281]) and storage models (a dam process,
see [1, Ch. XIII§ 3, 4]).
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(see Section 1.2.2), this labelling can be mnemonically associatedcmwiithila-
tion (case A) andranching(case B).

Let us make the following notational convention that will allow us to consider
both cases A and B simultaneously.

Notation. In the symbolst, , = and the like, theupper sign always refers to
case Bwhereas théower sign corresponds to case Fhe notatioru* stands for
the powera™!.

Assume thaP{X < wx} = 1, thatis, X is finite with probabilityl (case B)
or there is no atom at poinix = 0 (case A). Consider thidg-tail distribution
function

—logP{X >z}, r€R (case B),

Clearly, in both case’(-) is non-negative, non-decreasing, and right-continuous;
it takes finite values in its domain andx) — +o00 asz — +oo. According to the
abovet-convention, the upper tail of the distribution &f can be written down in

a united manner as

P{X >z} = exp{—h(xz¥)}, r <wx. (2.2)

We will be working under the assumption thiais regularly varying at infinity
with indexp (we writeh € R,), wherel < p < oo (case B) o0 < g < =
(case A). That s, for any constant> 0 we haveh(kz)/h(x) — k¢ asz — +oo.

It follows that thecumulant generating function

H(t) := +log E[e"X], t>0, (2.3)

is well defined; furthermore, it is non-decreasing d#¢t) — +oo ast — +oo.

The link between the asymptotics of the functiégnand H at infinity is character-

ized by the fundamental Kasahara—de Bruijn exponential Tauberian theorem (see
Lemma 3.1 below). In particulak, € R, if and only if H € R,/, where

, 0
= — 2.4
0= (2.4)

Recalling thatl < p < ocincase B and < p < oo in case A, we get
l1<o'<oco (caseB), 0< o <1 (caseA) (2.5)

According to (2.3), the expected value of the sfim(¢) is given by

N
E[Sn ()] = > _E[e] = NI,

=1

suggesting that the functioH (¢) sets up an appropriate (exponential) scale of
the forme ™ for the number of termév = N (t). However, the suitable rate
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function is notH (t), but rather its particular asymptotic versiéfy (t) ~ H(t)
provided by the Kasahara—de Bruijn Tauberian thedtem.
The following two values appear to be critical with respect to the scHlgt),

/ i
Mi=2, =202 (2.6)
0 o
in that the LLN and CLT break down below; and )., respectively. Let us also

introduce the parameter

0= a(o)) = (if)/ 2.7)

which will be shown to play the role of characteristic exponent in the limit laws
and hence provides their natural parametrization. In particular, note that the critical
values ofa corresponding td\, s are given by, = 1, as = 2, respectively.

Below the critical point\,, the behaviour of the surfy (t) becomes more
sensitive to subtle details of the upper tail's structure. However, enough control
is gained via imposing a slightly stronger condition on regularity of the log-tail
distribution functionh —that of normalized regular variationh € NR, (see [5,

p. 15]). This condition will be discussed in detail in Section 5.1. One of equivalent
definitions is that for any > 0, the functionh(x)/z2~¢ is ultimately increasing,
while h(x)/xz27¢ is ultimately decreasing (see Lemma 5.2 below).

Under this assumption, the relationship between the functioasd H, can
be characterized explicitly (see Section 5.1). Here we note ifpdt) can be
found (for all ¢ large enough) as the unique solution of the equatiti, =
oh((¢'Hy/t)*) (Lemma 5.5).

2.2. Statement of the main theorems

We proceed to state our results. The first two theorems asse§ iHat satisfies
the Law of Large Numbers and the Central Limit Theorem in their conventional
form provided that the number of termé&in Sy (¢) grows fast enough relative to
t (roughly speakingV >> e*1#o(t) for LLN or N >> e¢*>Ho(*) for CLT). Denote
log N

A= htrgggf m. (2.8)

Theorem 2.1. Suppose thak € R, and A > A;. Then

SN(t) p
7E[SN(t)] —1 (t — o0).
Theorem 2.2. Suppose thak € R, and A > A,. Then
Sn(t) —E[Sn(2)]
Var[Sn(t)]

L N(0,1)  (t— o).

4 This makes no difference in the ‘crude’ Theorems 2.1 and 2.2 below, but is crucial for
the more delicate Theorems 2.3, 2.4 and 2.5.
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For our further theorems, we need to specify the growth rat¥ ofiore pre-
cisely.
Scaling Assumption. The numberV = N(t) of terms in the sun$y (¢) satisfies

the condition
lim Ne Mo =1, (2.9)

t—o0

where) is a parameter such that< A\ < oc.
Let u = u(t) be the (unique) solution of the equation

B((aHo(0)/0)*) = 22 (o' Holt) "),

One can show (see Lemma 5.8 below) that

, _ oA
tlggo wu(t) = ~ (2.10)
Let us also set
() Ho(t)

m(t) == (2.11)

We are now in a position to state one of our main results.

Theorem 2.3. Assume thak € NR, and the scaling condition (2.9) is fulfilled.
Let 0 < A < A\ and set

B(t) := etHOHo() (2.12)
E[SN(t)] ()\1 <A< )\2),
At):={ NBi(t) (A=), (2.13)
0 0< A<,

whereB; (t) is a truncated exponential moment,

Bl(t) = E[etxl{xgim(t)}]. (214)

Then, ag — oo,

Sn(t) — A(t) 4
O Fa. (2.15)

whereF, is a stable law with exponent € (0, 2) defined in (2.7) and skewness
parameter3 = 1. The characteristic function of the laf, is given by

exp{—F(l—a)|uo‘exp<—27;asgnu>} (a#1)
dalv) = m 2
exp{ u(l —~) — §|u\ <1 +isgnu - log|u|>} (a=1)
7r
(2.16)
wherey = 0.5772. .. is the Euler constant.

Remark. Forl < a < 2, we use an analytic continuation of the gamma function
in(2.16),I'l—a)=T2-a)/(1 - a).
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Let us now describe what happens at the critical points. In fact, the Law of
Large Numbers and the Central Limit Theorem prove to be valid;aand A5,
respectively; however the normalizing constants now require some truncation.

Theorem 2.4. Under the hypotheses of Theorem 2.3Net A;. Then

SN(t) P
NB( 251 (t— ), (2.17)

whereB; (t) is given by (2.14).
Theorem 2.5. Under the hypotheses of Theorem 2.3)Net \,. Then

Sn(t) —E[Sn ()]
NBs(t)

“LN0,1) (t— o0),

whereBs(t) is a truncated exponential moment of ‘second order’,
Bs(t) == E[e* X Lix<an 1)}]- (2.18)

Remark. Note that by (2.9), we havB(t) ~ N=#(1)/X ast — oc. In particular,
(2.10) implies that in case B the normalization functi®(r) amounts taV raised

to the powenu(t)/A ~ o/a > 1/a. This should be compared to classical results
in the i.i.d. case (see [12, p. 37, 46]), where the normalization is essentially of the
form N1/, As we see, in case B the susiy, (¢) has a limiting stable distribution

by virtue of a non-classical (heavier) normalization. As for case A, we Bayp~
N—#®/X _ 0, which has no analogies in classical theory.

Overall, it may seem surprising that i.i.d. random variables having finite ex-
ponential moments (or even bounded above as in case A) can be in the domain
of attraction of a stable law, reproducing under various scalings the conventional
picture of classical theory (but with non-classical normalization). It is also quite
striking that the two apparently different cases A and B have so much in com-
mon and lead to the same limiting distributions. These results suggest that stable
distributions as the limit laws for sums of i.i.d. random variables, possess greater
universality than it used to be believed, and may appear as limits for various classes
of parametric transformations of the foi(t) = F(X;,t), where(X;) isani.i.d.
sequence satisfying appropriate conditions on the upper distribution tail. We intend
to explore this issue in greater detail in the future.

The remaining part of the paper is laid out as follows. In Section 3 we specify
our regularity assumption on the distribution tail of the random varialleand
formulate the Tauberian theorem of Kasahara—de Bruijn. In Section 4 we prove the
LLN above\; (Theorem 2.1) and the CLT abowg (Theorem 2.2). In Section 5,
the condition of normalized regular variation of the functiois discussed. Section
6 is devoted to the proof of Theorem 2B & A < Ag). First, we demonstrate
convergence to an infinitely divisible law (Theorem 6.1), which is then reduced to
a canonical stable form (Theorem 6.2). In Section 7 we prove the LLN-at\;
(Theorem 2.4) and the CLT at= \; (Theorem 2.5). The Appendix contains the
proof of Lemma 5.13 about the asymptotics of truncated exponential moments.
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3. Preliminaries
3.1. Regularity

Let us start by making precise our basic assumption on the regularity of the log-tail
distribution functionh defined in (2.1).

Regularity Assumption. The functionh is regularly varying atoo with indexp
(we writeh € R,), such thall < ¢ < oo (case B) or0 < p < oo (case A). That
is, for every constant > 0

i h(kz)
M h@)

sy (3.1)

Itis known thath € R, if and only if » admits theKaramata representation

h(z) = ¢(z) exp {/; ote) du} (x > a) (3.2)

u

for somea > 0, wherec(-), ¢(-) are measurable functions ank) — ¢, > 0,
e(x) — 0asx — oo [5, p. 21].

The following result, known as thidniform Convergence TheorefdCT) [5,
p. 22], significantly extends the definition of regular variation.

Lemma 3.1 (UCT).If h € R, with ¢ > 0 then (3.1) holds uniformly ir on each
interval (0, b].

3.2. Exponential Tauberian theorems

Recall that thgeneralized inversef a functionf is defined byf (y) := inf{x :

f(z) > y} [5, p. 28]. The next result shows that the generalized inverse inherits
the property of regular variation and, quite naturally, is an ‘asymptotic inverse’ (cf.
[5, p. 28)).

Lemma3.2.If f € R, with ¢ > 0, then there existg € R, ,, such that

9(f(@)) ~ fg(x)) ~2  (x— o0).
Suchyg is unique to within asymptotic equivalence, and one versigitis

Forl < p < oo (case B) 0i0 < g < oo (case A), we define the ‘conjugate’
index o’ by the formula (2.4). Rearranging (2.4), we obtain the useful identities

/
0 o

We are now in a position to formulate the exponential Tauberian theorems of
Kasahara and de Bruijn (see [5, Theorems 4.12.7, 4.12.9]), which play the funda-
mental role in our analysis. We will state both theorems in a unified way and in
terms convenient for our purposes.
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Lemma 3.3 (Kasahara—de Bruijn’s exponential Tauberian theorém)/ be the
log-tail distribution function (2.2) and{ the corresponding cumulant generating
function (2.3). Suppose thatc R, ,, and put

Y(u) == up(u)t € Ry (3.4)
Then
ha)~ 2o (@) @—o0) e HE)~ 00 (- @)

In particular, h € R, ifand only if H € R,

Let us point out that the function
1
Ho(t) == — ¢ (t) ~ H(1), (3.6)
appearing in (3.5), is the rate functidfy mentioned above in Section 2.1.

3.3. Some elementary inequalities

The following inequalities will be useful (see [11, Theorem 41, p. 3Bgta > 0,
b> 0anda # b, then

pa?~Ha —b) < aP — W < pb?"(a —b) 0<p<1, (3.7)
pbP~t(a —b) < a? — b < paP~(a ) (p<0orp>1). (3.8)

Let us also record a technical lemma.
Lemma 3.4. Consider the function
oa(z) =Xz -1)F (z¢ — 2), x> 1. (3.9
If A > \; then there exists, > 1 such that, (z) > 0 forall = € (1, z).
Proof. By (2.6) and (3.3), we have; = ¢’/o = £(o’ — 1). Note thatw, (1) =0
andvi(z) = A F (o'z¢ "1 — 1), so thatv} (1) = A F (' —1) = A — A\ >

0, according to the hypothesis of the lemma. Therefore, Taylor’s formula yields
oa(z) = (& — 1) (v (1) + o(1)) > 0 for all z > 1 sufficiently close tal. O

4. Limit theorems above the critical points

In this section, the parametaris defined by (2.8). We also recall that and A,
are given by (2.6).
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4.1. Proof of Theorem 2.1

Let us set

N

so one has to prove that; (t) -~ 1 ast — oc. To this end, it suffices to show
thatlim, .., E|S% (t) — 1|” = 0 for somer > 1.
By von Bahr—-Esseen'’s inequality [3, Theorem 2], for any [1, 2] we have

E|S]*V _ 1|r < INLI-T E|etX$H(t) _ 1|r < gN1I-T E|etXIH(t) + llr'

Applying the elementary inequalityr + 1)" < 2"~ }(z" + 1) (z > 0, r > 1),
which follows easily from Jensen’s inequality, we further obtain

E‘S;F\/' _ 1‘7‘ < 2TN1—TeiH(Tt)ZFTH(t) + 2TN1—’I‘. (41)
SinceH € R, andH (t) ~ Hy(t) (see (3.6)), we get, using (2.8),

—1DloeN H
lim inf (r ) log (rt)

i in 0 F O +r :)\(r—l)¥r9/:|:rzv)\(r).

By Lemma 3.4 we can choose> 1 such thaw, (r) > 0, which implies that the
right-hand side of (4.1) is bounded by“”(®) = (1) ast — oc.

4.2. Proof of Theorem 2.2
Denote
o(t)? := Var[e] = E[?**] — (E[etx])2 = eFH(2) _ F2H() (4.2)
Lemma4.1. Ast — oo,
o) =P (1 40(1))  and  eFHO = 5(1)%0(1). (4.3)
Proof. In view of (4.2) it suffices to prove the first statement. Note that
6:1:H(2t)0(t)2 — ] _ oFHE)E2H(t) (4.4)

Using thatd € R, we obtain

(see (2.5)). Hence, the exponential term on the right-hand side of (4.4) vanishes as
t — oo, and (4.3) follows. O

The following lemma is a variation of Chebyshev's inequality.
Lemma4.2. LetY > 0 be a random variable. Then for any> 0 and allk < m

E[V*1(ysry] <7 ™E[Y™]. (4.5)
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Proof. Similarly to the usual proof of Chebyshev’s inequality, we write
E[Ym] > E[le{Y>‘r}} = E[Ym_k . Yk]_{y>.r}] > Tmk E[Yk]_{y>7.}] ,
whence (4.5) follows. O

Proof of Theorem 2.2. In view of Lemma 4.1, the statement of the theorem may
be rewritten as follows:

Sn(t) — NetH®)
N(l/)Q e TICT N(0,1) (t = 00). (4.6)
Denote X
Y, =Yi(t) := S — (4.7)

N1/2EH(20)/2
1) According to the Central Limit Theorem for independent summands (see,
e.g., [14, Theorem 18, p. 95]), we firstly need to check that for all 0

N
S OPYi(t) > =NP{Y(t)>7} -0  (t— o0).

Assuming that > 1, let us apply Chebyshev’s inequality (of orde1) and recall
the definition (4.7) to obtain
N P{Y > 7_} < NT727’ E[er} _ lerT72Te:|:H(2rt):FrH(2t)' (48)

Using thatd € R, andH (t) ~ Hy(t) ast — oo, we find

lim inf
t—o0

(r—1)log N _ H(2rt) , rH(2t)
[ H) COH@) T H()

=2¢(27 N = 1) F (¢ = 7)) = 270y (1),

} = Ar—1)F (2r)¢ £ r2¢

where )\ := 279\ and the functiorv, (+) is defined in (3.9). By the theorem’s
hypothesis)’ > 2-¢\, = \; and hence, by Lemma 3.4y, () > 0 for a suitable
r > 1. Therefore, the right-hand part of (4.8) tends to zer6 asoo.

2) Next, we have to verify that for every> 0, ast — oo,

N
> {E[Yfl{mr}] - (E[Yil{mr}])z} = NVar[Yly<n] — 1. (4.9)

i=1
By Lemma 4.1Var[Y] ~ 1/N, so the condition (4.9) can be rewritten in the form
NVar[Y] — NVar[Y1y <] — 0.
Expanding the variances, the left-hand side is represented as
NE[Y?1yory] = NE[Y1yon] E[Y (1+ 1iy<ny)]. (4.10)
Applying Lemma 4.2 to the first term in (4.10) (with= 2, m = 2r > 2) yields
NE[Y?1(ys.y] < N7 20D E[YV] = o(1), (4.11)
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as shown in the first part of the proof. The second term in (4.10) is bounded by
2N(E[Y])? = 2eFHEOE2H() which iso(1) by Lemma 4.1. Hence, (4.10) van-
ishes ag — oo, and (4.9) follows.

3) Finally, we need to show that

N N
Y EM] =Y E[Vilyycn] = NE[Y1yory] —0.

i=1 i=1
Indeed, applying Lemma 4.2 with= 1, m = 2r (r > 1), we obtain the estimate
NE[Y1ys.y] S NT'72E[Y?] = o(1)

(see (4.8), (4.11)), and the proof is complete. O

5. Normalized regularity and the Basic | dentity
5.1. Normalized regular variation

From now on we impose the following

Normalized Regularity Assumption. The log-tail distribution functior is nor-
malized regularly varyingt infinity, h € NR, (with 1 < ¢ < oo in case B and
0 < p < o in case A), that is, it can be represented in the form

h(z) = cexp {/j ote(w) du} (z > a), (5.1)

u

wherec = const > 0 ande(x) — 0 asz — oo (see [5, p. 15]). That is to say, the
functionc(+) in the Karamata representation (3.2) is now required to be a constant.

More insight into the property of normalized regular variation is given by the
following lemma (cf. [5, p. 15]).

Lemma 5.1. Leth be a positive (measurable) function. THes VR, if and only
if his differentiable (a.e.) and
xh! ()
h(x)

—0 (z—00). (5.2)

Another important characterization of normalized regularly varying functions
is provided by the following lemma (see [5, Theorem 1.5.5]).

Lemma5.2. A positive (measurable) functionis normalized regularly varying
with indexp, i.e.h € NR,, if and only if for every: > 0 the functionh(z)/xz2~¢
is ultimately increasing and the functidriz)/xz¢*¢ is ultimately decreasing.

The next lemma yields a useful integral representation of normalized regularly
varying functions.
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Lemma5.3. A functionh € NR, can be written in the form
“h
h(z) = h(a) —|—/ % (o+¢e(u))du (x > a), (5.3)

wheres(z) — 0 asxz — oo.

Proof. Consider the function

%?(Q+ewndu

D@yzm@—m@—/m

Obviously,D(a) = 0. Representation (5.1) implies thais absolutely continuous,
hence the derivative’ exists (a.e.) and

u x T

Therefore,D(-) is absolutely continuous as well and we have (a.e.)
/() = (x) - "D (g 4 ey =0

Hence,D(z) = 0 and (5.3) follows. O

The following lemma can be viewed as a refinement of the UCT (Lemma 3.1)
for the case of normalized regular variation.

Lemmab5.4. If h € NR, (¢ > 0) then, uniformly ins on each intervalxg, k1] C
(0, 00),

=(k?—=1)(1+0(1)) (x — o).

Proof. Suppose for definiteness that> 1 (the casé) < x < 1 is considered
similarly). Using the representation (5.3), after the substitutien zy we have

h(kz) — h(z) _ /15 h(zy) (0 + e(zy)) dy. (5.5)

h(z)y

The UCT (Lemma 3.1) implies that the function under the integral sign converges
to oy~ ! uniformly on[1,x,] asz — oo. Therefore, the integral in (5.5) con-
verges, uniformly inc € [1, k1], t0 [ 0y ' dy = k2 — 1. O
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5.2. Basic Identity

Let us now re-examine the application of the Kasahara—de Bruijn Tauberian theo-
rem (Lemma 3.3) to our situation. Note that the functidr{z) is continuous and,

by Lemma 5.2, ultimately strictly increasing, hence its ordinary invergg :=
(oh)~1(t) is well defined and strictly increasing for allarge enough. In turn, for

all = large enough we have

¢~ H(x) = oh(x). (5.6)

It then follows that the function)(t) defined by (3.4) is ultimately strictly in-
creasing as well. For suppose< ¢, then the required inequality(s) < ¥(t) is
equivalent tasp(s)T < tp(t)T, or

o H(z)zT <o ' (y)yT, (5.7)

wherex = ¢(s), y := ¢(t) andx < y. Using (5.6), inequality (5.7) can be
rewritten ash(z)z~¢"¢ < h(y)y ¢T¢ with € := o F 1 > 0, and the latter holds
by Lemma 5.2.

Consequently, the inverse functiaiT ! exists and is ultimately increasing.
Therefore, formula (3.6) is reduced to

YH(t) = o' Ho(t). (5.8)
For the sake of notational convenience, let us introduce the function
g +
s(t) == (‘Q:<t)> ) t> 0. (5.9

SinceHy € R,, we haves(t) € Ri(y_1) = Rjy—1; and hences(t) — oo as
t — 00.

We are now in a position to characterize explicitly the link arising between
the regularly varying functiona and H, through the Tauberian correspondence.
Remarkably, due to normalized regular variatiompsuch a relationship has the
form of an exact equation, rather than just an asymptotic relation.

Lemma 5.5. For all ¢ large enough, the functiorisand H, satisfy the equation
o'Ho(t) = oh(s(t)). (5.10)

Remark. Remembering that(-) is expressed througH, (see (5.9)), the identity
(5.10) can be viewed as a functional equationA&r

Proof of Lemma5.5. Let us applyy to (5.8) and use relation (3.4) to obtain

t = (o'Ho(t)) = o'Ho(t) p(0'Ho(t)) T,

’ +
(o Holt)) = (QH“)) — (1)

that is,

t
Hence, using (5.6) we get Hy(t) = ¢~ (s(t)) = oh(s(t)). O
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In order to rewrite equation (5.10) in a form suitable for us (to be called ‘Basic
Identity’), we need to make some technical preparations. Recalbitismtefined
in (2.7). Conversely, using (3.3)is expressed in either of the two forms

A= Q/ZQI =+(o'—1)af. (5.11)
Lemma 5.6. For large enoughs, there exists the unique rop{s) of the equation
h((i/o')Es) = a?h(s), (5.12)

given by the formula
fi(s)E = (9;)i h(a?h(s)). (5.13)

In particular, if « = 1thenj(s) = o'.

Proof. Recall thath is normalized regularly varying and (absolutely) continuous
(see (5.1)). Therefore, by Lemma 5.2 it is strictly increasing in sfrm®), so the
(usual) inversé,~! exists and is defined dir(a), 0o). Hence, the equation (5.12)
can be solved to yield formula (5.13), which is well defined forsddrge enough.
The casex = 1 follows easily. O

Lemma5.7. The functioni(-) defined in Lemma 5.6 is ultimately bounded above
and below, and furthermore, for adllarge enough

min{l,agl/Q"} < ('aé(j))i < max{l,a%’//g}. (5.14)
Proof. If o < 1 then, due to monotonicity of the functidir !,
%h’l(oﬂ'h(s)) < %h*l(h(s)) =1. (5.15)
In the casex > 1, we note that for every > 1 and alls large enough

kh(s) < h(k*/%s), (5.16)

becausé: € R, and hencéim,_. ., h(k?*/%)/h(s) = k% > x. Applying inequal-
ity (5.16) withx = ¢’ > 1, we get

é h~H(a?h(s)) < % h=Y(h(a?/2s)) = a?e/e, (5.17)

Combining (5.15) and (5.17) and using (5.13), the upper bound (5.14) follows.
Similarly, for « > 1 we obtain

1 ' 1
; h_l(ag h(S)) > g h_l(h(s)) = 1,
whereas fory < 1
1 / 1 , ,
- h—l(ag h(s)) > g h,_l(h(OéQ/2QS)) =qa?/%,

which is consistent with the lower bound in (5.14). d
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Lemma 5.8. The functioni(s) has a finite limit as — oo, given by
lim ji(s) = o'a® L. (5.18)

Proof. Sincef(-) is bounded (see Lemma 5.7), the UCT (Lemma 3.1) implies

R
h(<ﬂ<s>/9’>is>~(“(‘f)) h(s) (s — oo).

0
Comparing this with equation (5.12), we obtain

(B ot o

o
whence it follows that the limit (5.18) exists and is given by

lim fi(s) = o'a*/¢ = p'a? ",

in view of the first of the identities (3.3). O
Let us define the function
u(t) = (o s)(t) = ls(1)), (5.19)

wheres(t) is given by (5.9). From the definition gf(s) (see Lemma 5.6), it is
clear that for alk large enough the functiom(t) satisfies the equation

h((u(t)/0")*s(t)) = a®h(s(t)). (5.20)
Sinces(t) — oo, Lemma 5.8 implies that
tlirgo u(t) = o'a? "t (5.21)

ForrT > 0, denote
 plt)Ho(t) % log

17 (t) := 7 (5.22)
In particular, forr = 1
(o) = MO0 1 e (5.23)
(see (5.9)). From equations (5.23) and (5.21) it follows
m(t)* = (u(t)/e)"s(t) » o0 (t—o0). (5.24)

Furthermore, it is easy to see that

1. (t) 14 log T

O OH @ —1 (t — 00). (5.25)
Hence, using (5.21) we obtain
tn-(t) _ n-(t) () — Q/ag’—l (t — 00). (5.26)

Ho(t) — m(t)
The following lemma will play a crucial role in our analysis.
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Lemma 5.9 (Basic Identity).For all ¢ large enough,
h(m (6)*) = NHo(t). (5.27)
Proof. From (5.23) and (5.20) it follows
h(m () = h((u(t)/ o)) Fs(t) = a®h(s(t)).
By Lemma 5.5 and relation (5.11), this coincides witH (). O

5.3. Implications of the Basic Identity

In this section, we prove three useful lemmas concerning the asymptotics of vari-
ous ‘perturbations’ of the functioh(n, (¢)*). Of particular importance for further
calculations will be Lemma 5.12.

Lemma5.10. Let g(-) be such thatg(t)/Ho(t) — 0 ast — oo. Setq; ,(t) ==
n-(t) F yg(t). Then for eachr > 0 uniformly iny on every finite intervallyo, y1 |

- +
lim s ®5) _ o (5.28)
t—o0 tn‘r,y(t) 0

In particular, for g = 0 one has

fim M0-(07) _ @ (5.29)

t—o0 Wlf(t) o

Proof. Relation (5.26) implies that, uniformly in € [yo, 1],

_Tey() . logT _ytg(t) Ho(t)
@ i@ T Ho) tm()

Therefore, by the UCT (Lemma 3.1), uniformlygron any finite intervalyo, 1]
h(iE,) = h(kEnt) ~ KkECh(nd) ~ h(nF).

Hence, taking into account Lemma 5.9 and the limit (5.21), we obtain

ry(t) : —1 (t — 0).

hiz,) hE) M) _ A A a
tilr,y tny tm p(t) o=t o’
in view of formula (2.7). O

Lemma5.11. Under the conditions of Lemma 5.10, for eaclk 0

lim h(nf(t)i) — h(ﬁ‘r,y(t)i)
t—oo tg(t)

= ay,

uniformly iny on every finite intervalyo, y1]-
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Proof. Similarly to the proof of Lemma 5.10 we get

L ﬁT,y(t) _ ytg(t) . HO(t)
W= T Y B )

uniformly iny € [yo,y1]. Therefore, for all large enoughthe functionk,(t) is
uniformly bounded) < kg < ky(t) < k1 < co. Applying Lemma 5.4 we have

—1 (t — o0)

hE) - h(iE,) ~ —h(E) (5~ 1) (t—o0).  (5.30)

Furthermore,

K

o 1_ yg(t)\™ 0yg(t)
o= ()

Substituting this into (5.30) and using the limit (5.29), we finally obtain

) = (7, ~ ) 225 ~ o),

and the lemma follows. O

Lemmab5.12. For eachr > 0

lim [h(nT(t)i) - h(m(t)i)] =alogT.

t—o0
Proof. Apply Lemma 5.11 withy = log 7, g(t) = 1/t. O
5.4. Asymptotics of truncated exponential moments
The goal of this section is to establish some general estimates for truncated ex-
ponential moments, which will be instrumental later on. Recall that the parameter

a > 0is defined in (2.7).

Lemmab.13. If 7 > 0is a fixed number then
(i) for eachp > «,

; Fptn,+h(nd) plptX —_Z .
Jim e Ele" 1ix<in,y] o
(i) for eachp < «,
Ii Fptn-+h(nt) El[ePtX1 = @ .
e o] =5

The proof of this lemma is deferred to the Appendix.
In the case» = « not covered by Lemma 5.13, we prove one crude estimate
that will nevertheless be sufficient for our purposes below.
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Lemma5.14. For a > 0, denote
Bo(t) == E[e" 1ix<iny] (5.31)
wheren; (¢) is defined in (5.23). Then
ba(t) = eFMTRMIB (1) = 400 (t — 00). (5.32)

Proof. Setij (t) := n,(t) F g(t), g(t) := t~1T¢/2, Integration by parts yields

+tm

B[ Lixcany] 2 E[e™ L cx )] :/ e d(1— e M)
A
+m

Em + + K +
— _/ et d(efh(:l:a: )) > _e:i:oztnlfh(nl ) + Oét/ eatxfh(:l:z )dx

£ BT
(5.33)
Making here the substitutiottz = 1 (t) F yg(t) =: 71,,(¢), we obtain

1
ba(t) > —1+ atg(t) / e~ 0tgOy+h() k(i) gy, (5.34)
0

By Lemma 5.11h(ni") —h(7i},) = atg(t)y(1+o(1)), uniformly iny € [0,1]. So

for anyd > 0 and all large enoughwe haveh(n) — h(ﬁfy) > atg(t)y(l—9).
Returning to (5.34) we get

1
1
bo(t) > -1+ atg(t)/ e oty gy — 1 4 5 (1 - 6*""59(“5) ,
0
henceliminf; o bo(t) > (1/§) — 1. Since the numbef > 0 can be chosen
arbitrarily small, it follows thatim inf;_. ., b, (t) = 400, as claimed. O

The next lemma provides some additional information in the pasex.
Lemma 5.15. For anyr > 0

lim eﬂFatm+h(mi) E[eatX(

t—o0

1{X§in.,-} — 1{X§in1})} = alogT. (535)

Proof. Let us assume for definiteness that> 1, so that+n,(t) > +n(t).
Integrating by parts and using the substitutioa: £, (¢) 4 (1/t) log y, we obtain

+
eTatm+h(n’) E[eatX 1{ﬂ:m<X§ﬂ:nT}}

-1— ealog'r-&-h(n]i)—h(n}) i O[/Tea log y+h(n1i)—h(nj)d7y . (5.36)

1 Yy

By Lemma 5.12 we havé(n) — h(nj) — —alogy ast — oo, uniformly in
1<y<randin particulah(nf) — h(nF) — —alogT. Itis then easy to see
that the right-hand side of (5.36) tendsdtdog 7 ast — oo. O
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For convenience of reference, we record here some further estimates for trun-
cated moments of the random variablé under a certain normalization adopted
in this section. Namely, consider the random variables

GtXi

Y =Yi(t) == (NBa@)e

(5.37)

whereN is subject to the scaling assumption (2.9) dhdis defined in (5.31). For
a > 0andr > 0 denote

It
" 0g(N B, (1)) " 1ogT.
at t

Tl (t) 1= (5.38)

From (5.37) itis seen that the inequallty(t) > 7 is equivalent taX > +7, - (t).
Recalling representation (5.32) and using the Basic Identity (5.27), we obtain

NBy(t) ~ eXHoOFatm=h(nE) p 4y — etatmp (p). (5.39)
Therefore, formula (5.38) implies
)+ logba(t)  O(1)

o () = ==, 4
fla,r (1) = m(t o T3 (5.40)
whence it follows that for all sufficiently large
:I:ﬁom'(t) > iTh (t) (541)

Lemma 5.16. For anyp such that0 < p < aand eachr > 0
1 p —

tg%NE[Y(t) 1{Y(t)>7—}] =0. (542)

In particular, for p = 0 this yields
tlim NP{Y(t)>7}=0. (5.43)
Proof. From (5.37), (5.38) and (5.41) we obtain
E[YP1ysn] < (NBo) P/ E[eP 1 xoupy] .

Using Lemma 5.13(ii) and relations (2.9), (5.39), (5.27) and (5.32), we get

N eMo(t) a +
E[e’)txl } ~ . eTPtm—h(ny)
/a {X>+m} +pt /o _
(NBg)* e ;’"lbé’ a—p (5.44)
= b/ = o(1).
Thus, relation (5.42) is proved. O
Denote
— ya(t) = eEtm () (5.45)
Yo = Yall) = (NBa(t))l/a’ .

so thatY” > y, if and only if X > +n;. From (5.39) it follows that, (¢) ~
ba(t)~Y = 0.
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Lemma 5.17. Suppose that > 0. Then for anyr > 0
tEHOIONE[Y(t)pl{yu(t)<y(t)ﬁ7'}] =0. (546)

Proof. Pick a numbeg such that) < ¢ < min{a,p}. Applying Chebyshev’s
inequality (4.5), we can write

NE[Y 1y, cy<ny] < NTPTOE[Y 1y, <vy)
NP4
= — E[e?*1 ,
(B o)
and the latter expressiona$l) as shown above (see (5.44)). O
Lemma 5.18. Suppose thgt > « > 0. Then for anyr > 0

lim NE[Y(t)pl{y(t)ST}] =0. (5.47)

t—o0
Proof. Let us write
NE[YPlyy<ry] = NE[YPlyy<y 3| + NE[YP1y, cy<ry].  (5.48)

Applying Lemma 5.13(i), one can show, similarly to (5.44), that the first term on
the right-hand side of (5.48) is asymptotically equivalent to

Mo (1)

R Eptm—h(nf) _ _ % —p/a _
eiptm(t)ba(t)p/a p—a € 1) = r—a ba(t) = 0(1)7

while the second term on the right of (5.48pid ) by Lemma 5.17. O

6. Limit theoremsbelow A,
6.1. Convergence to an infinitely divisible law

Denote

etXi

B(t)’
whereB(t) is defined in (2.12). According to classical theorems on weak conver-

gence of sums of independent random variables (see [14, p. 80-82]), in order that
the sum

Y = Yi(t) = (6.2)

N

Sk(t) =) Yi(t) - A*(t)

i=1

converges in distribution to an infinitely divisible law with characteristic function

o(u) = exp {iau _ 022u2 N / . <eiu:v _1_ 1?22) dL(x)} , (6.2)

it is necessary and sufficient that the following three conditions be fulfilled:
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1) In all points of its continuity, the functioh(-) satisfies

lim NP{Y <z} (x <0),
L(x) — { t—oo

~lim NP{Y >z} (2> 0). (6.3)

2) The constant? is given by

2 1. . T ..
o“ = lim hmsupNVar[Yl{ygT}] = Tl_l)m htrgloglfNVar[Yl{ygT}] .

70+ t5o00 0+
(6.4)

3) For eachr > 0, the constant satisfies the identity
3

. . T oz oz
lim {VE[Y1(y<r)] - 4 (t)}:a+/0 mdL(z)f/ L),
! (6.5)

As the first step towards the proof of Theorem 2.3, we establish convergence
to an infinitely divisible law.

Theorem 6.1. Suppose thal < A < A,. Then

Sn(t)—A(t) a
T — F, (t—>oo),

whereB(t) and A(t) are defined in (2.12) and (2.13), respectively, afidis an
infinitely divisible law with characteristic function

) i ux dx
¢a(u) = exp {Zau—!—a/o <€ —-1- 1-|—,’E2> :L-OZH}’ (6.6)

where the constant is given by

QT
o= ZcoseE (a7 1), (6.7)
0 (a=1).

6.2. Proof of Theorem 6.1

The proof is broken down into steps according to formulas (6.3), (6.4) and (6.5).

Proposition 6.1. The functionl. defined in (6.3) is given by

Lix) = { 0, =<0, 6.8)

-7 x>0.

Proof. SinceY > 0, itis clear thatL(z) = 0 for < 0. Henceforth, assume that
x > 0. Using (6.1), (2.12) and (2.9), we obtain

NP{Y(t) > 2} = NP{X > 4n,(t)} ~ >MoO-R0=05) (¢ _ o),
wheren,.(t) is defined in (5.22). Furthermore, by Lemmas 5.9 and 5.12
AHo(t) = h(ns(8)) = h(m (t)F) = h(n:()) — —alogz (¢ — o0),

so from (6.3) we geL(z) = —e~ @187 = g~ O
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Proposition 6.2. For o2defined in (6.4), for altv € (0,2) we haver? = 0.
Proof. Since0 < Var[Y 1{y <] < E[Y? 1y <], it suffices to prove that

lim lim NE[Y?1y<] =0.

7—0+t—o00

Recalling (6.1) and (2.12) and using condition (2.9), we have
NE[Y?1(y<ry] ~ eOFHOMIWE[2 X 0] (t—00). (6.9)
Application of Lemma 5.13(i) withp = 2 and0 < « < 2 yields

E[e2tX1{X<:tnT}} N S a eﬂtnT—h(n}) (t — 00).
= -«

Returning to (6.9) and recalling relation (5.22), we conclude that

NE [YQ 1{Y< }] o @ EAHU(t):FQH(t)HU(t)iQtUr*h(nf)
=T 2—a
_ o )\Ho(t)—h(nf)—&-ZlogT o (2—a)logT _ o 2—«
2—« ¢ - 2—« € 2—« 4 ’
where we have also used Lemmas 5.9 and 5.12. Lettingmew0+, we see that
7272 0, since2 — a > 0. O

Proposition 6.3. Set A*(t) := A(t)/B(t), where B(t) and A(t) are given by
(2.12) and (2.13), respectively. Then the limit

Da(7) = lim {NE[Y1iy<ny] - A"(1)} (6.10)

exists for alla € (0,2) and is given by

o -«
Do(r)={ 1-a (a7 1) (6.11)

log T (a=1).

Proof. Using expressions (6.1), (2.12) and recalling (5.22) we obtain
NE[Y]-{YST}:I = NezFﬂ(t)Ho(t) E[etX]‘{XSﬂ:n-,—}:I . (612)

1) Let0 < a < 1, thenA* = 0. Lemma 5.13(i) witlp = 1 yields

@t —h(nd)

~ T (t — 00).

E[e"™ 1 {x<tn,)]

Hence, on account of the scaling condition (2.9) the right-hand side of (6.12) is
asymptotically equivalent to

X AHo(O)Fu(t)Ho(t)Etn-~h(n7) — Y Jlogm+XHo(t)=h(n7)
1l-«a l-a

Finally, using the Basic Identity (5.27) and Lemma 5.12, we get
log 7 + AHo(t) — h(nF) — (1 — a)logT (t — 00), (6.13)
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and (6.11) follows.
2) Letl < o < 2. Using (6.12), (2.9), (2.12) and (2.13), we obtain
NE[Y1y<n] = AT(t) = —NeT OO B[Ny, )]

@ log THAHo(t)—~h(n7)
a—1 ’

~ —

where we used Lemma 5.13(ii) with= 1. Applying (6.13) we arrive at (6.11).
3) Leta = 1. Similarly as above, we obtain using Lemmas 5.15 and 5.9:

NE[Yl{YST}] — A*(t)
- New(t)Ho(t)(E[etxl{xgim}] _ E[etX]-{Xgim}]>
~ MOOFWHo®) | Etm—h(17) g
=logT,
and the proof is complete. O
Proposition 6.4. The parameter. defined in (6.7) satisfies the identity (6.5) with
L(-) specified by (6.8), that is,

T IQ*& oo xfa
D = ——dr — — 14
o(T) a—O—ozA 52 dz a/T 1+x2d$ (t>0), (6.14)

whereD,,(7) is given by (6.11).

Proof. 1) Let0 < « < 1. Observe that

Top?e 1 ToxTe
dx = tra —— dx.
/0 1+22 % " 1-a’ /0 1+22 %

Due to (6.7) and (6.11), equation (6.14) amounts to
/ T T (6.15)
0

14 22 2cos &F

which is true by [9, #3.241(2)].
2) Forl < «a < 2, we note that

e} —« 11—« [ere} 2—«
/ T =T _/ .
, 14z a—1 , 1422

and hence, in view of (6.11) and (6.7), equation (6.14) is reduced to

e o] 2—«
T +/ T dr=o, (6.16)
0

2 cos & 1+ 22

which again follows from [9, #3.241(2)].
3) Finally, fora = 1 equation (6.14) takes the form

Tz e 1
1 = ——dx — ———dx. 17
ogT /0 22 dx /T Eor dx (6.17)
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The integrals on the right of (6.17) are easily evaluated to yield

1 N 2%
Elog(l—&—x ) . - Elogm ) =log T,
and this completes the proof of Proposition 6.4. O

Proof of Theorem 6.1. Gathering the results of Propositions 6.1, 6.2, 6.3 and 6.4,
which identify the ingredients of the limit characteristic functigg, we conclude
that Theorem 6.1 is true. O

6.3. Stability of the limit law

In this section, we show that the infinitely divisible laf, with characteristic
function (6.6) is in fact stable.

Theorem 6.2. The characteristic functiow,, determined by Theorem 6.1 corre-
sponds to a stable probability law with exponent (0, 2) and skewness param-
eter3 = 1, and can be represented in the canonical form (2.16).

Remark. Formula (6.8) and Proposition 6.2 imply thiat corresponds to a stable
law (see [12, Theorem 2.2.1]). We give a direct proof of this fact by reduging
the canonical form (2.16), which allows us to identify explicitly all the parameters.

Proof of Theorem 6.2. According to general theorysee, e.g., [17, p. 441]), the
characteristic function of a stable law with characteristic exponerg (0, 2)
admits a canonical representation

exp {iuu—b|u|”‘(1—iﬁsgnfwtan%)} (a#1),
Palt) = exp {mu — blu| (1 +ifsgnu - % log |u|>} (a=1),

wherey is areal constant, > 0and—1 < 3 < 1.
1) Suppose thdl < o < 1. Itis easy to verify that, due to (6.7) and (6.15), the
characteristic function (6.6) can be rewritten in the form

o (u) = exp {a/o 62:27_:11 dx} . (6.19)

The integral in (6.19) can be evaluated (see [12, p. 43—-44]):

/ e -1 de = Ii-a | e (ime/2) senu
0 (6]

(6.18)

xoﬂrl

and (6.18) follows withy = 0, b = I'(1 — «) cos(ma/2) >0, B = 1.
2) Letnowl < « < 2. Using (6.16), we can rewrite (6.6) in the form

) {a /Ooo(em = dua) mfﬁ : } , (6.20)

5 See [10] for a nice review of the history of the canonical form of stable distributions.
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The integral in (6.20) is given by (see [12, p. 44-45])

S d I2-— ; ;
/ (ezuw _1- zux) L _ ( a) |u|ae(17ra/2) sgnu
0 zotl  ala—1)

)

whichyieldsy =0, b= -I'(2 — «) /(e — 1) - cos(wa/2) > 0, f = 1.
3) If @ = 1, by the substitutiony = |u|« in (6.7) we get

e} 2
cosy . uzy dy
o1 (u) —exp{ |u|/ dy —zu/o (51ny—u2+y2) 2/2}

(6.21)
It is well known (see [9, #3.782(2)]) that
“1l—cosy ,

To evaluate the second integral in (6.21), let us represent it in the form

o /g 1 d A 2 d
[ (o ate)¥ oo
0 Yy I+y/) vy o \1+ty w+y/) y

It is known that (see [9, #3.781(1)])

> /i 1 \d
/ (Smy - ) W1y, (6.24)
0 Yy I+y/) y

where~ is the Euler constant. Furthermore, note that

e 1 u? dy 1 u? 4+ y% |~
— _— = 71 —_— = —1 . 6.25
/0 (1+y u2+y2> y 2 P11y, el (6.29)
Returning to (6.23), from (6.24) and (6.25) we get
> u’y \ dy
iny — L =1—~-1 . 2
/O (bmy e y2> )2 v — log [u] (6.26)
Therefore, substituting expressions (6.22) and (6.26) into (6.21), we obtain the
required canonical form (6.18) with=1—~, b=x/2, 5 = 1. d

7. Limit theoremsat the critical points
7.1. Proof of Theorem 2.4

The statement of Theorem 2.4 follows from Theorem 2.3 {foe 1). Indeed
according to (2.13) and (5.31), we hadét) = N B, (t) = NeFtn—hmi)p, (1).
Furthermore, (2.12), (2.9), (5.27) and (5.32) imply

m:;‘ig AP by (1) = by(t) — 00 (t—o00).  (7.1)

Therefore, dividing (2.15) byl*(t) — oo we obtainSy (¢)/A(t) = 1 + o0,(1),
which is in agreement with (2.17).
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7.2. Proof of Theorem 2.5

Denote

et Xi

(NBa ()2 (7.2)

Y, =Y(t) :=
whereBs(t) is defined in (5.31). According to the classical CLT for independent
summands (see [14, Theorem 18, p. 95]), it suffices to check that for any)
the following three conditions are satisfiedtas> co:

NP{Y(t) > 7} — 0, (7.3)
N(EY® Ly wsn] - EY Oy psn])’) = 1. (7.4)
NE[Y(t)1{y@)>ry] — 0. (7.5)

Firstly, note that condition (7.3) is guaranteed by (5.43). Next, let us show that

Ef1yen])’  E[™ 1 xeimn 1))

0 t . 7.6
EV o ] E[ lpyeay,] O 7 (9

Indeed, taking into account inequality (5.41) and representation (5.32), the ratio in
(7.6) is estimated from above by

(E[etx})2 eE2H(t)  oE2H(H)+h(ni)F2tm @)
E[e®X1ixciy,y|  Ba(t) ba(t) ' '

Using the Basic Identity (5.27) and the limit (5.26), we have

+2H () + h(ni") T 2t (t)

24 (o) —1)2¢ F 0'2¢ = £(2—29) <0,
Ho () ( ) ( )

and hence the numerator on the right of (7.7) tends to zero. Morégyer,— oo
(see (5.32)), and therefore (7.6) is validated. Hence, condition (7.4) amounts to

NE[Y?1y<y] — 1. (7.8)

Noting that, according to (7.2), (5.45) and (2.18),

1
NE[Y?1y<yy] = B E[e® 1 {x<tny] = 1,

we can rewrite (7.8) in the forW E[Y?1,, .y <] — 0. The latter is true by
Lemma 5.17, and (7.4) follows.
Finally, condition (7.5) is fulfilled by Lemma 5.16 (with=1 < 2 = «).
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Appendix. Proof of Lemma 5.13
A.1. Proof of part (i)

1) We start by showing that for a suitaltle= (0, 1)

lim e$pt7]7—+h/(77}) E[eptxl{xgigi,%}} =0. (Al)

t—o0
SinceE [P X 1 x g+, 1] < eP!*7- it suffices to check that

eFPtn-+h(nT)Epto=n. _ £(O0F—Dptn.+h(n7) _, (t — o0). (A.2)

Using the limit (5.29) of Lemma 5.10, we have

+(60F — V)ptn, + h(n)
tn,

—>:|:(9i—1)p+% (t — 00). (A.3)

Sincetn, (t) ~ u(t)Ho(t) — +oo ast — oo, the limit (A.2) will follow if there
existsf# € (0, 1) such that the right-hand side of (A.3) is negative. The latter is
guaranteed by the fact that< (1 F a/po)* < 1, which can be easily verified
using thatp > a > 0 andp > 1 (case B) orp > 0 (case A).

2) Similarly to (5.33), integration by parts yields

tX _ tptn.—h(nE +ptoFn, —h(6FnE
E[ep 1{iein7<xgin7}]——€pn (7)) 4 eEPt0= - —h(6=n)

£,
+0%n,
Using thath(-) > 0, we have
eEPt0F N —h(0FnT) < eEPt0F N, _ o(1) eEPtnr—h(n7) (t— o), (A5)

as shown above (see (A.2)).

3) Let us sefj, (t) := 1, (t) F g(t), whereg(t) := t~1+¢/2_ Using thaty, €
Ry—1, we getii,/n, — 1 (t — oo) and so for allt large enough6+n, <
471, < 0.

Let us now show that for any € [+6%7,, +7,] and allt large enough,

ptz — h(+z®) < £pti, — h(7). (A.6)

Settingk., (t) := +2* /7, we have

+
12/@(75)29(7?) — 0 (t — o00),
Nr

so by Lemma 5.4 we can write

h(xa™) = h(i7) = h(iz) (52 = D)1 +o(1))  (t— ), (A7)
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uniformly in x € [+0%n,, +7,]. Furthermore, inequality (3.8) yields

+o
Ke—1= (ﬂ> 1> (x0) (ﬂ _ 1) A DY)
N Nr N

Combining (A.7) and (A.8) and using Lemma 5.10, we obtain that fot ige
enough, uniformly inz,

h(+x™) — h(iF) > h(fﬁ) o(z F1i7)(1+0(1))

=at(zF7:)(1+ 0(1))
> pt (37 + 777')7

3

(A.9)

sincex F 7, < 0 anda < p. Hence, inequality (A.6) follows.
4) We now want to prove that, #as— oo,

+7-
I(t) = ptejFp”’”'h’("Ti) / ePto=h(Ea™) g0, 0. (A.10)
+6+n,

Applying the estimate (A.6) we get
I(t) < pte PO =R [1(1 — gF)y, — g(t)]. (A.11)

Recalling thaty(t) > 0 and0 < 6 < 1, it is easy to check that(1 — 6*)n, —
g(t) <n-(1—0)/6. Therefore, from (A.11) it follows

I(t) < 1@ b e~ PO+ () =R (). (A12)
It remains to observe that the pre-exponential factor in (A.12) grows only polyno-
mially, sincetn, (t) ~ const - Hyo(t) € R, while by Lemma 5.11-ptg(t) +
h(nE) — h(7E) ~ —(p — a)tg(t), wherep — a > 0 andtg(t) = t¢/2. Hence the
right-hand side of (A.12) is exponentially smallias> oo, and (A.10) follows.
5) Let us check that

+n,
J(t) = pteTPtnr+h(nF) / ePte—h(Eae™) go.

(t — 00).
+7, p—«

(A.13)
By the substitutiontz = 7, (t) F yg(t) =: 71,4 (t), the left-hand side of (A.13) is
rewritten in the form

1
J(t) zptg(t)/ e—ptg(t)y+h(nf)—h(ﬁify) dy. (A.14)
0

Note that by Lemma 5.1%(n) — h(if,) = atg(t)y(l + o(1)) ast — oo,
uniformly in y € [0, 1]. Therefore, given any such tha) < ¢ < p — «, for all
large enought and ally € [0, 1] we have

(a = e)tg(t)y < h(17) = h(iiz,) < (a+e)tg(t)y.
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Substituting these estimates into (A.14) and evaluating the integral, we obtain

(1 — e~ (Pma—e)ta(t))

1
J(t) < ptg(t)/ e*(P*a*E)tg(t)y dy — p
0 p—o—¢

and similarly

1 — e~ (p—ate)tg(®))

1
T > pta(e) [ e--arorta@y g, — P
(0= ptat) [ y cvn

Using thatp — a &+ ¢ > 0 andtg(t) — oo, in the limit ast — oo we get

— P < liminf J(¢) < limsup J(t) < —r
p-—ate  tooo t—o00 p—a—¢

Lettinge | 0, we obtainlim;_,~, J(t) = p/(p — «), as required.
6) Finally, formulas (A.1), (A.4), (A.5), (A.10) and (A.13) yield
p (0%

li Fptn-+h(nk) ElePtX1 -1 — .
Jim e [ L ix<in,y] e~ a

A.2. Proof of part (ii)

The proof follows similar steps as above.
1) Let us start by showing that if < « then for anyd > 1

Jlim TP ) B[P X e, 4] = 0. (A.15)
Note that Lemma 4.2 (witk = p, m = «) yields
E[eptxl{x>¢9in7}] < E[eatX] .eﬂFGi(a—p)tnT — eiH(@t)ﬂFOi(a—p)tnT.
Hence, it suffices to check that

eFPtnr+h(ny) | £H(at)FO=(a—p)tn, _ o(1) (t — 00). (A.16)

To this end, recall thall ~ H, € R, and use (5.26), (5.29) and (3.3) to obtain

iy TH (@) F (0 + 0% (= p))tn- + h(n7)
t—oo H()(t)

— ia9/$ (p+ ei(a _p))glag'—l + gglag/—l
o
=+(1—-65)(a—p)oa? ! <0,

sincef) > 1 anda > p. Hence, the limit (A.16) follows.
2') Similarly to (A.4), integration by parts yields

_ eEPIOF N —h(OnF) | Eptne—h(n7)

+£6% 0, N
+pt/ eptasfh(ia: )dl
+n-

E[eptxl{imdgieim}] =
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Let us check here that
EOF=Dptn =[O —hMD)] — (1) (¢ — o0). (A.17)
Recalling that: € R, and using the limit (5.29), we obtain

BOE) — h(nZ) ~ (0° — 1) h(nZ) ~ (’”‘Q”O‘tm.

Hence,

£(6F — )ptn. — [(0nF) — h(nF)]
tn,

Inequality (3.8) giveg?—1 = (§*)*2—1 > +p(6* —1), so the right-hand side of
(A.18) is estimated from above byp (0* —1) Fa(6F —1) = £(0F —1)(p—a) <
0, becaus® > 1 andp < «. Hence, the limit (A.17) follows.

3') Let us set), (t) := n.(t) = g(t), where the functiom is as in step 3 above,
and check that for € [+7,, £60%,] and all sufficiently large

02— 1)«

— 4p(0t —1)— (A.18)

ptz — h(+z*) < £ptij. — h(i).
To this end, similarly to (A.9) we show that
h(Ea*) = h(if7) = at (z F i) (1 + o(1)) > pt (x F ;)

using thatr ¥ 77, > 0 anda > p.
4’) The goal here is to prove that, as-» oo,

+

0% n,
I(t) := pteFrin+h(n) / P hE) g 0,
il

Using the estimate from step, 3ve obtain

I(t) < pteptg(t)+h(nf)—h(ﬁf) (6%, T i)
< p(6 — 1)tn, ePtIO+ROE)=h(EE),
We can now apply the same argument as in step 4 above, using that
ptg(t) +h(n7) = h(iF) ~ —(a =p)tg(t)  (t — o0).

5') Similarly as in step 5 above [cf. (A.13)], one proves that

£
lim pte:Fpt"]T""h(n})/ eptz—h(j:zi) d]} = p .
t—oo +n, a—Dp
In so doing, the suitable substitution in the integral is of the farm= 7, (¢) £
yg(t), and an auxiliary involved in the estimation is taken to satiffy< ¢ <
a—p.
6') Combining the limit formulas obtained in steps-5 we obtain

[e%

lim e¥Ptne+h(17) EleptXq =1 P _ .
100 [ {X>i77*}] * a—p a-—p
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