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Abstract

In this paper, a non-reflection internal wave maker algorithm is included in the in-
compressible Smoothed Particle Hydrodynamics (ISPH) model for the wavasimul
tions. A momentum source term derived from the Boussinesq equations is employed and
added into the Lagrangian form of Navier-Stokes equations for the wave generations
that are not affected by the reflected waves. In this work, the technical detailsef impl
menting the internal force into the ISPH equations are proposed and a series of numer
cal tests are carried out for the selection of relevant parameters and investigation of their
sensitivities in different wave conditions. In model applications, the problems of wave
propagation and reflection from a vertical wall are studied to verify the modetperfo
mance in standing wave generations and the non-reflection characteristics of the internal

wave maker. Furthermore, a more challenging wave decompaosition proceasreper
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ezoid breakwater is presented, which has not been fully investigated by other similar
particle-based methods. The simulation results of wave surface profile on six wave
gauges agree well with the experimental results and this shows that the present model
with the non-reflection internal wave maker can provide a more robust particlé mode
ing tool for the long time simulation of wave and wave-structure interactions.

Key words. ISPH, internal wave maker, non reflection, momentum source term, wave

simulation, long time.

1. Introduction

In the wave generations in Smoothed Particle Hydrodynamics (SPH) method, the
pioneering work was attributed to Monaghaf {4 in which the initial wave paraea
ters based on the theoretical solutions were given to fluid particles to generate the target
wave. However, this method can only be used to generate one wave event, such as the
solitary wave, because the resetting of the initial wave parameters is not possible for a
series of wave event. Another more widely used wave generation algorithm employs the
numerical wave paddle to push the water in different frequencies and amplitudes and
can generate any kinds of the wave found in the practical field. The earliest work to use
the wave paddle for a mesh free particle modeling approach could be traced back to
Monaghan {994). The wave paddle was also used by Gotoh and Saka#)( who
studied the cnoidal wave breaking on a slope using the Moving Particle Semi-implicit
(MPS) methodK{oshizuka et al., 1998Later studies have extended this popular wave
making concept to the periodic wavésifyyer and Gotoh, 20)9solitary wavesjao
et al., 201y and random waveg(ieng et al., 20001In these models, a common pra

tice was that the moving solid wall was used to simulate the wave paddle and the wave



maker theory was applied in the same way as that used in the laboratory experiment. In
this sense, the SPH wave paddle can genasatgety of the laboratory waves without
any theoretical barrier. Besides, numerical water waves can also be generated by other
similar approaches, such as a moving structieg!{ti et al., 200pand landslide f&
ing object Du et al., 200Qh

By using the above wave paddle method, however, for thetiomgvave-structure
interaction problems, the reflectwaves from the structure will propagate towards the
numerical wave maker and then be reflected. The secondary reflection wave could
strongly affect the subsequent wave propagations and result in the distortions of wave
height. This has put a severe limitation on the particle-based methods to achieve
long-time wave simulations, which is indispensible in order to get the required wave
dynamics. One temporary remedy would be to employ a large computational domain to
delay the arrival of the secondary reflection wave at expensive CPU cost. On the other
hand, the damping layer concept can also be used to absorb the undesirable reflection
waves. However, this can also increase the size of computational domain, and the eff
ciency of numerical damping layers could differ quite a lot under different wavé cond
tions and layer coefficients/olteni et al., 2011 By realizing the above issues,
self-absorbing wave paddle concept was initially presented for the separation of incident
ard reflected waves byrigaard and Brorsen (19)%lthough this method involved
complex wave theories and relied on the accuracy of water surface measurements in
front of the wave paddle. Following this, Hayashi etZ00() developed a practical
non-reflection wave paddle to study the wave breaking and overtopping of an upright
seawall using the MPS method. Shibata et’all1{) proposed a transparent boundary

condition to generate the incident waves and absorb the reflected waves in a much more



efficient manner. Didier and Neve&(12) developed a piston-type wave maker with the
dynamic wave absorption functions which enabled the outgoing waves to be absorbed
The most recent work was attributed to Skillen etZl1Q who used a paddle-free

Fourier series analysis to assign the particles with relevant wave kinematics and they
computed a large-scale SPH wave propagation problem.

Although quite a few good progresses have been made in the wave genegtions u
ing the above non-reflection wave paddles, alternative approaches should be explored to
find a more efficient wave generation mechanism in SPH so as to fully demonstrate its
potentials in the wave simulation. In this regard, some previous studies in the grid-based
models could provide useful information. For example, consider another category of
wave generation techniques without the existence of wave paddle, i.e. the internal wave
maker. Based on the Boussinesg-type equations, Larsen and Daagyiftroduced a
novel wave maker theory to generate the regular waves in shallow water condition. In
their method, the free surface undulation was not induced by the wave padtdie but
ated by using an artificial mass source term derived from the mass conservatien princ
ple. Lee and SuhL99 developed a similar approach based on the mild slope equations
and investigated the mass and energy transports of the generated wave. Furthermore,
Lin and Liu (1999 proposed an internal wave generator following the mass caaserv
tion in Navier-Stokes (Npequations and different types of the waves were generated by
using ths mass source function. Also, Wei et @999 derived a more efficient sha
low-water based transfer function that related the source amplitude to the surface wave
characteristics. In their work, both the mass and momentum source functions have been
presented. Later improvements have been made by Choi andXa@h §nd Ha et al.

(2013. However, all of these investigatiowgre based on the grid method, while there



has been no similar work carried out in the particle modeling approach so far.

In this paper, by following Wei et alL$99 and Choi and Yoor?(009 an internal
wave maker algorithm based on the momentum conservation is introduced into the
ISPH method. In the formulations the momentum source term derived from the regular
wave theories will be added into the NS equations as an internal particle force, which
changes with the time and position. Therefore, time-dependent water waves csn be ea
ily generated through the periodic internal forces. The efficiency and accuracy of the
coupled internal wave maker and ISPH model are verified by several benchmark wave
simulations, including the wave generation under different wave and source ragion p
rameters, and the standing waves in front of a vertical wall. Finally, a regular wave in-
teraction with submerged breakwater is simulated, in which the higher harmonics are
separated from the main wave whepasgsover the breakwater into the deep water
region. This test case has been considered as being challenging for the particle-based
models as it involves long time wave simulations in which the secondary wawe refle

tion is quite substantial.

2. ISPHM odel with Internal Wave Gener ator

2.1 Momentum source term and wave absor bing region

2.1.1 Momentum source term

In Lin and Liu's model1999 with the mass source term, a source region was
placed in the center of water flume and mass generations and deductions ot¢curred a
ternately during a wave period. For the Lagrangian methods such as SPH, this mass
variation process could cause the drastic increase or decrease of the particle numbers,

and the numerical shocks will be inevitably induced when the particles are either added



into or removed from the computational source region. To avoid this problem, in this
study the momentum source term derived by Wei ei. &b is added into our ISPH
modelasthe internal wave maker instead of the mass source term. In Wei et al.'s theory,
the Boussinesq equation®gre employed to derive the relationships between the surface
elevation and the target wave. Following this, Choi and Yaon4 presented the gen-

eral form of the momentum source function as

f.(%y.t) :T;jf:jf:S(x, y.w)exdi k y—at Jdk de (1)

where f_ is the momentum source term with the acceleration dimensiodete-
mines the shape of the source function,and y denote the coordinate direction, t is
the time, @ is the wave frequency and the y direction wave nurisbét’ = ksing,
where 6 is the angle between the wave direction andaxis and k is the wave
number.

The shape functionS has the following form:
S(x Y,)= Dexpt-BX ) )
where D is the source function amplitude and can be determined from the desired
wave characteristics, ang is a parameter associated with the width of source-fun
tion. D has the following form:

_ Hy(@” —aygk’hy) cosd
ol k[ 1-a(kny)’ | 3)

where |, :Wz/ﬁ’expﬂ(2 / (48 )]. For the monochromatic wave, is the wave
height, g is the gravitational acceleratior, is the still water depthg;, and o are

the parameters in the Boussinesq equations and they have the following relations:
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a1=a+:—3 (4)
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where z, denotes the representative velocity position in a depth-averaged model, and
usually takesz, =—-0.53y,.
The value of the source function is larger in the middle and enaatlthe two sides.

Then the relationship betweep and the source region widtW = 2|X 4, — X . is

XD (Ko~ X 1= XA €. F 1= O= expt- 5 ©
W=2/9p5 (7)

where x,,, and x_, are the positions of the lateral and middle source regiens, r

mid
spectively.
The relationship between the source region width and wave lengthL is

W=6(L/2),i.e. s=2W /L, then g can be represented

80

i ®

where 0 is related to the source region setup for a specific problem. As long as the
source region width and wave length are known,is determined.
For the ISPH modeling of monochromatic waves in this study, the monochromatic

wave the momentum source function vector in Eq. (1) can be simphftee vertical

2-D formas T, =(f,_.f, ), where f,, is zeroin the present model and
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This equation has the dimension of acceleration, which can be directly added into

the N-S equations in the SPH methods.

2.1.2 Wave absorbing region

The proposed internal wave generator should be employed more efficiently together
with a wave absorbing region to prevent the undesirable secondary wave reflections.
Following Wei and Kirby {995, the commonly adopted absorbing coefficient has the
following form:

X_Xst| -1
) exp“ X ,ﬁ (10)

where A is the absorbing coefficientx, and x, are the starting position and
length of the absorbing region, respectivety, and n, are the empirical damping
coefficients to be determined via the numerical test. Following Lin and?Diw), the
coefficients in this model are taken & =200 and n,=10. A has the unit of 1/s

and will be added into the N-S equations in the next section.

As far as we know, there are not many investigations made on the wave absorbing
region in particle-based methods. XA {0 presented a simple exponential absorbing
zone to dampen the linear wave reflection, in which the absorbing length was 2 times of
the wave length and the particle velocities were directly reduced at the end of each time
step. Shibata et al2(11) presented a wave absorbing method and they assigned a large

viscosity value to the fluid particles in the absorbing region with a dimension of 1.98 ~



2.83 times of the wave length. Besides, Molteni et’al1f developed a matched layer
approach for the shallow wave damping, in which a shorter damping distance of 1.5
wave length was used. In the present method, the absorbing length is chosen as 2.0
wave length following Wei and Kirbyl099. It is noted that equally good wave damp-

ing effects have been achieved in all of these cases.

2.2 SPH governing equations

In the ISPH method the N-S equations are written in the Lagrangian form and the
advection term is automatically calculated through the tracking of particle motion. Thus
the numerical diffusion arising from the successive interpolation of the advectmn fun
tion used in the Eulerian grid-based method is avoided iS¢ Due to the Lagran-
gian nature of SPH, the internal wave generator with the mass source term is difficult to
be added into th8PHequations, while for the momentum source term the adding of the
additional source force could be much more straightforward. As a result, the final form
of the complet mass and momentum conservation equations with the momentum

source term as well as the wave absorbing term are written as

V.-0=0, (11)
@z—EVp+ Q+UOV2U+EV-f+Tm+ AU, (12)
d  p p

where G is the particle velocity vectorp is the fluid density,p is the particle pr=
sure, v, is the laminar kinematic viscosityt is the sub-particle scale (SPS) turbu-
lence stress, which was originally presented by Gotoh i1y f_ is the momen-

tum source term that changes in the x direction and keeps constant in the z direction.

The detailed expression of . has been presented in Eq. (9, is the wave absorb-



ing coefficient with the expression as shown in Eq. (10).
The eddy viscosity assumption is used to model the SPS turbulence strass
2
n=pu§ -54), (13)

where o, is the turbulence eddy viscosityg, = (ou, /ox; +0u; /0% )/2is the strain rate

k is the turbulence kinetic energy; is the Kronecker delta function. The turbulence
eddy viscosityy, is calculated by a modified Smagorinsky model as follows:

v, =(Cty)’|S, (14)

where ¢, is the Smagorinsky constant (=0.1, is the particle spacing representing

the characteristic length scale of the small eddies,|5hti1/‘25j S;| is the local strain

rate.

In the ISPH model the two-step projection method is used to solve $ieds- (11)
and (12) which is composed of two steps. The first step is an explicit integratien of v
locity in thetime, resulting in a temporary non-zero divergence velocity field that

should be corrected in the next step. Because of the spatial variations of Eq. (9) in the x
direction, the momentum source ter) will generate additional divergence in the

momentum equation that needs to be corrected in the end of computational time cycle.

Similar situation also appligse the wave absorbing ternf\t . Thus both of them

should be considered in the first prediction step, represented as follows without consid-

ering the pressure and gravity terms:

o 2 1o = _

O=0+Vu+—=V-7+ { + AO)AL, (15)
Yo,

[ =F+0At, (16)

where 0, and 1, are the particle velocity and position at timeit, and . are the



temporary particle velocity and position, arld is the time increment.
Assuming Al.. is the changed particle velocity contributed by the remaining

pressure and gravity terms, there is

1
O, =0 +AU :U+(g—;V R )AL 17)

By taking Eqg. (17) into the mass conservation Eq. (11), the Pressure Poissen Equ
tion (PPE) is obtained as followsi( et al., 201):

1. va

The solution of PPE produces the required pressure to correct the non-zero dive
gence velocity fields including those contributed by the momentum source term. After
obtaining the pressure field, the particle velocity is updated by Eq. (17) and the position

of particleis centered in thétme as

fa=f+ (AL (19)

2.3 1SPH formulas and boundary conditions

Following Liu et al. £014), the viscous and turbulent stress tenmBq. (12) are

given as follovs:

:Z(4mj 7 + 4 )TJ V|VY _

(UOVZG)i 2 )qj
T (e e (5[ +0?) (20)

1 r T
VA =Ym((=L+).v
GV A =Em v, @)

where i and | are the reference particle and its neighbor, m is the particle\Waiss,

the kernel function,, is the dynamic viscosity equal tpv,. f, =F -},



is the kernel gradient, angl is 0.1h to keep the denominator

g, =0 —0a;, V\W

nonzero, whereh is the smoothing length. In present 2D ISPH model, the 5th order

Quintic kernel function is used.
The gravity, momentum source and wave absorbing terms are directly calculated in

the arithmetic form. The pressure term is expressed as follows, as Khayyer and Gotoh

(2008, 200y have suggested:
1 p b
(=Vp) =) m(—5+—3V\W. (22)
S VP=2m i W
Also by following Liu et al. 2014), the velocity divergence term on the right hand

side of PPE EQ.18) is discretized as

m.
~(V-0), =2 (0, - U))-V, Wy, (23)
i P
and the left hand side of PPE (Eq. 18) is expressed as
8m Rt
(24)

1 .
V'(_Vp)i = ] VW
P Z(pl +pj>2 (‘ru‘2+772) V\(J y

j

where p, =p —p;-
As for the numerical boundary conditions, the general principle is that the mirror

particles are used to treat the solid boundariesaaythmetric free surface judgment

criterion is used to identify the free surface patrticles in the ISPH computationr+or fu

ther details see Liu et ak({14) and these are not repeated here.

2.4 Implementation of internal forcein sourceregion

The detailed procedures of adding the internal force are presented in this section.

The internal wave maker is locatedthe middle of the numerical flume wiils width

being smaller than a wave length. The momentum source term which is essentially an



internal force is imposed on every patrticle in this region. Following the Boussinesq
equations, this internal force does not change in the z direction from the flume bottom to
the free surface. Inside the source region, the force function has the form as shown in Eq.
(9), which changes in the x direction and thus results in synmfietce pointing to

both sides. The internal force is calculated by Eq. (9) with an amplitude of
—(298x)expEBxX D o and a periodic term obin(-wt). The amplitude and dice

tion of the force source term are illustratedhe black curve on top of the souree r
gion as shown in Fig. 1. The vectors in the source region denote the distributions of in-
ternal force acting on the fluid particles. The forces increase from the outside to inside

areas and decrease again when approaching to the middle region (x = 0.0).

1 - Source region
O : N [ —
N - Absorbing region 1~ == Absorbing region
[ 10 = e
1 10 =k
- 10 =&
-2 -
! 1 ! 1 1 1 ! 1
-10 -5 0 5 10
X

Fig. 1: The internal momentum source region.
For a still water flume without the momentum source term, a zero velocity field

appears at the predictidime step, and the pressure obtained from the PP& Imadro-

statics distribution that keeps the velocity being divergence free. With the qgere$en
momentum source term in Eq. (12), there is additional force acting on each fluid particle.
During the wave generation, the internal force points to both sides to push the water out
of the source region. Due to the non-uniformity of the momentum source force as
shown in Fig. 1, the intermediate velocity divergence at the prediatierstep is neg-

tive near the source region boundary and positive in the middleAsreaesult, this



increases the pressure laterally and decreases the pressure centrally, and deviate it from
the hydrostatic state. In the first half period, the free surface rises on the two sides and
falls in the middle, while in the next half period, it goes the opposite way. Accordingly,
aperiodic wave is generated. Asslforce is added to the N-S equations in form of

the momentum source term to generate waves, the proposed internal wave maker is not
affected by the reflected waves. In this sense, the ideal non-reflection wave generation
condition is achieved.

As shown in Fig. 1, the wave absorbing regions are also placed on both sides of the
flume to absorb the wave near the two lateral solid boundaries. So the incident waves
can be fully dissipated without any numerical shock. The above system should be able
to run for quite a long time without the interference between the incident and reflected
waves. It has been found that the momentum source term is very simple to implement in

the SPH model so as to make it more durable for the practical purpose.

3. Moddl Verifications and Applications

In this section, the efficiency and accuracy of the ISPH internal wave maker will be
investigated through some benchmark wave simulations and wave-structure intera

tions.

3.1 Periodic wave generations

Here the proposed internal wave maker simulations will be verified by theianalyt
cal solutions of linear wave theory and the sensitivity of relevant parameters in the mo-
mentum source term will be investigated. The test problem was carried out in & numer
cal flume with the still water depth 0.4 m. The flume length was adjusted by following

the designed wave parameters to avoid unnecessary CPU waste. The initial pasticle di



tance was 0.01 m and totally 200,000 water particles were used in the simulations. In

the first case, the wave period used was 2.0 s with the internal wave generator region

width being 1.0 m, which was about 25% of the wave length. The generator region was

located from 10.0 m to 11.0 m (as shown in Fig. 2), within which the internal forces

were added on the fluid particles. Two wave absorbing regions were placed near two

sides of the flume with the length of 8.0 m, which was about twice of the wave length.
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Fig. 2: Velocity field in the source region during internal wave making.

The SPH computed flow velocity fields are shown in Fig. 2 and the velocity values



were obtained through the liner interpolation of individual particle velocities for clarity.
For the first half period in Fig. 2 (a), the non-zero velocity field discussed in Section 2.4
is generated from the still water and an outward velocity field is applied to the particles
near the two lateral sides of the source region. Thus the water in the source region goes
out and the free surface falls down to keep the velocity field divergence freendn co
parison, in Fig. 2 (c), the water converges in anglrdsults in the rising up of water
surface. This alternation of increase and decrease in the water surface levels in the
source region generated a continuous and stable periodic wave Hegieglocity ds-
tributions in Fig. 2 demonstrated that the fluid incompressibility is largely ensxied e
cept on some individual surface particles after the correction step of ISPH projection
method. It should be noted that more strict incompressibility could be achieved by using
the error compensating term proposed by Khayyer and Gatdh)(and used by Gotoh

et al. 014 in the ISPH simulation of sloshing flows.

For quantitative verification, five wave gauges were placed in the flume at the pos
tion x = 14.695 m, 18.39 m, 22.085 m, 25.78 m and 33.17 m, with the distance from the
source region being about 1.0, 2.0, 3.0, 4.0 and 6.0 times of the wavelength, respectively.
The ISPH computed time histories of the water surface are illustrated in Eog-3,
pared with the analytical solutions of the linear wave th&drg numerical water su
face profiles were obtained by averaging the locations of nearest four surface particles
from the ISPH computation. In the simulations, a tiny phase lag was observed since the
target wave was generated from a narrow region instead of a vertical line. Imthe co
parisons, this phase lag was corrected by adjusting all of the theoretical wave phases so
as to match the first wave gauge recordings. Then other simulation results could match

this with one or more wave period delays according to the wave gauge position.
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Fig. 3: Surface elevation of periodic wave generated by ISPH internal wave make
id line: theory, dashed line: ISPH).

In Fig. 3, it can be found that theeea flat wave trough for the result in the first
gauge, which is an indication that the ISPH generated wave is still not stable. However,
for the second wave gauge, the difference between the theoretical and ISPH results is
relatively small. Similar phenomena are also observed on the rest three gauges, which
showed that a stable wave train has been formed. The discrepancy in the first wave
gauge is within expectation. As evidenced in the internal wave maker th&orys(nd
Yoon, 2009, the wave parameters are usually not very ateurahe areas close to the
source region. Similar issues have also been found in SPH simulations using a fixed
wave paddle.

For further verification purpose, similar to the test of Choi and Yaoa9, the



computed u- v velocity profiles were presented in Fig. 4, compared with the theoretical
results of linear wave theory. The measurement sections were chosen by their distances
from the center of the source region gt x 10.5 m and contained four nearby sections

(X =XXmig =0.4m, 1.2 m, 2.0 mand 2.8 m, &h = 1.0, 3.0, 5.0, 7.0) and two distant
sections (two and three wavelengths from the source regioxi/h.e. 19.725, 28.962).

From the results in Fig. 4, it is found that the discrepancies from the theoretical values
are very obvious near the source regionxftir = 1.0 and 3.0. However, for the other

four measurement sections further away, the present internal wave maker solutions

agree quite well with the linear wave theory at edth
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Fig. 4: Section velocity at different positions by ISPH (solid), compared with the li
wave theory (circle).

Due to the depth-averaged characteristics of the present wave maker, tlse evane
cent wave mode could appear near the source region, but it should decay quickly away
from the wave maker. This fact can be seen in the sections far away from the source r
gion in Fig. 4, especiallgtx/h = 19.725 and 28.962, where the effect of evanescent
wave mode was completely eliminated and the accuracy of velocity field was ensured.
Similar phenomena have been found in the piston wave maker theorymple and
Dean, 199), and also reported by Lin and Lilg99 and Choi and Yoo(2009 in the
internal wave maker theory using the grid-based models. Here it should be pointed out
that in Fig. 4 the evanescent wave mode influences a range of 3h ~ 5h, while-t is 2h
3h in Choi and Yoon (2009). The discrepancy could be attributed to the different co
putational conditions. Since the present ISPH wave maker employs the Boussinesq
model in which the fluid parameters do not depend on the flow depth, it is noapplic
ble for the deep water conditions. In the following section, the limitations of the method

will be further investigated.

3.1.1 Sensitivity test on different source region widths

In Wei et al.'s theoryl(©99), there was no strict requirement on the source region
width and thus the intensity distribution of input source momentum canarg shape.
In the present ISPH model, this intensity distribution is only affected by the seurce r
gion width but with the total input momentum being kept constant. To test the source
region effect, different region widths of W= 0.5 m, 1.0 m and 7.4 m (which is about
13.5%, 27% and 200% of the wavelength) are compared in the numerical simulations

and the results of free surface elevations are given for the selected two gauging stations



in Fig. 5.
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Fig. 5: Free surface elevations for different source region widths.

From the figure, it is seen that for the small source region width W= 0.5 m and 1.0
m, the target wave height and wave length are in good agreement with the linear wave
theoretical values. This has indicated that the total input momentum does not change
with the source region width. There is no obvious difference observed in the simulations
by using either W= 0.5 m or 1.0 m, but a smaller source region could impose a larger
momentum input on each fluid particle and resul larger velocity and smaller time
step. For example, for the case of W= 1.0 m, the minimum time step was abost
0.004 s, while for W= 0.5 m the time step was reducedtte 0.002 s. On the other

hand, as for the results using W= 7.4 m in Fig. 5, the generated waveiseigribus-



ly larger than the theoretical solution. This may be due to that for the wide source region
the required momentum is generated in a relatively larger space domain with more time
delay, thus leading timcorrect wave parameters. By carrying out a series of additional
tests, it has been found that the optimal source region width is about 20% ~ 50% of the
wave length in this study, by balancing both the target wave accuracy and theazcomput

tional efficiency.

3.1.2 Sensitivity test on different wave lengths

Relatively accurte results have been obtained for the above case with T = 2.0 s that
represents the medium length walethis section, the sensitivity tests of numerical
result on different wave lengths will be studied. Similar setup as employed in tie prev
ous section is used, except that two different wave periods T= 0.7 s and 3.0rs are co
sidered, which represent the short and relatively long waves. In order to eliminate the
influence of source region width on the computational results, the region width is fixed
as 0.228 m and 1.73 m for these two additional runs, respectively. Also, it has been
checked that this dimension falls within the optimal source region range (30%ef wav
length) as mentioned before, thus the interpretation of numerical results can objectively
disclose the wave length effects. Several wave gauges were placed at different locations
using the multiples of the wave length to measure the free surface elevations, and the
results are presented in Fig. 6.
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Fig. 6: Free surface elevations for different wave periods (wave lgngths

From the figure, it is found that for the long wave generation (T = 3.0 s), the surface

elevation on the wave gauge at x = 2L is much higher than the theoretical valae. At x

4L and 5L, the generated wave profiles approach to the theoretical solutions and also

become stable. The reason can be explained as follows. In the wave propagation region

within x = 4L, the source region velocity field needs time to gradually aidjtisée real

target wave velocity field. For the long wave generation in a constant water depth, lar

er input momentum is generated than that under the short wave corstitiloa,ad-

justment distance becomes relatively longer as a result. In comparison, for the short

wave with T = 0.7 s, the generated waves can become stable very quickly within 2L

distance but the mean wave height is much smaller than the target wave heigtt. The si



uation becomes worse further away from the source region. This may be due to that the
present internal wave maker theory is based on the Boussinesq equations so all of the
flow variables are assumed to be depth-averaged. For the short veaealinvater

flume, since the velocity near the free surface is always larger than that near the flume
bottom, the accuracy of wave generation theory based on the depth-averaging concept
deteriorates. In the following case studies, we will focus on the long wave simulations,

although further work on the short waves should also be carried out in details.

3.2 Waver reflection from a vertical wall

In this part, the ISPH internal wave maker model will be applied to the problem of
wave reflections from a vertical wall. In this simulation, the periodic waves are-gene
atedin the middle of the flume and then propagate to both lateral directions. The still
water depth is 0.5 m and initial particle distance is 0.01 m. The source region is from x
=10.0 mto x=11.0 m, and the wave damping zone is placed on the left side of the
flume from x = 0.0 m to x = 6.0 m. The right side of flume is a solid vertical wéallto
ly reflect the incident waves. If there is no interaction between the reflected wave and
the momentum source region and also the wave damping zone can absorb thee wave s
ries as efficiently as like a single wave train, we may expect the following scenarios: the
total internal reflection will only happen on the right wall and a standing wave should
be generated between the source region and the right wall. Besides, in theeegion b
tween the source region and the damping zone, a wave group composed of two mono-
chromatic wave trains, should propagate in the same direction with the same wave
height and frequency but in a different phase.

As shown in Fig. 7, the black points represent the free surface particle trajectories

from 45 s to 50 s when the stable waveform has been formed. The wave form on the



right (standing wave) and left (propagating wave) sides of the source region can be e

pressed by using the linear wave theasy

Tight =% + 71, = %coskx— wt 1+ % coskx+at = H, cosk )cost (25)

H H ,
Dot = 7°cos¢<x -t )+ 70 coskx—at—¢ (26)

where 7., and 7, are the wave surface elevations in two different regions, cespe

tively. . and 5, represent the incident and reflected wave profiles, ands the

phase difference between two waves in the left region. In this case, the phase difference
can be obtained by assuming that the wave is generatieel middle of source region at
x =10.5 m. So the reflected wave arrives at the middle line after propagdisignce

of 2X (30.0-10.5) = 39.0 m, which contains 9.614 wavelengths, i.e. 9.614 period lags.

Based on this, the theoretical results of surface profile (envelopgihinee standing
wave region (right) and propagating wave region (left) can be obtained and employed to
verify the ISPH simulation results. The envelope lines are shown in Fig. 7 in the form of

dashed and solid lines, respectively, for the two different regions.
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Fig. 7: ISPH computed wave reflections from a vertical wall, and solid and dashe

represent theoretical surface envelops in two wave regions.



From the figure, it is found that in the area between the source region and right wall,
very good agreement between the theoretical values and ISPH simulation results has
been achieved, with the exception of a very few number of individual particles bein
outside of the envelope line. Besides, in the area on the left side of source region,
equally good agreement is found outside the damping region from x = 6.0 m to x = 10.0
m. The efficiency of wave absorbing layer is also demonstrated by the fact that the wave
height decreases to nearly zero in front of the left wall due to the wave damping effect.
The above comparisons shesthat the present internal wave maker has on influence
on the reflected waves passing through the momentum source region. Here it is worth
mentioning that the present internal wave maker may not give more accurate results
than the traditional wave making methods by using a numerical wave paddle. However,
by using the momentum source term, satisfactory non-reflection wave generation tech-

nique can be achieved for the ISPH model which enables longer time wave simulations.

3.3 Wave decomposition on a trapezoid breakwater

There are many trapezoid breakwaters in the ocean engineering field, which main-
tain asteady water surface for the port or other coastal structures. The interaetion b
tween the wave and breakwater is aswmpular topic among the SPH researchers
(Rogers et al., 2010; Suwa et al., 2013; Altomare et al., 2014; Ren et a)., 12814
monic generation or decomposition occurs above the breakwater and this phenomenon
results in the energy being transferred from the first harmonic to the higher baund ha
monics of the incident wavé/ei and Unluata, 19720n re-entering the deeper water
on the downstream side of the breakwater, these higher harmonics are released as the
free waves. This has a significant impact on the transmitted wave energy, which cannot

be simply predicted by the linear wave theory. With an increase in the steepness of th



incident wave, this highly nonlinear phenomenon can become more significaist (
tou et al., 2008
In this section, the experimental data of Beji and BatfieésJ) is used to validate
the present ISPH model with the proposed internal wave maker. The wave ddeompos
tion case is generally used as thiéical test for a numerical wave model due to the

complicated wave-wave and wave-structure interactions.

(@)

source region a bcdef

The problem setup

(b)
a bcdef

snapshots at t = 43.0 by present model

Fig. 8: Wave decomposition on a trapezoid breakwater.
The numerical setup of the problem is shown in Fig. 8 (a) by following theiexper
ment of Beji and Battjesl093. The bottom of the 2-D numerical flungehorizontal
with a total length of 36 m. The momentum internal wave miakecatedin the region

from x=10.0 m to 11.0 m and the wave absorbing reigiptaced on both sides of the



flume with the length of 8.0 m. The transmitted and reflected waves are absorbed by
these damping regiors® the whole simulation can run for a long time without the in-
fluence of the secondary reflection. The trapezoid breakvedtmratedin the region

from x = 14.0 m to 25.0 m with a front slope 1/20 and a back slope 1/10. The water
depth on the top of breakwater is 0.1 m and the still deep water depth in the flume is 0.4
m. Six wave gauges (a)f were used in the experiment at x = 18.5 m, 20.5 m, 21.5 m,
22.5m, 23.7 m and 25.3 m to measure the free surface elevations. In the ISRH simul

tions, the initial particle distance id, =0.005 m and totally 520,000 (half million)

fluid particles are employed. The incident wave period is 2.02 s and the wave $eight i
0.02 m.

Prior to the numerical simulation of wave-structure interaction, we removed the
breakwater and tested the wave generation and propagation on a flat bottom. The ISPH
computed wave surface elevati@ishe six wave gauges were observed to be very
close to the theory values from the linear wave theory, which proved the accuracy of the
model under specified wave conditions. The formal simulations were then carried out
up to 50 seconds although the stable waveforms had been developed at all wave gauges
after 10.0 s. The target wave was generatede source region antdpropagated to-
wards the breakwater. The waveform in this region is the direct superposition of the in-
cident and reflected wavasshownin Fig. 8 (b), which also shows the wave decompo-
sition snapshots on the onshore side of the breakwater.

The ISPH computed wave surface profiles at six wave gauges are compared with
the experimental data of Beji and Battj@§{3 in Fig. 9 (a) - (f). When the main wave
begn to dimb the slope, the wave height increases slightly as shown in Fig. 9 (a) due to

the effect of wave shoaling. Also a slight increase of the wave steepness is observed in



Fig. 9 (a) - (b) for the same reason. At the wave gauge (c) on the top of the breakwater,
the high-order harmonic wave begins to develop and a secondary wave appears. During
this process, the wave eneligyedistributed and part @fis taken away by thiear-

monic waves with a different phase velocity, as shown in Fig. 9 (c) - (d). Behind the
breakwater, the secondary wave mode gains more energy from the main wave and the
harmonic effect becnes strongr, which can be seen at the wave gauge (e). Thecpredi

tion of wave transformation in the region where wave gauges (e) and (f) are located is
the most difficult one because of the complicdted separations and nonlinear wave
energy transfers. Generally speaking, the comparisons between the ISPH simulations
and experimental results of Beji and Battjesq3 are quite good in the first two ggwu

es(a) - (b), while there exist some kind of differences in the wave trough for the other
four gauges (c) - (f). The overall good agreement with the experimental datasor the

face elevations at all wave gauges is an indication that the proposed non-reflection wave
generation process by ugithe internal wave maker works quite well for the ISPH

model. To further evaluate the ISPH model performance, the numerical resulis-of Ch

zel et al. 2011) by using a grid model are also shown in Fig. 9 (e) and (f) for a aempa
ison. It is shown that the ISPH results agree better with the experimental wave crests
while the Chazel et al.’s (2011]) results agree better with the experimental wave troughs,
and two numerical models can equally predict the wave decomposition and deformation

processes in a satisfactory manner.
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Fig. 9 Free surface elevations on six wave gauges(f®)computed by ISPH inte
nal wave maker model, compared with experimental data (Beji and Bafij&},and
grid based method (Chazel et al),1], at e and f).
To demonstrate the stability of the computational waveforms, the long timeasimul

tion results are presented in Fig. 10, in which the rextddta are taken from 10 s to
45 s for the selected wave gauges (b), (d) and (e) (marked with b, d and e in Fig. 10). It
should be noted that the experimental data are only presented for 3 wave pemods for
comparison. In theory, without the use of the internal wave maker and the wax® abs
ing region, the secondary reflection waves will reach the breakwater after about 28.0 s
and then lead to unrealistic wave deformations. In the figure, due to the use of the in-
ternal wave maker, the stable waveforms can be observed from 10.0 s to 45.0 s in that
both the wave shapes and wave amplitudes are almost the same during this time. This

has proved that the secondary reflection wave is nearly eliminated and the ISPH model



can run for any arbitrarily loregtime depending on the simulation interest.
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4. Conclusion

In this paper, the non-reflection wave maker theory originated from the mesh-based



method is introduced into the mesh-free ISPH model. The proposed internal wave mak-
er algorithm employs an internal force to generate the periodic waves using a momen-
tum source term and thus does not cause the secondary wave reflection whidh is inev
table when a solid numerical wave paddle is used. The internal force equation is derived
from the Boussinesq equations based on the momentum conservation, which is
straightforward to implement in the ISPH algorithms.

Through a series of sensitivity tests on the propagating wave, it has been found that
the present ISPH wave maker model is more efficient under the relatively medium and
long wavelength conditions and the optimal momentum source region width is 20% ~
50% of the wavelength. Furthermore, the wave reflection from a vertical wall has been
simulated and a stable standing wave train is formed with the computed wave surface
profiles being consistent with the theoretical envelop lines. In the last case, 5207000 pa
ticles are employed for the simulations of wave decomposition on a trapezoid &reakw
ter. The ISPH computations have been carried ougfieng time and quite stable wave
profiles have been obtained, which shows that the secondary wave reflection effect is
eliminated and the accuracy of internal wave maker model is satisfactory for the
non-reflection wave generation. In conclusion, the proposed internal wave maker algo-
rithm provides an alternative way to study the long-time wave propagations and
wave-structure interactions using the particle-based method.

However, it should be realized that the present model can only generate linear
waves in a vertical 2-D domaiRuture work needs to be carried out to develop the
depth-resolved momentum source function so that some nonlinear waves, such as the
higher-order Stokes wave, can be gersgthy the ISPH internal wave maker model.

Besides, 3D wave generation should also be possible based on the present internal wave



maker algorithm as long as a 3D ISPH solver is available.
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