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Abstract. We study limiting distributions of exponential sumsSN (t) =
∑N

i=1 etXi as
t → ∞, N → ∞, where(Xi) are i.i.d. random variables. Two cases are considered:
(A) ess sup Xi = 0 and (B) ess sup Xi = ∞. We assume that the functionh(x) =
− log P{Xi > x} (case B) orh(x) = − log P{Xi > −1/x} (case A) is regularly vary-
ing at∞ with index 1 < ̺ < ∞ (case B) or0 < ̺ < ∞ (case A). The appropriate
growth scale ofN relative tot is of the formeλH0(t) (0 < λ < ∞), where the rate func-
tion H0(t) is a certain asymptotic version of the functionH(t) = log E[etXi ] (case B) or
H(t) = − log E[etXi ] (case A). We have found two critical points,λ1 < λ2, below which
the Law of Large Numbers and the Central Limit Theorem, respectively, break down. For
0 < λ < λ2, under the slightly stronger condition of normalized regular variation ofh we
prove that the limit laws are stable, with characteristic exponentα = α(̺, λ) ∈ (0, 2) and
skewness parameterβ ≡ 1.

1. Introduction

1.1. The problem

In this work, we are concerned with partial sums of exponentials of the form

SN (t) =
N

∑

i=1

etXi , (1.1)

where(Xi) is a sequence of independent identically distributed random variables
and botht andN tend to infinity. Our goal is to study the limiting distribution of
SN (t) and to explore possible ‘phase transitions’ due to various rates of growth of
the parameterst andN .
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In such analysis, two cases are naturally distinguished according to whether
Xi are bounded above (case A) or unbounded above (case B). In the former case,
without loss of generality we may and will assume that the upper edge of the
support ofXi is zero,ess supXi = 0.

One can expect that the results will depend on the structure of the upper dis-
tribution tail ofXi. In this paper, we focus on the class of distributions with the
upper tail of theWeibull/Fŕechetform

P{Xi > x} ≈
{

exp(−cx̺) as x→ +∞ (case B),

exp(−c(−x)−̺) as x→ 0− (case A),
(1.2)

where1 < ̺ < ∞ (case B) or0 < ̺ < ∞ (case A). More precisely, we will
be assuming that the functionlog P{Xi > x} is regularly varying in a vicinity
of ess supXi with index ̺ ∈ (1,∞) (case B) or−̺ ∈ (−∞, 0) (case A). For
example, a normal distribution is contained in this class (case B,̺ = 2).

1.2. Motivation

1.2.1. Topics in Probability. One motivation for this study is quite abstract and
purely probabilistic. In fact, such a setting provides a natural tool to interpolate
between the classical limit theorems concerning the bulk of the sample, i.e. the
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT), on the one
hand, and limit theorems for extreme values, on the other hand. It is clear that the
asymptotic behaviour ofSN (t) is largely determined by the relationship between
the parameterst andN . If, for instance, one letsN tend to infinity witht fixed
or growing very slowly, then, under appropriate (exponential) moment conditions,
the usual LLN and CLT should be valid. In contrast, if the growth rate ofN is
small enough as compared tot, then the asymptotic behaviour of the sumSN (t)
is dominated by its maximal term. We will see that when botht andN tend to
infinity, a rich intermediate picture emerges made up of various limit regimes.

In this connection, let us mention a recent paper by Schlather [16] who stud-
ied the asymptotics of thelp -norms of samples of positive i.i.d. random variables,

‖Y1n‖p = (
∑n

i=1 Y
p
i )

1/p, where the norm orderp = p(n) grows together with the
sample sizen. The link with our setting becomes clear if one putsYi = eXi. Quali-
tatively speaking, in [16] it was demonstrated that under a suitable parametrization
of the functional relation betweenp andn, there is a ‘homotopy’ for the limit dis-
tributions of‖Y1n‖p extending from the CLT to a limit law for extreme values.
The situation wherep = p(n) → ∞ asn → ∞ arises if the random variablesYi

are bounded above and, in the sense of extreme value theory, belong to the domain
of attraction of the Weibull distributionΨα(x) = exp (−(−x)α) (α > 0, x < 0)
[16, Theorem 2.3].

Application of our work to the limit distribution oflp-norms is discussed in
[4]. Let us point out that our results are complementary to [16], since for random
variablesXi with the Weibull/Fŕechet tails (1.2) the distribution of the maximum
of eX1 , . . . , eXn can be shown to converge to the Gumbel (double exponential)
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distributionΛ(x) = exp (−e−x), x ∈ R (see [4]). Note that in the case of at-
traction toΛ, [16, Theorem 2.4] gives only a partial result for exponential random
variables.

1.2.2. Branching populations.The second motivation (in fact, the most impor-
tant one) is related to long-term dynamics in random media. In the simplest situa-
tion, exponential sums emerge as the (quenched) mean population size of a colony
of non-interacting branching processes with random branching rates. Indeed, con-
siderN branching processesZi(t) driven by branching ratesXi = Xi(ω) (i =
1, . . . , N ). More precisely, for a fixed (quenched) environmentω, eachZi(t) is
a Markov continuous-time branching process such that during timedt → 0, with
probability|Xi|dt a particle may split into two (ifXi > 0) or die (ifXi < 0). Note
that the functionmi(t) := E

ω[Zi(t)] satisfies the differential equationm′i = Ximi

(see [2, p. 108]). Assuming thatZi(0) = 1 we obtainmi(t) = etXi , and hence the
total quenched mean population size is given by the sum (1.1).

In more interesting and realistic situations, there is spatial motion of particles
and hence interaction between individual populations. We believe that the problem
of long-term dynamics for such systems can be essentially reduced, in each par-
ticular case, to sums involving random exponentials, and therefore various asymp-
totic regimes that we establish in the present paper will provide a basic building
block for the understanding of new dynamical phase transitions for branching pro-
cesses in random media. In general, such exponential sums may contain random
weights, thus having the formSN (t) =

∑N
i=1 Yi e

tXi . Here, the parameterN will
characterize the spatial span of the initial population, while the random variables
Xi andYi represent the local (spectral) characteristics of the quenched branching
process, according to the mechanisms of dynamical randomness in the medium.
Typically, the weights(Yi) are expected to be mutually independent when condi-
tioned on the(Xi). These more difficult questions, including a more general type
of the abstract problem, will be addressed elsewhere.

1.2.3. Random Energy Model.A completely different example is provided by
the Random Energy Model (REM) introduced by Derrida [7] as a simplified ver-
sion of the Sherrington–Kirkpatrick model of spin glass. The REM describes a
system of sizen with 2n energy levelsEi =

√
nXi (i = 1, . . . , 2n), where(Xi)

are i.i.d. random variables with standard normal distribution. Thermodynamics of
the system is determined by the partition functionZn(β) :=

∑2n

i=1 e
β
√

nXi , which
exemplifies the exponential sum (1.1) withN = 2n, t = β

√
n .

The free energy for the REM, first obtained in [7] using heuristic arguments,
is given by

F (β) := lim
n→∞

logZn(β)

n
=

{

β2/2 + β2
c/2 if 0 < β ≤ βc,

ββc if β ≥ βc,
(1.3)
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whereβc =
√

2 log 2 . Eisele [8] and Olivieri and Picco [13] have rigorously
derived the limit (1.3) (in probability and a.s.) and also extended this result to the
case whereXi have the Weibull-type tail (1.2) (case B).1

Recently, a detailed analysis of the limit laws forZn(β) in the Gaussian case
has been accomplished by Bovier et al. [6]. In particular, is has been shown that
in addition to the phase transition at the critical pointβc, manifested as the LLN
breakdown forβ > βc, within the regionβ < βc there is a second phase tran-
sition at β̃c =

√

log 2/2 = 1
2βc , in that forβ > β̃c the fluctuations ofZn(β)

become non-Gaussian. In the present work, we extend these results to the class of
distributions with Weibull/Fŕechet-type tails of the form (1.2). As compared to the
paper [6] which proceeded from extreme value theory, we use methods of theory of
summation of independent random variables. This general and powerful approach
simplifies the proofs and in particular reveals that non-Gaussian limit laws are in
fact stable.2

1.2.4. Risk theory. Finally, let us point out one application related to insurance.
A basic quantity in risk theory is the aggregate claim amountY (t) :=

∑N(t)
i=1 Ui,

where(Ui) is a sequence of i.i.d. claim sizes andN(t) is a claim counting pro-
cess independent of(Ui) [15, Sect. 5.1.4]. A common problem is to estimate the
moment generating functionmU (s) := E[esUi ], in particular for larges. Such a
question arises, for example, in connection with the Lundberg bounds for the tail
distribution ofY (t).3 The Lundberg bounds are constructed using the roots∗ of
the equationmU (s) = 1/p > 1 (see [15, p. 125]), where the parameterp has the
meaning of the claim arrival rate. Hence, the casep → 0 (and therefores∗ → ∞)
corresponds to the practically important situation of small ‘claim load’.

The statistical method for estimating the unknown solutions∗ can be based on
the empirical moment generating function̂mU (s) := n−1

∑n
i=1 e

sUi (cf. (1.1)).
A natural estimator̃s defined by the equation̂mY (s̃) = 1/p has nice asymptotic
properties including a.s.-consistency and asymptotic normality, providing1/p is
fixed or bounded [15, p. 130]. However, the asymptotic behaviour ofs̃ when both
n and1/p are large does not seem to have been addressed so far.

2. Statement of the main results

2.1. Regularity and scaling

DenoteωX := ess supX ≡ sup{x : P(X > x) > 0}. Therefore, cases A and B
mentioned in Section 1.1 correspond toωX = 0 andωX = +∞, respectively. In
view of the above interpretation of the problem in terms of branching populations

1 Distributions considered in [8,13] are subject to the conditionx−̺h(x) → const > 0
asx → +∞, whereh(x) = − log P{Xi > x} and1 < ̺ < ∞ (see [8, Theorem 2.3]),
which is more restrictive than our assumption of regular variation ofh(·).

2 Some applications of our results to the REM are discussed in [4].
3 Similar questions are of interest in other areas such as queueing theory (the equilibrium

waiting time inM/G/1 queue, see [1, p. 269, 281]) and storage models (a dam process,
see [1, Ch. XIII,§ 3, 4]).
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(see Section 1.2.2), this labelling can be mnemonically associated withannihila-
tion (case A) andbranching(case B).

Let us make the following notational convention that will allow us to consider
both cases A and B simultaneously.

Notation. In the symbols±, ∓, ≷ and the like, theupper sign always refers to
case B, whereas thelower sign corresponds to case A. The notationa± stands for
the powera±1.

Assume thatP{X < ωX} = 1, that is,X is finite with probability1 (case B)
or there is no atom at pointωX = 0 (case A). Consider thelog-tail distribution
function

h(x) :=

{ − log P{X > x}, x ∈ R (case B),
− log P{X > −1/x}, x > 0 (case A).

(2.1)

Clearly, in both casesh(·) is non-negative, non-decreasing, and right-continuous;
it takes finite values in its domain andh(x) → +∞ asx→ +∞. According to the
above±-convention, the upper tail of the distribution ofX can be written down in
a united manner as

P{X > x} = exp{−h(±x±)}, x < ωX . (2.2)

We will be working under the assumption thath is regularly varying at infinity
with index̺ (we write h ∈ R̺), where1 < ̺ < ∞ (case B) or0 < ̺ < ∞
(case A). That is, for any constantκ > 0 we haveh(κx)/h(x) → κ̺ asx→ +∞.

It follows that thecumulant generating function

H(t) := ± log E[etX ], t ≥ 0, (2.3)

is well defined; furthermore, it is non-decreasing andH(t) → +∞ ast → +∞.
The link between the asymptotics of the functionsh andH at infinity is character-
ized by the fundamental Kasahara–de Bruijn exponential Tauberian theorem (see
Lemma 3.1 below). In particular,h ∈R̺ if and only ifH ∈R̺′ , where

̺′ :=
̺

̺∓ 1
. (2.4)

Recalling that1 < ̺ <∞ in case B and0 < ̺ <∞ in case A, we get

1 < ̺′<∞ (case B), 0 < ̺′< 1 (case A). (2.5)

According to (2.3), the expected value of the sumSN (t) is given by

E[SN (t)] =
N

∑

i=1

E[etXi ] = Ne±H(t),

suggesting that the functionH(t) sets up an appropriate (exponential) scale of
the formeλH(t) for the number of termsN = N(t). However, the suitable rate
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function is notH(t), but rather its particular asymptotic versionH0(t) ∼ H(t)
provided by the Kasahara–de Bruijn Tauberian theorem.4

The following two values appear to be critical with respect to the scaleλH0(t),

λ1 :=
̺′

̺
, λ2 := 2̺′ ̺′

̺
, (2.6)

in that the LLN and CLT break down belowλ1 andλ2, respectively. Let us also
introduce the parameter

α ≡ α(̺, λ) :=

(

̺λ

̺′

)1/̺′

, (2.7)

which will be shown to play the role of characteristic exponent in the limit laws
and hence provides their natural parametrization. In particular, note that the critical
values ofα corresponding toλ1, λ2 are given byα1 = 1, α2 = 2, respectively.

Below the critical pointλ2, the behaviour of the sumSN (t) becomes more
sensitive to subtle details of the upper tail’s structure. However, enough control
is gained via imposing a slightly stronger condition on regularity of the log-tail
distribution functionh— that ofnormalized regular variation, h ∈ NR̺ (see [5,
p. 15]). This condition will be discussed in detail in Section 5.1. One of equivalent
definitions is that for anyε > 0, the functionh(x)/x̺−ε is ultimately increasing,
while h(x)/x̺+ε is ultimately decreasing (see Lemma 5.2 below).

Under this assumption, the relationship between the functionsh andH0 can
be characterized explicitly (see Section 5.1). Here we note thatH0(t) can be
found (for all t large enough) as the unique solution of the equation̺′H0 =
̺h((̺′H0/t)

±) (Lemma 5.5).

2.2. Statement of the main theorems

We proceed to state our results. The first two theorems assert thatSN (t) satisfies
the Law of Large Numbers and the Central Limit Theorem in their conventional
form provided that the number of termsN in SN (t) grows fast enough relative to
t (roughly speaking,N ≫ eλ1H0(t) for LLN or N ≫ eλ2H0(t) for CLT). Denote

λ := lim inf
t→∞

logN

H0(t)
. (2.8)

Theorem 2.1. Suppose thath ∈R̺ andλ > λ1. Then

SN (t)

E[SN (t)]

p−→ 1 (t→ ∞).

Theorem 2.2. Suppose thath ∈R̺ andλ > λ2. Then

SN (t) − E[SN (t)]
√

Var[SN (t)]

d−→ N (0, 1) (t→ ∞).

4 This makes no difference in the ‘crude’ Theorems 2.1 and 2.2 below, but is crucial for
the more delicate Theorems 2.3, 2.4 and 2.5.
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For our further theorems, we need to specify the growth rate ofN more pre-
cisely.

Scaling Assumption. The numberN = N(t) of terms in the sumSN (t) satisfies
the condition

lim
t→∞

N e−λH0(t) = 1, (2.9)

whereλ is a parameter such that0 < λ <∞.

Let µ = µ(t) be the (unique) solution of the equation

h
(

(µH0(t)/t)
±)

=
λ̺

̺′
h
(

(̺′H0(t)/t)
±)

.

One can show (see Lemma 5.8 below) that

lim
t→∞

µ(t) =
̺λ

α
. (2.10)

Let us also set

η1(t) :=
µ(t)H0(t)

t
. (2.11)

We are now in a position to state one of our main results.

Theorem 2.3. Assume thath ∈ NR̺ and the scaling condition (2.9) is fulfilled.
Let 0 < λ < λ2 and set

B(t) := e±µ(t)H0(t), (2.12)

A(t) :=











E[SN (t)] (λ1 < λ < λ2),

NB1(t) (λ = λ1),

0 (0 < λ < λ1),

(2.13)

whereB1(t) is a truncated exponential moment,

B1(t) := E
[

etX
1{X≤±η1(t)}

]

. (2.14)

Then, ast→ ∞,
SN (t) −A(t)

B(t)

d−→ Fα , (2.15)

whereFα is a stable law with exponentα ∈ (0, 2) defined in (2.7) and skewness
parameterβ = 1. The characteristic function of the lawFα is given by

φα(u) =















exp

{

−Γ (1 − α)|u|α exp

(

− iπα
2

sgnu

)}

(α 6= 1)

exp

{

iu(1 − γ) − π

2
|u|

(

1 + i sgnu · 2

π
log |u|

)}

(α = 1)

(2.16)
whereγ = 0.5772 . . . is the Euler constant.

Remark. For1 < α < 2, we use an analytic continuation of the gamma function
in (2.16), Γ (1 − α) = Γ (2 − α)/(1 − α).
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Let us now describe what happens at the critical points. In fact, the Law of
Large Numbers and the Central Limit Theorem prove to be valid atλ1 andλ2,
respectively; however the normalizing constants now require some truncation.

Theorem 2.4. Under the hypotheses of Theorem 2.3, letλ = λ1. Then

SN (t)

NB1(t)

p−→ 1 (t→ ∞), (2.17)

whereB1(t) is given by (2.14).

Theorem 2.5. Under the hypotheses of Theorem 2.3, letλ = λ2. Then

SN (t) − E[SN (t)]
√

NB2(t)

d−→ N (0, 1) (t→ ∞),

whereB2(t) is a truncated exponential moment of ‘second order’,

B2(t) := E
[

e2tX
1{X≤±η1(t)}

]

. (2.18)

Remark. Note that by (2.9), we haveB(t) ∼ N±µ(t)/λ ast → ∞. In particular,
(2.10) implies that in case B the normalization functionB(t) amounts toN raised
to the powerµ(t)/λ ∼ ̺/α > 1/α. This should be compared to classical results
in the i.i.d. case (see [12, p. 37, 46]), where the normalization is essentially of the
formN1/α. As we see, in case B the sumSN (t) has a limiting stable distribution
by virtue of a non-classical (heavier) normalization. As for case A, we haveB(t) ∼
N−µ(t)/λ → 0, which has no analogies in classical theory.

Overall, it may seem surprising that i.i.d. random variables having finite ex-
ponential moments (or even bounded above as in case A) can be in the domain
of attraction of a stable law, reproducing under various scalings the conventional
picture of classical theory (but with non-classical normalization). It is also quite
striking that the two apparently different cases A and B have so much in com-
mon and lead to the same limiting distributions. These results suggest that stable
distributions as the limit laws for sums of i.i.d. random variables, possess greater
universality than it used to be believed, and may appear as limits for various classes
of parametric transformations of the formYi(t) = F (Xi, t), where(Xi) is an i.i.d.
sequence satisfying appropriate conditions on the upper distribution tail. We intend
to explore this issue in greater detail in the future.

The remaining part of the paper is laid out as follows. In Section 3 we specify
our regularity assumption on the distribution tail of the random variablesXi and
formulate the Tauberian theorem of Kasahara–de Bruijn. In Section 4 we prove the
LLN aboveλ1 (Theorem 2.1) and the CLT aboveλ2 (Theorem 2.2). In Section 5,
the condition of normalized regular variation of the functionh is discussed. Section
6 is devoted to the proof of Theorem 2.3 (0 < λ < λ2). First, we demonstrate
convergence to an infinitely divisible law (Theorem 6.1), which is then reduced to
a canonical stable form (Theorem 6.2). In Section 7 we prove the LLN atλ = λ1

(Theorem 2.4) and the CLT atλ = λ2 (Theorem 2.5). The Appendix contains the
proof of Lemma 5.13 about the asymptotics of truncated exponential moments.
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3. Preliminaries

3.1. Regularity

Let us start by making precise our basic assumption on the regularity of the log-tail
distribution functionh defined in (2.1).

Regularity Assumption. The functionh is regularly varying at∞ with index̺
(we writeh ∈R̺), such that1 < ̺ < ∞ (case B) or0 < ̺ < ∞ (case A). That
is, for every constantκ > 0

lim
x→∞

h(κx)

h(x)
= κ̺. (3.1)

It is known thath ∈R̺ if and only if h admits theKaramata representation

h(x) = c(x) exp

{
∫ x

a

̺+ ε(u)

u
du

}

(x ≥ a) (3.2)

for somea > 0, wherec(·), ε(·) are measurable functions andc(x) → c0 > 0,
ε(x) → 0 asx→ ∞ [5, p. 21].

The following result, known as theUniform Convergence Theorem(UCT) [5,
p. 22], significantly extends the definition of regular variation.

Lemma 3.1 (UCT). If h ∈R̺ with ̺ > 0 then (3.1) holds uniformly inκ on each
interval (0, b].

3.2. Exponential Tauberian theorems

Recall that thegeneralized inverseof a functionf is defined byf←(y) := inf{x :
f(x) > y} [5, p. 28]. The next result shows that the generalized inverse inherits
the property of regular variation and, quite naturally, is an ‘asymptotic inverse’ (cf.
[5, p. 28]).

Lemma 3.2. If f ∈R̺ with ̺ > 0, then there existsg ∈R1/̺ such that

g(f(x)) ∼ f(g(x)) ∼ x (x→ ∞).

Suchg is unique to within asymptotic equivalence, and one version isf←.

For 1 < ̺ < ∞ (case B) or0 < ̺ < ∞ (case A), we define the ‘conjugate’
index̺′ by the formula (2.4). Rearranging (2.4), we obtain the useful identities

̺′

̺
= ±(̺′− 1),

̺

̺′
= ̺∓ 1. (3.3)

We are now in a position to formulate the exponential Tauberian theorems of
Kasahara and de Bruijn (see [5, Theorems 4.12.7, 4.12.9]), which play the funda-
mental role in our analysis. We will state both theorems in a unified way and in
terms convenient for our purposes.
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Lemma 3.3 (Kasahara–de Bruijn’s exponential Tauberian theorem).Let h be the
log-tail distribution function (2.2) andH the corresponding cumulant generating
function (2.3). Suppose thatϕ ∈R1/̺ and put

ψ(u) := uϕ(u)∓ ∈R1/̺′. (3.4)

Then

h(x) ∼ 1

̺
ϕ←(x) (x→ ∞) ⇐⇒ H(t) ∼ 1

̺′
ψ←(t) (t→ ∞). (3.5)

In particular,h ∈R̺ if and only ifH ∈R̺′.

Let us point out that the function

H0(t) :=
1

̺′
ψ←(t) ∼ H(t), (3.6)

appearing in (3.5), is the rate functionH0 mentioned above in Section 2.1.

3.3. Some elementary inequalities

The following inequalities will be useful (see [11, Theorem 41, p. 39]):Leta > 0,
b > 0 anda 6= b, then

pap−1(a− b) < ap − bp < pbp−1(a− b) (0 < p < 1), (3.7)

pbp−1(a− b) < ap − bp < pap−1(a− b) (p < 0 or p > 1). (3.8)

Let us also record a technical lemma.

Lemma 3.4. Consider the function

vλ(x) := λ(x− 1) ∓ (x̺′− x), x ≥ 1. (3.9)

If λ > λ1 then there existsx0 > 1 such thatvλ(x) > 0 for all x ∈ (1, x0).

Proof. By (2.6) and (3.3), we haveλ1 = ̺′/̺ = ±(̺′− 1). Note thatvλ(1) = 0
andv′λ(x) = λ ∓ (̺′x̺′−1 − 1), so thatv′λ(1) = λ ∓ (̺′ − 1) = λ − λ1 >
0, according to the hypothesis of the lemma. Therefore, Taylor’s formula yields
vλ(x) = (x− 1)

(

v′λ(1) + o(1)
)

> 0 for all x > 1 sufficiently close to1. �

4. Limit theorems above the critical points

In this section, the parameterλ is defined by (2.8). We also recall thatλ1 andλ2

are given by (2.6).
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4.1. Proof of Theorem 2.1

Let us set

S∗N (t) :=
SN (t)

E[SN (t)]
=

1

N

N
∑

i=1

etXi∓H(t),

so one has to prove thatS∗N (t)
p−→ 1 ast → ∞. To this end, it suffices to show

thatlimt→∞ E|S∗N (t) − 1|r = 0 for somer > 1.
By von Bahr–Esseen’s inequality [3, Theorem 2], for anyr ∈ [1, 2] we have

E|S∗N − 1|r ≤ 2N1−r
E|etX∓H(t) − 1|r ≤ 2N1−r

E|etX∓H(t) + 1|r.

Applying the elementary inequality(x + 1)r ≤ 2r−1(xr + 1) (x > 0, r ≥ 1),
which follows easily from Jensen’s inequality, we further obtain

E|S∗N − 1|r ≤ 2rN1−re±H(rt)∓rH(t) + 2rN1−r. (4.1)

SinceH ∈R̺′ andH(t) ∼ H0(t) (see (3.6)), we get, using (2.8),

lim inf
t→∞

[

(r − 1) logN

H(t)
∓ H(rt)

H(t)
± r

]

= λ(r − 1) ∓ r̺′± r ≡ vλ(r).

By Lemma 3.4 we can chooser > 1 such thatvλ(r) > 0, which implies that the
right-hand side of (4.1) is bounded bye−cH(t) = o(1) ast→ ∞.

4.2. Proof of Theorem 2.2

Denote

σ(t)2 := Var[etX ] = E[e2tX ] −
(

E[etX ]
)2

= e±H(2t) − e±2H(t). (4.2)

Lemma 4.1. Ast→ ∞,

σ(t)2 = e±H(2t)(1 + o(1)) and e±2H(t) = σ(t)2 o(1). (4.3)

Proof. In view of (4.2) it suffices to prove the first statement. Note that

e∓H(2t)σ(t)2 = 1 − e∓H(2t)±2H(t). (4.4)

Using thatH ∈R̺′ we obtain

lim
t→∞

(

±H(2t)

H(t)
∓ 2

)

= ±(2̺′− 2) = |2̺′− 2| > 0

(see (2.5)). Hence, the exponential term on the right-hand side of (4.4) vanishes as
t→ ∞, and (4.3) follows. �

The following lemma is a variation of Chebyshev’s inequality.

Lemma 4.2. LetY ≥ 0 be a random variable. Then for anyτ > 0 and allk ≤ m

E
[

Y k
1{Y >τ}

]

≤ τk−m
E[Y m] . (4.5)
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Proof. Similarly to the usual proof of Chebyshev’s inequality, we write

E[Y m] ≥ E
[

Y m
1{Y >τ}

]

= E
[

Y m−k · Y k
1{Y >τ}

]

≥ τm−k
E
[

Y k
1{Y >τ}

]

,

whence (4.5) follows. �

Proof of Theorem 2.2. In view of Lemma 4.1, the statement of the theorem may
be rewritten as follows:

SN (t) −N e±H(t)

N1/2 e±H(2t)/2

d−→ N (0, 1) (t→ ∞). (4.6)

Denote

Yi ≡ Yi(t) :=
etXi

N1/2 e±H(2t)/2
. (4.7)

1) According to the Central Limit Theorem for independent summands (see,
e.g., [14, Theorem 18, p. 95]), we firstly need to check that for allτ > 0

N
∑

i=1

P{Yi(t) > τ} = N P{Y (t) > τ} → 0 (t→ ∞).

Assuming thatr > 1, let us apply Chebyshev’s inequality (of order2r) and recall
the definition (4.7) to obtain

N P{Y > τ} ≤ Nτ−2r
E
[

Y 2r
]

= N1−rτ−2re±H(2rt)∓rH(2t). (4.8)

Using thatH ∈R̺′ andH(t) ∼ H0(t) ast→ ∞, we find

lim inf
t→∞

[

(r − 1) logN

H(t)
∓ H(2rt)

H(t)
± rH(2t)

H(t)

]

= λ(r − 1) ∓ (2r)̺′± r2̺′

= 2̺′
(

2−̺′

λ(r − 1) ∓ (r̺′− r)
)

≡ 2̺′

vλ′(r),

whereλ′ := 2−̺′

λ and the functionvλ(·) is defined in (3.9). By the theorem’s
hypothesis,λ′ > 2−̺′

λ2 = λ1 and hence, by Lemma 3.4,vλ′(r) > 0 for a suitable
r > 1. Therefore, the right-hand part of (4.8) tends to zero ast→ ∞.

2) Next, we have to verify that for everyτ > 0, ast→ ∞,

N
∑

i=1

{

E
[

Y 2
i 1{Yi≤τ}

]

−
(

E
[

Yi1{Yi≤τ}
]

)2
}

= N Var
[

Y 1{Y≤τ}
]

→ 1. (4.9)

By Lemma 4.1,Var[Y ] ∼ 1/N , so the condition (4.9) can be rewritten in the form

N Var[Y ] −N Var
[

Y 1{Y≤τ}
]

→ 0.

Expanding the variances, the left-hand side is represented as

N E
[

Y 2
1{Y >τ}

]

−N E
[

Y 1{Y >τ}
]

E
[

Y
(

1 + 1{Y≤τ}
)]

. (4.10)

Applying Lemma 4.2 to the first term in (4.10) (withk = 2, m = 2r > 2) yields

N E
[

Y 2
1{Y >τ}

]

≤ Nτ−2(r−1)
E
[

Y 2r
]

= o(1), (4.11)
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as shown in the first part of the proof. The second term in (4.10) is bounded by
2N(E[Y ])2 = 2e∓H(2t)±2H(t), which iso(1) by Lemma 4.1. Hence, (4.10) van-
ishes ast→ ∞, and (4.9) follows.

3) Finally, we need to show that

N
∑

i=1

E[Yi] −
N

∑

i=1

E
[

Yi1{Yi≤τ}
]

= N E
[

Y 1{Y >τ}
]

→ 0.

Indeed, applying Lemma 4.2 withk = 1,m = 2r (r > 1), we obtain the estimate

N E
[

Y 1{Y >τ}
]

≤ Nτ1−2r
E
[

Y 2r
]

= o(1)

(see (4.8), (4.11)), and the proof is complete. �

5. Normalized regularity and the Basic Identity

5.1. Normalized regular variation

From now on we impose the following

Normalized Regularity Assumption. The log-tail distribution functionh is nor-
malized regularly varyingat infinity, h ∈ NR̺ (with 1 < ̺ < ∞ in case B and
0 < ̺ <∞ in case A), that is, it can be represented in the form

h(x) = c exp

{
∫ x

a

̺+ ε(u)

u
du

}

(x ≥ a), (5.1)

wherec = const > 0 andε(x) → 0 asx → ∞ (see [5, p. 15]). That is to say, the
functionc(·) in the Karamata representation (3.2) is now required to be a constant.

More insight into the property of normalized regular variation is given by the
following lemma (cf. [5, p. 15]).

Lemma 5.1. Leth be a positive (measurable) function. Thenh ∈NR̺ if and only
if h is differentiable (a.e.) and

xh′(x)

h(x)
→ ̺ (x→ ∞). (5.2)

Another important characterization of normalized regularly varying functions
is provided by the following lemma (see [5, Theorem 1.5.5]).

Lemma 5.2. A positive (measurable) functionh is normalized regularly varying
with index̺, i.e.h ∈NR̺, if and only if for everyε > 0 the functionh(x)/x̺−ε

is ultimately increasing and the functionh(x)/x̺+ε is ultimately decreasing.

The next lemma yields a useful integral representation of normalized regularly
varying functions.
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Lemma 5.3. A functionh ∈NR̺ can be written in the form

h(x) = h(a) +

∫ x

a

h(u)

u
(̺+ ε(u)) du (x ≥ a), (5.3)

whereε(x) → 0 asx→ ∞.

Proof. Consider the function

D(x) := h(x) − h(a) −
∫ x

a

h(u)

u
(̺+ ε(u)) du.

Obviously,D(a) = 0. Representation (5.1) implies thath is absolutely continuous,
hence the derivativeh′ exists (a.e.) and

h′(x) = c exp

{
∫ x

a

̺+ ε(u)

u
du

}

· ̺+ ε(x)

x
=
h(x)(̺+ ε(x))

x
. (5.4)

Therefore,D(·) is absolutely continuous as well and we have (a.e.)

D′(x) = h′(x) − h(x)

x
(̺+ ε(x)) = 0.

Hence,D(x) ≡ 0 and (5.3) follows. �

The following lemma can be viewed as a refinement of the UCT (Lemma 3.1)
for the case of normalized regular variation.

Lemma 5.4. If h ∈NR̺ (̺ > 0) then, uniformly inκ on each interval[κ0, κ1] ⊂
(0,∞),

h(κx) − h(x)

h(x)
= (κ̺ − 1)(1 + o(1)) (x→ ∞).

Proof. Suppose for definiteness thatκ ≥ 1 (the case0 < κ ≤ 1 is considered
similarly). Using the representation (5.3), after the substitutionu = xy we have

h(κx) − h(x)

h(x)
=

∫ κ

1

h(xy)

h(x)y
(̺+ ε(xy)) dy. (5.5)

The UCT (Lemma 3.1) implies that the function under the integral sign converges
to ̺y̺−1 uniformly on [1, κ1] asx → ∞. Therefore, the integral in (5.5) con-
verges, uniformly inκ ∈ [1, κ1], to

∫ κ

1
̺y̺−1 dy = κ̺ − 1. �
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5.2. Basic Identity

Let us now re-examine the application of the Kasahara–de Bruijn Tauberian theo-
rem (Lemma 3.3) to our situation. Note that the function̺h(x) is continuous and,
by Lemma 5.2, ultimately strictly increasing, hence its ordinary inverseϕ(t) :=
(̺h)−1(t) is well defined and strictly increasing for allt large enough. In turn, for
all x large enough we have

ϕ−1(x) = ̺h(x). (5.6)

It then follows that the functionψ(t) defined by (3.4) is ultimately strictly in-
creasing as well. For supposes < t, then the required inequalityψ(s) < ψ(t) is
equivalent tosϕ(s)∓ < tϕ(t)∓, or

ϕ−1(x)x∓ < ϕ−1(y)y∓, (5.7)

wherex := ϕ(s), y := ϕ(t) andx < y. Using (5.6), inequality (5.7) can be
rewritten ash(x)x−̺+ε < h(y)y−̺+ε with ε := ̺ ∓ 1 > 0, and the latter holds
by Lemma 5.2.

Consequently, the inverse functionψ−1 exists and is ultimately increasing.
Therefore, formula (3.6) is reduced to

ψ−1(t) = ̺′H0(t). (5.8)

For the sake of notational convenience, let us introduce the function

s(t) :=

(

̺′H0(t)

t

)±
, t > 0. (5.9)

SinceH0 ∈ R̺′ , we haves(t) ∈ R±(̺′−1) = R|̺′−1| and hences(t) → ∞ as
t→ ∞.

We are now in a position to characterize explicitly the link arising between
the regularly varying functionsh andH0 through the Tauberian correspondence.
Remarkably, due to normalized regular variation ofh, such a relationship has the
form of an exact equation, rather than just an asymptotic relation.

Lemma 5.5. For all t large enough, the functionsh andH0 satisfy the equation

̺′H0(t) ≡ ̺h(s(t)). (5.10)

Remark. Remembering thats(·) is expressed throughH0 (see (5.9)), the identity
(5.10) can be viewed as a functional equation forH0.

Proof of Lemma 5.5. Let us applyψ to (5.8) and use relation (3.4) to obtain

t = ψ
(

̺′H0(t)
)

= ̺′H0(t)ϕ
(

̺′H0(t)
)∓
,

that is,

ϕ
(

̺′H0(t)
)

=

(

̺′H0(t)

t

)±
≡ s(t).

Hence, using (5.6) we get̺′H0(t) = ϕ−1(s(t)) = ̺h(s(t)). �
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In order to rewrite equation (5.10) in a form suitable for us (to be called ‘Basic
Identity’), we need to make some technical preparations. Recall thatα is defined
in (2.7). Conversely, using (3.3)λ is expressed in either of the two forms

λ =
̺′α̺′

̺
≡ ±(̺′− 1)α̺′

. (5.11)

Lemma 5.6. For large enoughs, there exists the unique rootµ̃(s) of the equation

h
(

(µ̃/̺′)±s
)

= α̺′

h(s), (5.12)

given by the formula

µ̃(s)± =
(̺′)±

s
h−1

(

α̺′

h(s)
)

. (5.13)

In particular, if α = 1 thenµ̃(s) ≡ ̺′.

Proof. Recall thath is normalized regularly varying and (absolutely) continuous
(see (5.1)). Therefore, by Lemma 5.2 it is strictly increasing in some[a,∞), so the
(usual) inverseh−1 exists and is defined on[h(a),∞). Hence, the equation (5.12)
can be solved to yield formula (5.13), which is well defined for alls large enough.
The caseα = 1 follows easily. �

Lemma 5.7. The functioñµ(·) defined in Lemma 5.6 is ultimately bounded above
and below, and furthermore, for alls large enough

min{1, α̺′/2̺} ≤
(

µ̃(s)

̺′

)±
≤ max{1, α2̺′/̺}. (5.14)

Proof. If α ≤ 1 then, due to monotonicity of the functionh−1,

1

s
h−1

(

α̺′

h(s)
)

≤ 1

s
h−1(h(s)) = 1. (5.15)

In the caseα > 1, we note that for everyκ > 1 and alls large enough

κh(s) ≤ h(κ2/̺s), (5.16)

becauseh ∈R̺ and hencelims→∞ h(κ2/̺s)/h(s) = κ2 > κ. Applying inequal-
ity (5.16) withκ = α̺′

> 1, we get

1

s
h−1

(

α̺′

h(s)
)

≤ 1

s
h−1

(

h(α2̺′/̺s)
)

= α2̺′/̺. (5.17)

Combining (5.15) and (5.17) and using (5.13), the upper bound (5.14) follows.
Similarly, forα ≥ 1 we obtain

1

s
h−1

(

α̺′

h(s)
)

≥ 1

s
h−1(h(s)) = 1,

whereas forα < 1

1

s
h−1

(

α̺′

h(s)
)

≥ 1

s
h−1

(

h(α̺′/2̺s)
)

= α̺′/2̺,

which is consistent with the lower bound in (5.14). �
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Lemma 5.8. The functioñµ(s) has a finite limit ass→ ∞, given by

lim
s→∞

µ̃(s) = ̺′α̺′−1. (5.18)

Proof. Sinceµ̃(·) is bounded (see Lemma 5.7), the UCT (Lemma 3.1) implies

h
(

(µ̃(s)/̺′)±s
)

∼
(

µ̃(s)

̺′

)±̺

h(s) (s→ ∞).

Comparing this with equation (5.12), we obtain
(

µ̃(s)

̺′

)±̺

∼ α̺′

(s→ ∞),

whence it follows that the limit (5.18) exists and is given by

lim
s→∞

µ̃(s) = ̺′α±̺′/̺ = ̺′α̺′−1,

in view of the first of the identities (3.3). �

Let us define the function

µ(t) := (µ̃ ◦ s)(t) = µ̃(s(t)), (5.19)

wheres(t) is given by (5.9). From the definition of̃µ(s) (see Lemma 5.6), it is
clear that for allt large enough the functionµ(t) satisfies the equation

h
(

(µ(t)/̺′)±s(t)
)

= α̺′

h(s(t)). (5.20)

Sinces(t) → ∞, Lemma 5.8 implies that

lim
t→∞

µ(t) = ̺′α̺′−1. (5.21)

For τ > 0, denote

ητ (t) :=
µ(t)H0(t) ± log τ

t
. (5.22)

In particular, forτ = 1

η1(t) =
µ(t)H0(t)

t
=
µ(t)

̺′
s(t)± (5.23)

(see (5.9)). From equations (5.23) and (5.21) it follows

η1(t)
± =

(

µ(t)/̺′
)±
s(t) → ∞ (t→ ∞). (5.24)

Furthermore, it is easy to see that

ητ (t)

η1(t)
= 1 ± log τ

µ(t)H0(t)
→ 1 (t→ ∞). (5.25)

Hence, using (5.21) we obtain

tητ (t)

H0(t)
=
ητ (t)

η1(t)
µ(t) → ̺′α̺′−1 (t→ ∞). (5.26)

The following lemma will play a crucial role in our analysis.
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Lemma 5.9 (Basic Identity).For all t large enough,

h
(

η1(t)
±)

≡ λH0(t). (5.27)

Proof. From (5.23) and (5.20) it follows

h
(

η1(t)
±)

= h
(

(µ(t)/̺′)±s(t)
)

= α̺′

h(s(t)).

By Lemma 5.5 and relation (5.11), this coincides withλH0(t). �

5.3. Implications of the Basic Identity

In this section, we prove three useful lemmas concerning the asymptotics of vari-
ous ‘perturbations’ of the functionh(η1(t)±). Of particular importance for further
calculations will be Lemma 5.12.

Lemma 5.10. Let g(·) be such thattg(t)/H0(t) → 0 as t → ∞. Setη̃τ,y(t) :=
ητ (t) ∓ yg(t). Then for eachτ > 0 uniformly iny on every finite interval[y0, y1]

lim
t→∞

h(η̃τ,y(t)±)

tη̃τ,y(t)
=

α

̺
. (5.28)

In particular, for g ≡ 0 one has

lim
t→∞

h(ητ (t)±)

tητ (t)
=

α

̺
. (5.29)

Proof. Relation (5.26) implies that, uniformly iny ∈ [y0, y1],

κy(t) :=
η̃τ,y(t)

η1(t)
= 1 ± log τ

tη1(t)
∓ ytg(t)

H0(t)
· H0(t)

tη1(t)
→ 1 (t→ ∞).

Therefore, by the UCT (Lemma 3.1), uniformly iny on any finite interval[y0, y1]

h(η̃±τ,y) = h(κ±y η
±
1 ) ∼ κ±̺

y h(η±1 ) ∼ h(η±1 ).

Hence, taking into account Lemma 5.9 and the limit (5.21), we obtain

h(η̃±τ,y)

tη̃τ,y
∼ h(η±τ )

tητ
=
λH0(t)

tη1
=

λ

µ(t)
→ λ

̺′α̺′−1
=

α

̺
,

in view of formula (2.7). �

Lemma 5.11. Under the conditions of Lemma 5.10, for eachτ > 0

lim
t→∞

h(ητ (t)±) − h(η̃τ,y(t)±)

tg(t)
= αy,

uniformly iny on every finite interval[y0, y1].
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Proof. Similarly to the proof of Lemma 5.10 we get

κy(t) :=
η̃τ,y(t)

ητ (t)
= 1 ∓ ytg(t)

H0(t)
· H0(t)

tητ (t)
→ 1 (t→ ∞)

uniformly in y ∈ [y0, y1]. Therefore, for all large enought the functionκy(t) is
uniformly bounded,0 < κ0 ≤ κy(t) ≤ κ1 <∞. Applying Lemma 5.4 we have

h(η±τ ) − h(η̃±τ,y) ∼ −h(η±τ )(κ±̺
y − 1) (t→ ∞). (5.30)

Furthermore,

κ±̺
y − 1 =

(

1 ∓ yg(t)

ητ (t)

)±̺

− 1 ∼ − ̺yg(t)

ητ (t)
.

Substituting this into (5.30) and using the limit (5.29), we finally obtain

h(η±τ ) − h(η̃±τ,y) ∼ h(η±τ )
̺yg(t)

ητ (t)
∼ αytg(t),

and the lemma follows. �

Lemma 5.12. For eachτ > 0

lim
t→∞

[

h(ητ (t)±) − h(η1(t)
±)

]

= α log τ.

Proof. Apply Lemma 5.11 withy = log τ , g(t) = 1/t. �

5.4. Asymptotics of truncated exponential moments

The goal of this section is to establish some general estimates for truncated ex-
ponential moments, which will be instrumental later on. Recall that the parameter
α > 0 is defined in (2.7).

Lemma 5.13. If τ > 0 is a fixed number then
(i) for eachp > α,

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X≤±ητ}

]

=
α

p− α
;

(ii) for eachp < α,

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X>±ητ}

]

=
α

α− p
.

The proof of this lemma is deferred to the Appendix.
In the casep = α not covered by Lemma 5.13, we prove one crude estimate

that will nevertheless be sufficient for our purposes below.
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Lemma 5.14. For α > 0, denote

Bα(t) := E
[

eαtX
1{X≤±η1}

]

, (5.31)

whereη1(t) is defined in (5.23). Then

bα(t) := e∓αtη1+h(η±

1
)Bα(t) → +∞ (t→ ∞). (5.32)

Proof. Setη̃1(t) := ητ (t) ∓ g(t), g(t) := t−1+̺′/2. Integration by parts yields

E
[

eαtX
1{X≤±η1}

]

≥ E
[

eαtX
1{±η̃1<X≤±η1}

]

=

∫ ±η1

±η̃1

eαtx d
(

1 − e−h(±x±)
)

= −
∫ ±η1

±η̃1

eαtx d
(

e−h(±x±)
)

≥ −e±αtη1−h(η±

1
) + αt

∫ ±η1

±η̃1

eαtx−h(±x±) dx.

(5.33)
Making here the substitution±x = η1(t) ∓ yg(t) =: η̃1,y(t), we obtain

bα(t) ≥ −1 + αtg(t)

∫ 1

0

e−αtg(t)y+h(η±

1
)−h(η̃±

1,y) dy. (5.34)

By Lemma 5.11,h(η±1 )−h(η̃±1,y) = αtg(t)y(1+o(1)), uniformly iny ∈ [0, 1]. So
for anyδ > 0 and all large enought we haveh(η±1 )− h(η̃±1,y) ≥ αtg(t)y(1− δ).
Returning to (5.34) we get

bα(t) ≥ −1 + αtg(t)

∫ 1

0

e−αtg(t)δy dy = −1 +
1

δ

(

1 − e−αtg(t)δ
)

,

hencelim inft→∞ bα(t) ≥ (1/δ) − 1. Since the numberδ > 0 can be chosen
arbitrarily small, it follows thatlim inft→∞ bα(t) = +∞, as claimed. �

The next lemma provides some additional information in the casep = α.

Lemma 5.15. For anyτ > 0

lim
t→∞

e∓αtη1+h(η±

1
)
E
[

eαtX
(

1{X≤±ητ} − 1{X≤±η1}
)]

= α log τ. (5.35)

Proof. Let us assume for definiteness thatτ ≥ 1, so that±ητ (t) ≥ ±η1(t).
Integrating by parts and using the substitutionx = ±η1(t)+(1/t) log y, we obtain

e∓αtη1+h(η±

1
)
E
[

eαtX
1{±η1<X≤±ητ}

]

= 1 − eα log τ+h(η±

1
)−h(η±

τ ) + α

∫ τ

1

eα log y+h(η±

1
)−h(η±

y ) dy

y
.

(5.36)

By Lemma 5.12 we haveh(η±1 ) − h(η±y ) → −α log y ast → ∞, uniformly in
1 ≤ y ≤ τ , and in particularh(η±1 ) − h(η±τ ) → −α log τ . It is then easy to see
that the right-hand side of (5.36) tends toα log τ ast→ ∞. �
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For convenience of reference, we record here some further estimates for trun-
cated moments of the random variableetX under a certain normalization adopted
in this section. Namely, consider the random variables

Yi ≡ Yi(t) :=
etXi

(NBα(t))1/α
, (5.37)

whereN is subject to the scaling assumption (2.9) andBα is defined in (5.31). For
α > 0 andτ > 0 denote

η̃α,τ (t) := ± log(NBα(t))

αt
± log τ

t
. (5.38)

From (5.37) it is seen that the inequalityY (t) > τ is equivalent toX > ±η̃α,τ (t).
Recalling representation (5.32) and using the Basic Identity (5.27), we obtain

NBα(t) ∼ eλH0(t)±αtη1−h(η±

1
) bα(t) = e±αtη1 bα(t). (5.39)

Therefore, formula (5.38) implies

η̃α,τ (t) = η1(t) ±
log bα(t)

αt
+
O(1)

t
, (5.40)

whence it follows that for all sufficiently larget

±η̃α,τ (t) > ±η1(t). (5.41)

Lemma 5.16. For anyp such that0 ≤ p < α and eachτ > 0

lim
t→∞

N E
[

Y (t)p
1{Y (t)>τ}

]

= 0. (5.42)

In particular, for p = 0 this yields

lim
t→∞

N P{Y (t) > τ} = 0. (5.43)

Proof. From (5.37), (5.38) and (5.41) we obtain

E
[

Y p
1{Y >τ}

]

≤ (NBα)−p/α
E
[

eptX
1{X>±η1}

]

.

Using Lemma 5.13(ii) and relations (2.9), (5.39), (5.27) and (5.32), we get

N

(NBα)p/α
E
[

eptX
1{X>±η1}

]

∼ eλH0(t)

e±ptη1b p/α
α

· α

α− p
e±ptη1−h(η±

1
)

=
α

α− p
b−p/α
α = o(1).

(5.44)

Thus, relation (5.42) is proved. �

Denote

yα ≡ yα(t) :=
e±tη1(t)

(NBα(t))1/α
, (5.45)

so thatY > yα if and only if X > ±η1. From (5.39) it follows thatyα(t) ∼
bα(t)−1/α → 0.
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Lemma 5.17. Suppose thatp > 0. Then for anyτ > 0

lim
t→∞

N E
[

Y (t)p
1{yα(t)<Y (t)≤τ}

]

= 0. (5.46)

Proof. Pick a numberq such that0 < q < min{α, p}. Applying Chebyshev’s
inequality (4.5), we can write

N E
[

Y p
1{yα<Y≤τ}

]

≤ Nτp−q
E
[

Y q
1{yα<Y }

]

=
Nτp−q

(NBα)q/α
E
[

eqtX
1{X>±η1}

]

,

and the latter expression iso(1) as shown above (see (5.44)). �

Lemma 5.18. Suppose thatp > α > 0. Then for anyτ > 0

lim
t→∞

N E
[

Y (t)p
1{Y (t)≤τ}

]

= 0. (5.47)

Proof. Let us write

N E
[

Y p
1{Y≤τ}

]

= N E
[

Y p
1{Y≤yα}

]

+N E
[

Y p
1{yα<Y≤τ}

]

. (5.48)

Applying Lemma 5.13(i), one can show, similarly to (5.44), that the first term on
the right-hand side of (5.48) is asymptotically equivalent to

eλH0(t)

e±ptη1(t)bα(t)p/α
· α

p− α
e±ptη1−h(η±

1
) =

α

p− α
bα(t)−p/α = o(1),

while the second term on the right of (5.48) iso(1) by Lemma 5.17. �

6. Limit theorems below λ2

6.1. Convergence to an infinitely divisible law

Denote

Yi ≡ Yi(t) :=
etXi

B(t)
, (6.1)

whereB(t) is defined in (2.12). According to classical theorems on weak conver-
gence of sums of independent random variables (see [14, p. 80–82]), in order that
the sum

S∗N (t) :=
N

∑

i=1

Yi(t) −A∗(t)

converges in distribution to an infinitely divisible law with characteristic function

φ(u) = exp

{

iau− σ2u2

2
+

∫

|x|>0

(

eiux − 1 − iux

1 + x2

)

dL(x)

}

, (6.2)

it is necessary and sufficient that the following three conditions be fulfilled:
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1) In all points of its continuity, the functionL(·) satisfies

L(x) =

{

lim
t→∞

N P{Y ≤ x} (x < 0),

− lim
t→∞

N P{Y > x} (x > 0).
(6.3)

2) The constantσ2 is given by

σ2 = lim
τ→0+

lim sup
t→∞

N Var
[

Y 1{Y ≤τ}
]

= lim
τ→0+

lim inf
t→∞

N Var
[

Y 1{Y ≤τ}
]

.

(6.4)
3) For eachτ > 0, the constanta satisfies the identity

lim
t→∞

{

N E
[

Y 1{Y ≤τ}
]

−A∗(t)
}

= a+

∫ τ

0

x3

1 + x2
dL(x)−

∫ ∞

τ

x

1 + x2
dL(x).

(6.5)

As the first step towards the proof of Theorem 2.3, we establish convergence
to an infinitely divisible law.

Theorem 6.1. Suppose that0 < λ < λ2. Then

SN (t) −A(t)

B(t)

d−→ Fα (t→ ∞),

whereB(t) andA(t) are defined in (2.12) and (2.13), respectively, andFα is an
infinitely divisible law with characteristic function

φα(u) = exp

{

iau+ α

∫ ∞

0

(

eiux − 1 − iux

1 + x2

)

dx

xα+1

}

, (6.6)

where the constanta is given by

a =







απ

2 cos απ
2

(α 6= 1),

0 (α = 1).
(6.7)

6.2. Proof of Theorem 6.1

The proof is broken down into steps according to formulas (6.3), (6.4) and (6.5).

Proposition 6.1. The functionL defined in (6.3) is given by

L(x) =

{

0, x < 0,
−x−α, x > 0.

(6.8)

Proof. SinceY ≥ 0, it is clear thatL(x) ≡ 0 for x < 0. Henceforth, assume that
x > 0. Using (6.1), (2.12) and (2.9), we obtain

N P{Y (t) > x} = N P
{

X > ±ηx(t)
}

∼ eλH0(t)−h(ηx(t)±) (t→ ∞),

whereηx(t) is defined in (5.22). Furthermore, by Lemmas 5.9 and 5.12

λH0(t) − h(ηx(t)±) = h(η1(t)
±) − h(ηx(t)±) → −α log x (t→ ∞),

so from (6.3) we getL(x) = −e−α log x = −x−α. �
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Proposition 6.2. For σ2defined in (6.4), for allα ∈ (0, 2) we haveσ2 ≡ 0.

Proof. Since0 ≤ Var
[

Y 1{Y≤τ}
]

≤ E
[

Y 2
1{Y≤τ}

]

, it suffices to prove that

lim
τ→0+

lim
t→∞

N E
[

Y 2
1{Y≤τ}

]

= 0.

Recalling (6.1) and (2.12) and using condition (2.9), we have

N E
[

Y 2
1{Y≤τ}

]

∼ e(λ∓2µ(t))H0(t) E
[

e2tX
1{X≤±ητ}

]

(t→ ∞). (6.9)

Application of Lemma 5.13(i) withp = 2 and0 < α < 2 yields

E
[

e2tX
1{X≤±ητ}

]

∼ α

2 − α
e±2tητ−h(η±

τ ) (t→ ∞).

Returning to (6.9) and recalling relation (5.22), we conclude that

N E
[

Y 2
1{Y≤τ}

]

∼ α

2 − α
eλH0(t)∓2µ(t)H0(t)±2tητ−h(η±

τ )

=
α

2 − α
eλH0(t)−h(η±

τ )+2 log τ → α

2 − α
e(2−α) log τ =

α

2 − α
τ2−α,

where we have also used Lemmas 5.9 and 5.12. Letting nowτ → 0+, we see that
τ2−α → 0, since2 − α > 0. �

Proposition 6.3. SetA∗(t) := A(t)/B(t), whereB(t) and A(t) are given by
(2.12) and (2.13), respectively. Then the limit

Dα(τ) := lim
t→∞

{

N E
[

Y 1{Y ≤τ}
]

−A∗(t)
}

(6.10)

exists for allα ∈ (0, 2) and is given by

Dα(τ) =







α

1 − α
τ1−α (α 6= 1),

log τ (α = 1).
(6.11)

Proof. Using expressions (6.1), (2.12) and recalling (5.22) we obtain

N E
[

Y 1{Y ≤τ}
]

= Ne∓µ(t)H0(t) E
[

etX
1{X≤±ητ}

]

. (6.12)

1) Let0 < α < 1, thenA∗ = 0. Lemma 5.13(i) withp = 1 yields

E
[

etX
1{X≤±ητ}

]

∼ α

1 − α
e±tητ−h(η±

τ ) (t→ ∞).

Hence, on account of the scaling condition (2.9) the right-hand side of (6.12) is
asymptotically equivalent to

α

1 − α
eλH0(t)∓µ(t)H0(t)±tητ−h(η±

τ ) =
α

1 − α
elog τ+λH0(t)−h(η±

τ ).

Finally, using the Basic Identity (5.27) and Lemma 5.12, we get

log τ + λH0(t) − h(η±τ ) → (1 − α) log τ (t→ ∞), (6.13)
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and (6.11) follows.
2) Let1 < α < 2. Using (6.12), (2.9), (2.12) and (2.13), we obtain

N E
[

Y 1{Y ≤τ}
]

−A∗(t) = −N e∓µ(t)H0(t) E
[

etX
1{X>±ητ}

]

∼ − α

α− 1
elog τ+λH0(t)−h(η±

τ ),

where we used Lemma 5.13(ii) withp = 1. Applying (6.13) we arrive at (6.11).
3) Letα = 1. Similarly as above, we obtain using Lemmas 5.15 and 5.9:

N E
[

Y 1{Y ≤τ}
]

−A∗(t)

= Ne∓µ(t)H0(t)
(

E
[

etX
1{X≤±ητ}

]

− E
[

etX
1{X≤±η1}

]

)

∼ eλH0(t)∓µ(t)H0(t) · e±tη1−h(η±

1
) log τ

= log τ,

and the proof is complete. �

Proposition 6.4. The parametera defined in (6.7) satisfies the identity (6.5) with
L(·) specified by (6.8), that is,

Dα(τ) = a+ α

∫ τ

0

x2−α

1 + x2
dx− α

∫ ∞

τ

x−α

1 + x2
dx (τ > 0), (6.14)

whereDα(τ) is given by (6.11).

Proof. 1) Let0 < α < 1. Observe that
∫ τ

0

x2−α

1 + x2
dx =

1

1 − α
τ1−α −

∫ τ

0

x−α

1 + x2
dx.

Due to (6.7) and (6.11), equation (6.14) amounts to
∫ ∞

0

x−α

1 + x2
dx =

π

2 cos απ
2

, (6.15)

which is true by [9, #3.241(2)].
2) For1 < α < 2, we note that

∫ ∞

τ

x−α

1 + x2
dx =

τ1−α

α− 1
−

∫ ∞

τ

x2−α

1 + x2
dx,

and hence, in view of (6.11) and (6.7), equation (6.14) is reduced to

π

2 cos απ
2

+

∫ ∞

0

x2−α

1 + x2
dx = 0, (6.16)

which again follows from [9, #3.241(2)].
3) Finally, forα = 1 equation (6.14) takes the form

log τ =

∫ τ

0

x

1 + x2
dx−

∫ ∞

τ

1

(1 + x2)x
dx. (6.17)



26 G. Ben Arous et al.

The integrals on the right of (6.17) are easily evaluated to yield

1

2
log(1 + x2)

∣

∣

∣

∣

τ

0

− 1

2
log

x2

1 + x2

∣

∣

∣

∣

∞

τ

= log τ,

and this completes the proof of Proposition 6.4. �

Proof of Theorem 6.1. Gathering the results of Propositions 6.1, 6.2, 6.3 and 6.4,
which identify the ingredients of the limit characteristic functionφα, we conclude
that Theorem 6.1 is true. �

6.3. Stability of the limit law

In this section, we show that the infinitely divisible lawFα with characteristic
function (6.6) is in fact stable.

Theorem 6.2. The characteristic functionφα determined by Theorem 6.1 corre-
sponds to a stable probability law with exponentα ∈ (0, 2) and skewness param-
eterβ = 1, and can be represented in the canonical form (2.16).

Remark. Formula (6.8) and Proposition 6.2 imply thatφα corresponds to a stable
law (see [12, Theorem 2.2.1]). We give a direct proof of this fact by reducingφα to
the canonical form (2.16), which allows us to identify explicitly all the parameters.

Proof of Theorem 6.2. According to general theory5 (see, e.g., [17, p. 441]), the
characteristic function of a stable law with characteristic exponentα ∈ (0, 2)
admits a canonical representation

φα(u) =







exp
{

iµu− b|u|α
(

1 − iβ sgnu · tan
πα

2

)}

(α 6= 1),

exp
{

iµu− b|u|
(

1 + iβ sgnu · 2

π
log |u|

)}

(α = 1),
(6.18)

whereµ is a real constant,b > 0 and−1 ≤ β ≤ 1.
1) Suppose that0 < α < 1. It is easy to verify that, due to (6.7) and (6.15), the

characteristic function (6.6) can be rewritten in the form

φα(u) = exp

{

α

∫ ∞

0

eiux − 1

xα+1
dx

}

. (6.19)

The integral in (6.19) can be evaluated (see [12, p. 43–44]):
∫ ∞

0

eiux − 1

xα+1
dx = −Γ (1 − α)

α
|u|α e−(iπα/2) sgn u,

and (6.18) follows withµ = 0, b = Γ (1 − α) cos(πα/2) > 0, β = 1.
2) Let now1 < α < 2. Using (6.16), we can rewrite (6.6) in the form

φα(u) = exp

{

α

∫ ∞

0

(eiux − 1 − iux)
dx

xα+1

}

. (6.20)

5 See [10] for a nice review of the history of the canonical form of stable distributions.
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The integral in (6.20) is given by (see [12, p. 44–45])
∫ ∞

0

(eiux − 1 − iux)
dx

xα+1
=
Γ (2 − α)

α(α− 1)
|u|α e(iπα/2) sgn u,

which yieldsµ = 0, b = −Γ (2 − α)/(α− 1) · cos(πα/2) > 0, β = 1.
3) If α = 1, by the substitutiony = |u|x in (6.7) we get

φ1(u) = exp

{

−|u|
∫ ∞

0

1 − cos y

y2
dy − iu

∫ ∞

0

(

sin y − u2y

u2 + y2

)

dy

y2

}

.

(6.21)
It is well known (see [9, #3.782(2)]) that

∫ ∞

0

1 − cos y

y2
dy =

π

2
. (6.22)

To evaluate the second integral in (6.21), let us represent it in the form
∫ ∞

0

(

sin y

y
− 1

1 + y

)

dy

y
+

∫ ∞

0

(

1

1 + y
− u2

u2 + y2

)

dy

y
. (6.23)

It is known that (see [9, #3.781(1)])
∫ ∞

0

(

sin y

y
− 1

1 + y

)

dy

y
= 1 − γ, (6.24)

whereγ is the Euler constant. Furthermore, note that
∫ ∞

0

(

1

1 + y
− u2

u2 + y2

)

dy

y
=

1

2
log

u2 + y2

(1 + y)2

∣

∣

∣

∣

∞

0

= − log |u|. (6.25)

Returning to (6.23), from (6.24) and (6.25) we get
∫ ∞

0

(

sin y − u2y

u2 + y2

)

dy

y2
= 1 − γ − log |u|. (6.26)

Therefore, substituting expressions (6.22) and (6.26) into (6.21), we obtain the
required canonical form (6.18) withµ = 1 − γ, b = π/2, β = 1. �

7. Limit theorems at the critical points

7.1. Proof of Theorem 2.4

The statement of Theorem 2.4 follows from Theorem 2.3 (forα = 1). Indeed,
according to (2.13) and (5.31), we haveA(t) = NB1(t) = Ne±tη1−h(η±

1
) b1(t).

Furthermore, (2.12), (2.9), (5.27) and (5.32) imply

A∗(t) :=
A(t)

B(t)
∼ eλH0(t)−h(η±

1
) b1(t) = b1(t) → ∞ (t→ ∞). (7.1)

Therefore, dividing (2.15) byA∗(t) → ∞ we obtainSN (t)/A(t) = 1 + op(1),
which is in agreement with (2.17).
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7.2. Proof of Theorem 2.5

Denote

Yi ≡ Yi(t) :=
etXi

(NB2(t))1/2
, (7.2)

whereB2(t) is defined in (5.31). According to the classical CLT for independent
summands (see [14, Theorem 18, p. 95]), it suffices to check that for anyτ > 0
the following three conditions are satisfied ast→ ∞:

N P{Y (t) > τ} → 0, (7.3)

N
(

E
[

Y (t)21{Y (t)≤τ}
]

−
(

E
[

Y (t)1{Y (t)≤τ}
])2

)

→ 1, (7.4)

N E
[

Y (t)1{Y (t)>τ}
]

→ 0. (7.5)

Firstly, note that condition (7.3) is guaranteed by (5.43). Next, let us show that

(

E
[

Y 1{Y≤τ}
])2

E
[

Y 21{Y≤τ}
] =

(

E
[

etX
1{X≤±η̃2,τ}

])2

E
[

e2tX1{X≤±η̃2,τ}
] → 0 (t→ ∞). (7.6)

Indeed, taking into account inequality (5.41) and representation (5.32), the ratio in
(7.6) is estimated from above by

(

E
[

etX
])2

E
[

e2tX1{X≤±η1}
] =

e±2H(t)

B2(t)
=
e±2H(t)+h(η±

1
)∓2tη1

b2(t)
. (7.7)

Using the Basic Identity (5.27) and the limit (5.26), we have

±2H(t) + h(η±1 ) ∓ 2tη1(t)

H0(t)
→ ±2 ± (̺′− 1)2̺′∓ ̺′2̺′

= ±(2 − 2̺′

) < 0,

and hence the numerator on the right of (7.7) tends to zero. Moreover,b2(t) → ∞
(see (5.32)), and therefore (7.6) is validated. Hence, condition (7.4) amounts to

N E
[

Y 2
1{Y≤τ}

]

→ 1. (7.8)

Noting that, according to (7.2), (5.45) and (2.18),

N E
[

Y 2
1{Y≤y2}

]

=
1

B2
E
[

e2tX
1{X≤±η1}

]

≡ 1,

we can rewrite (7.8) in the formN E
[

Y 2
1{y2<Y≤τ}

]

→ 0. The latter is true by
Lemma 5.17, and (7.4) follows.

Finally, condition (7.5) is fulfilled by Lemma 5.16 (withp = 1 < 2 = α).
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Appendix. Proof of Lemma 5.13

A.1. Proof of part (i)

1) We start by showing that for a suitableθ ∈ (0, 1)

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X≤±θ±ητ}

]

= 0. (A.1)

SinceE
[

eptX
1{X≤±θ±ητ}

]

≤ e±ptθ±ητ , it suffices to check that

e∓ptητ+h(η±
τ )±ptθ±ητ = e±(θ±−1)ptητ+h(η±

τ ) → 0 (t→ ∞). (A.2)

Using the limit (5.29) of Lemma 5.10, we have

±(θ± − 1)ptητ + h(η±τ )

tητ
→ ±(θ± − 1)p+

α

̺
(t→ ∞). (A.3)

Sincetητ (t) ∼ µ(t)H0(t) → +∞ ast → ∞, the limit (A.2) will follow if there
existsθ ∈ (0, 1) such that the right-hand side of (A.3) is negative. The latter is
guaranteed by the fact that0 < (1 ∓ α/p̺)± < 1, which can be easily verified
using thatp > α > 0 and̺ > 1 (case B) or̺ > 0 (case A).

2) Similarly to (5.33), integration by parts yields

E
[

eptX
1{±θ±ητ <X≤±ητ}

]

= − e±ptητ−h(η±
τ ) + e±ptθ±ητ−h(θ±η±

τ )

+ pt

∫ ±ητ

±θ±ητ

eptx−h(±x±) dx.
(A.4)

Using thath(·) ≥ 0, we have

e±ptθ±ητ−h(θ±η±
τ ) ≤ e±ptθ±ητ = o(1) e±ptητ−h(η±

τ ) (t→ ∞), (A.5)

as shown above (see (A.2)).
3) Let us set̃ητ (t) := ητ (t) ∓ g(t), whereg(t) := t−1+̺′/2. Using thatητ ∈

R̺′−1, we getη̃τ/ητ → 1 (t → ∞) and so for allt large enough,±θ±ητ ≤
±η̃τ ≤ ±ητ .

Let us now show that for anyx ∈ [±θ±ητ ,±η̃τ ] and allt large enough,

ptx− h(±x±) ≤ ±ptη̃τ − h(η̃±τ ). (A.6)

Settingκτ (t) := ±x±/η̃±τ , we have

1 ≥ κτ (t) ≥ θ

(

ητ

η̃τ

)±
→ θ (t→ ∞),

so by Lemma 5.4 we can write

h(±x±) − h(η̃±τ ) = h(η̃±τ )(κ̺
τ − 1)(1 + o(1)) (t→ ∞), (A.7)
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uniformly in x ∈ [±θ±ητ ,±η̃τ ]. Furthermore, inequality (3.8) yields

κ̺
τ − 1 =

(±x
η̃τ

)±̺

− 1 ≥ (±̺)
(±x
η̃τ

− 1

)

=
̺

η̃τ
(x∓ η̃τ ). (A.8)

Combining (A.7) and (A.8) and using Lemma 5.10, we obtain that for allt large
enough, uniformly inx,

h(±x±) − h(η̃±τ ) ≥ h(η̃±τ )

η̃τ
̺(x∓ η̃τ )(1 + o(1))

= αt(x∓ η̃τ )(1 + o(1))

≥ pt(x∓ η̃τ ),

(A.9)

sincex∓ η̃τ ≤ 0 andα < p. Hence, inequality (A.6) follows.
4) We now want to prove that, ast→ ∞,

I(t) := pte∓ptητ+h(η±
τ )

∫ ±η̃τ

±θ±ητ

eptx−h(±x±) dx→ 0. (A.10)

Applying the estimate (A.6) we get

I(t) ≤ pte−ptg(t)+h(η±
τ )−h(η̃±

τ )
[

±(1 − θ±)ητ − g(t)
]

. (A.11)

Recalling thatg(t) ≥ 0 and0 < θ < 1, it is easy to check that±(1 − θ±)ητ −
g(t) ≤ ητ (1 − θ)/θ. Therefore, from (A.11) it follows

I(t) ≤ p(1 − θ)

θ
tητ e

−ptg(t)+h(η±
τ )−h(η̃±

τ ). (A.12)

It remains to observe that the pre-exponential factor in (A.12) grows only polyno-
mially, sincetητ (t) ∼ const · H0(t) ∈ R̺′ , while by Lemma 5.11,−ptg(t) +

h(η±τ ) − h(η̃±τ ) ∼ −(p− α)tg(t), wherep− α > 0 andtg(t) = t̺
′/2. Hence the

right-hand side of (A.12) is exponentially small ast→ ∞, and (A.10) follows.
5) Let us check that

J(t) := pte∓ptητ+h(η±
τ )

∫ ±ητ

±η̃τ

eptx−h(±x±) dx→ p

p− α
(t→ ∞).

(A.13)
By the substitution±x = ητ (t)∓ yg(t) =: η̃τ,y(t), the left-hand side of (A.13) is
rewritten in the form

J(t) = ptg(t)

∫ 1

0

e−ptg(t)y+h(η±
τ )−h(η̃±

τ,y) dy. (A.14)

Note that by Lemma 5.11,h(η±τ ) − h(η̃±τ,y) = αtg(t)y(1 + o(1)) as t → ∞,
uniformly in y ∈ [0, 1]. Therefore, given anyε such that0 < ε < p − α, for all
large enought and ally ∈ [0, 1] we have

(α− ε)tg(t)y ≤ h(η±τ ) − h(η̃±τ,y) ≤ (α+ ε)tg(t)y.
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Substituting these estimates into (A.14) and evaluating the integral, we obtain

J(t) ≤ ptg(t)

∫ 1

0

e−(p−α−ε)tg(t)y dy =
p(1 − e−(p−α−ε)tg(t))

p− α− ε

and similarly

J(t) ≥ ptg(t)

∫ 1

0

e−(p−α+ε)tg(t)y dy =
p(1 − e−(p−α+ε)tg(t))

p− α+ ε
.

Using thatp− α± ε > 0 andtg(t) → ∞, in the limit ast→ ∞ we get

p

p− α+ ε
≤ lim inf

t→∞
J(t) ≤ lim sup

t→∞
J(t) ≤ p

p− α− ε
.

Lettingε ↓ 0, we obtainlimt→∞ J(t) = p/(p− α), as required.
6) Finally, formulas (A.1), (A.4), (A.5), (A.10) and (A.13) yield

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X≤±ητ}

]

= −1 +
p

p− α
=

α

p− α
.

A.2. Proof of part (ii)

The proof follows similar steps as above.
1′) Let us start by showing that ifp < α then for anyθ > 1

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X>±θ±ητ}

]

= 0. (A.15)

Note that Lemma 4.2 (withk = p, m = α) yields

E
[

eptX
1{X>±θ±ητ}

]

≤ E[eαtX ] · e∓θ±(α−p)tητ = e±H(αt)∓θ±(α−p)tητ .

Hence, it suffices to check that

e∓ptητ+h(η±
τ ) · e±H(αt)∓θ±(α−p)tητ = o(1) (t→ ∞). (A.16)

To this end, recall thatH ∼ H0 ∈R̺′ and use (5.26), (5.29) and (3.3) to obtain

lim
t→∞

±H(αt) ∓ (p+ θ±(α− p)) tητ + h(η±τ )

H0(t)

= ±α̺′∓ (p+ θ±(α− p))̺′α̺′−1 +
α

̺
̺′α̺′−1

= ±(1 − θ±)(α− p)̺′α̺′−1 < 0,

sinceθ > 1 andα > p. Hence, the limit (A.16) follows.
2′) Similarly to (A.4), integration by parts yields

E
[

eptX
1{±ητ <X≤±θ±ητ}

]

= − e±ptθ±ητ−h(θη±
τ ) + e±ptητ−h(η±

τ )

+ pt

∫ ±θ±ητ

±ητ

eptx−h(±x±) dx.
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Let us check here that

e±(θ±−1)ptητ−[h(θη±
τ )−h(η±

τ )] = o(1) (t→ ∞). (A.17)

Recalling thath ∈R̺ and using the limit (5.29), we obtain

h(θη±τ ) − h(η±τ ) ∼ (θ̺ − 1)h(η±τ ) ∼ (θ̺ − 1)α

̺
tητ .

Hence,

±(θ± − 1)ptητ − [h(θη±τ ) − h(η±τ )]

tητ
→ ±p(θ± − 1) − (θ̺ − 1)α

̺
. (A.18)

Inequality (3.8) givesθ̺−1 = (θ±)±̺−1 ≥ ±̺(θ±−1), so the right-hand side of
(A.18) is estimated from above by±p(θ±−1)∓α(θ±−1) = ±(θ±−1)(p−α) <
0, becauseθ > 1 andp < α. Hence, the limit (A.17) follows.

3′) Let us set̃ητ (t) := ητ (t)± g(t), where the functiong is as in step 3 above,
and check that forx ∈ [±η̃τ ,±θ±ητ ] and all sufficiently larget

ptx− h(±x±) ≤ ±ptη̃τ − h(η̃±τ ).

To this end, similarly to (A.9) we show that

h(±x±) − h(η̃±τ ) ≥ αt(x∓ η̃τ )(1 + o(1)) ≥ pt(x∓ η̃τ ),

using thatx∓ η̃τ ≥ 0 andα > p.
4′) The goal here is to prove that, ast→ ∞,

I(t) := pte∓ptητ+h(η±
τ )

∫ ±θ±ητ

±η̃τ

eptx−h(±x±) dx→ 0.

Using the estimate from step 3′, we obtain

I(t) ≤ pteptg(t)+h(η±
τ )−h(η̃±

τ )
(

±θ±ητ ∓ η̃τ

)

≤ p(θ − 1)tητ e
ptg(t)+h(η±

τ )−h(η̃±
τ ).

We can now apply the same argument as in step 4 above, using that

ptg(t) + h(η±τ ) − h(η̃±τ ) ∼ −(α− p) tg(t) (t→ ∞).

5′) Similarly as in step 5 above [cf. (A.13)], one proves that

lim
t→∞

pte∓ptητ+h(η±
τ )

∫ ±η̃τ

±ητ

eptx−h(±x±) dx =
p

α− p
.

In so doing, the suitable substitution in the integral is of the form±x = ητ (t) ±
yg(t), and an auxiliaryε involved in the estimation is taken to satisfy0 < ε <
α− p.

6′) Combining the limit formulas obtained in steps 1′– 5′ we obtain

lim
t→∞

e∓ptητ+h(η±
τ )

E
[

eptX
1{X>±ητ}

]

= 1 +
p

α− p
=

α

α− p
.
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