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Abstract 

In this paper, a non-reflection internal wave maker algorithm is included in the in-

compressible Smoothed Particle Hydrodynamics (ISPH) model for the wave simula-

tions. A momentum source term derived from the Boussinesq equations is employed and 

added into the Lagrangian form of Navier-Stokes equations for the wave generations 

that are not affected by the reflected waves. In this work, the technical details of imple-

menting the internal force into the ISPH equations are proposed and a series of numeri-

cal tests are carried out for the selection of relevant parameters and investigation of their 

sensitivities in different wave conditions. In model applications, the problems of wave 

propagation and reflection from a vertical wall are studied to verify the model perfor-

mance in standing wave generations and the non-reflection characteristics of the internal 

wave maker. Furthermore, a more challenging wave decomposition process over a trap-
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ezoid breakwater is presented, which has not been fully investigated by other similar 

particle-based methods. The simulation results of wave surface profile on six wave 

gauges agree well with the experimental results and this shows that the present model 

with the non-reflection internal wave maker can provide a more robust particle model-

ing tool for the long time simulation of wave and wave-structure interactions. 

Key words: ISPH, internal wave maker, non reflection, momentum source term, wave 

simulation, long time. 

1. Introduction 

In the wave generations in Smoothed Particle Hydrodynamics (SPH) method, the 

pioneering work was attributed to Monaghan (1994) in which the initial wave parame-

ters based on the theoretical solutions were given to fluid particles to generate the target 

wave. However, this method can only be used to generate one wave event, such as the 

solitary wave, because the resetting of the initial wave parameters is not possible for a 

series of wave event. Another more widely used wave generation algorithm employs the 

numerical wave paddle to push the water in different frequencies and amplitudes and 

can generate any kinds of the wave found in the practical field. The earliest work to use 

the wave paddle for a mesh free particle modeling approach could be traced back to 

Monaghan (1994). The wave paddle was also used by Gotoh and Sakai (1999), who 

studied the cnoidal wave breaking on a slope using the Moving Particle Semi-implicit 

(MPS) method (Koshizuka et al., 1998). Later studies have extended this popular wave 

making concept to the periodic waves (Khayyer and Gotoh, 2009), solitary waves (Dao 

et al., 2013) and random waves (Zheng et al., 2010). In these models, a common prac-

tice was that the moving solid wall was used to simulate the wave paddle and the wave 



 

maker theory was applied in the same way as that used in the laboratory experiment. In 

this sense, the SPH wave paddle can generate a variety of the laboratory waves without 

any theoretical barrier. Besides, numerical water waves can also be generated by other 

similar approaches, such as a moving structure (Gallati et al., 2005) and landslide fall-

ing object (Du et al., 2006). 

By using the above wave paddle method, however, for the long-time wave-structure 

interaction problems, the reflected waves from the structure will propagate towards the 

numerical wave maker and then be reflected. The secondary reflection wave could 

strongly affect the subsequent wave propagations and result in the distortions of wave 

height. This has put a severe limitation on the particle-based methods to achieve 

long-time wave simulations, which is indispensible in order to get the required wave 

dynamics. One temporary remedy would be to employ a large computational domain to 

delay the arrival of the secondary reflection wave at expensive CPU cost. On the other 

hand, the damping layer concept can also be used to absorb the undesirable reflection 

waves. However, this can also increase the size of computational domain, and the effi-

ciency of numerical damping layers could differ quite a lot under different wave condi-

tions and layer coefficients (Molteni et al., 2013). By realizing the above issues, a 

self-absorbing wave paddle concept was initially presented for the separation of incident 

and reflected waves by Frigaard and Brorsen (1995), although this method involved 

complex wave theories and relied on the accuracy of water surface measurements in 

front of the wave paddle. Following this, Hayashi et al. (2000) developed a practical 

non-reflection wave paddle to study the wave breaking and overtopping of an upright 

seawall using the MPS method. Shibata et al. (2011) proposed a transparent boundary 

condition to generate the incident waves and absorb the reflected waves in a much more 



 

efficient manner. Didier and Neves (2012) developed a piston-type wave maker with the 

dynamic wave absorption functions which enabled the outgoing waves to be absorbed. 

The most recent work was attributed to Skillen et al. (2013) who used a paddle-free 

Fourier series analysis to assign the particles with relevant wave kinematics and they 

computed a large-scale SPH wave propagation problem. 

Although quite a few good progresses have been made in the wave generations us-

ing the above non-reflection wave paddles, alternative approaches should be explored to 

find a more efficient wave generation mechanism in SPH so as to fully demonstrate its 

potentials in the wave simulation. In this regard, some previous studies in the grid-based 

models could provide useful information. For example, consider another category of 

wave generation techniques without the existence of wave paddle, i.e. the internal wave 

maker. Based on the Boussinesq-type equations, Larsen and Dancy (1983) introduced a 

novel wave maker theory to generate the regular waves in shallow water condition. In 

their method, the free surface undulation was not induced by the wave paddle but cre-

ated by using an artificial mass source term derived from the mass conservation princi-

ple. Lee and Suh (1998) developed a similar approach based on the mild slope equations 

and investigated the mass and energy transports of the generated wave. Furthermore, 

Lin and Liu (1999) proposed an internal wave generator following the mass conserva-

tion in Navier-Stokes (NS) equations and different types of the waves were generated by 

using this mass source function. Also, Wei et al. (1999) derived a more efficient shal-

low-water based transfer function that related the source amplitude to the surface wave 

characteristics. In their work, both the mass and momentum source functions have been 

presented. Later improvements have been made by Choi and Yoon (2009) and Ha et al. 

(2013). However, all of these investigations were based on the grid method, while there 



 

has been no similar work carried out in the particle modeling approach so far. 

In this paper, by following Wei et al. (1999) and Choi and Yoon (2009) an internal 

wave maker algorithm based on the momentum conservation is introduced into the 

ISPH method. In the formulations the momentum source term derived from the regular 

wave theories will be added into the NS equations as an internal particle force, which 

changes with the time and position. Therefore, time-dependent water waves can be eas-

ily generated through the periodic internal forces. The efficiency and accuracy of the 

coupled internal wave maker and ISPH model are verified by several benchmark wave 

simulations, including the wave generation under different wave and source region pa-

rameters, and the standing waves in front of a vertical wall. Finally, a regular wave in-

teraction with submerged breakwater is simulated, in which the higher harmonics are 

separated from the main wave when it passes over the breakwater into the deep water 

region. This test case has been considered as being challenging for the particle-based 

models as it involves long time wave simulations in which the secondary wave reflec-

tion is quite substantial. 

2. ISPHModel with Internal Wave Generator 

2.1 Momentum source term and wave absorbing region 

2.1.1 Momentum source term 

In Lin and Liu's model (1999) with the mass source term, a source region was 

placed in the center of water flume and mass generations and deductions occurred al-

ternately during a wave period. For the Lagrangian methods such as SPH, this mass 

variation process could cause the drastic increase or decrease of the particle numbers, 

and the numerical shocks will be inevitably induced when the particles are either added 



 

into or removed from the computational source region. To avoid this problem, in this 

study the momentum source term derived by Wei et al. (1999) is added into our ISPH 

model as the internal wave maker instead of the mass source term. In Wei et al.'s theory, 

the Boussinesq equations were employed to derive the relationships between the surface 

elevation and the target wave. Following this, Choi and Yoon (2009) presented the gen-

eral form of the momentum source function as 

   2

1
, , ( , , )exp ( ' ) '

4mf x y t S x y i k y t dk d  


 

 
  

, 
(1) 

where mf  is the momentum source term with the acceleration dimension, S  deter-

mines the shape of the source function, x  and y  denote the coordinate direction, t is 

the time,   is the wave frequency and the y direction wave number is ' sink k  , 

where   is the angle between the wave direction and x  axis and k  is the wave 

number. 

The shape function S  has the following form: 

2( , , ) exp( )S x y D x   , (2) 

where D  is the source function amplitude and can be determined from the desired 

wave characteristics, and   is a parameter associated with the width of source func-

tion. D  has the following form: 
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where 2
1 / exp[ / (4 )]I k   . For the monochromatic wave, 0H  is the wave 

height, g  is the gravitational acceleration, 0h  is the still water depth, 1  and   are 

the parameters in the Boussinesq equations and they have the following relations: 
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where z  denotes the representative velocity position in a depth-averaged model, and 

usually takes 00.53z h   . 

The value of the source function is larger in the middle and smaller on the two sides. 

Then the relationship between   and the source region width side mid2W x x   is 

2 2
side midexp[ ( ) ] exp[ ( ) ] 0 exp( 5)

2

W
x x       

. 
(6) 

2 5W  , (7) 

where sidex  and midx  are the positions of the lateral and middle source regions, re-

spectively. 

The relationship between the source region width W  and wave length L  is 

( / 2)W L , i.e. 2 /W L  , then   can be represented as 

2 2

80

L





, 
(8) 

where   is related to the source region setup for a specific problem. As long as the 

source region width and wave length are known,   is determined. 

For the ISPH modeling of monochromatic waves in this study, the monochromatic 

wave the momentum source function vector in Eq. (1) can be simplified in the vertical 

2-D form as mx mz( , )mf f f , where mzf  is zero in the present model and 
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This equation has the dimension of acceleration, which can be directly added into 

the N-S equations in the SPH methods. 

2.1.2 Wave absorbing region 

The proposed internal wave generator should be employed more efficiently together 

with a wave absorbing region to prevent the undesirable secondary wave reflections. 

Following Wei and Kirby (1995), the commonly adopted absorbing coefficient has the 

following form: 

st
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(10) 

where bA  is the absorbing coefficient, stx  and abx  are the starting position and 

length of the absorbing region, respectively, c  and cn  are the empirical damping 

coefficients to be determined via the numerical test. Following Lin and Liu (2004), the 

coefficients in this model are taken as 200c   and 10cn  . bA  has the unit of 1/s 

and will be added into the N-S equations in the next section. 

As far as we know, there are not many investigations made on the wave absorbing 

region in particle-based methods. Xu (2010) presented a simple exponential absorbing 

zone to dampen the linear wave reflection, in which the absorbing length was 2 times of 

the wave length and the particle velocities were directly reduced at the end of each time 

step. Shibata et al. (2011) presented a wave absorbing method and they assigned a large 

viscosity value to the fluid particles in the absorbing region with a dimension of 1.98 ~ 



 

2.83 times of the wave length. Besides, Molteni et al. (2013) developed a matched layer 

approach for the shallow wave damping, in which a shorter damping distance of 1.5 

wave length was used. In the present method, the absorbing length is chosen as 2.0 

wave length following Wei and Kirby (1995). It is noted that equally good wave damp-

ing effects have been achieved in all of these cases. 

2.2 SPH governing equations 

In the ISPH method the N-S equations are written in the Lagrangian form and the 

advection term is automatically calculated through the tracking of particle motion. Thus 

the numerical diffusion arising from the successive interpolation of the advection func-

tion used in the Eulerian grid-based method is avoided in the SPH. Due to the Lagran-

gian nature of SPH, the internal wave generator with the mass source term is difficult to 

be added into the SPH equations, while for the momentum source term the adding of the 

additional source force could be much more straightforward. As a result, the final form 

of the complete mass and momentum conservation equations with the momentum 

source term as well as the wave absorbing term are written as 

0u  , (11) 
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p g u f Au
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 
          ,

 
(12) 

where u  is the particle velocity vector,   is the fluid density, p  is the particle pres-

sure, 
0  is the laminar kinematic viscosity,   is the sub-particle scale (SPS) turbu-

lence stress, which was originally presented by Gotoh et al. (2001). mf  is the momen-

tum source term that changes in the x direction and keeps constant in the z direction. 

The detailed expression of mf  has been presented in Eq. (9). bA  is the wave absorb-



 

ing coefficient with the expression as shown in Eq. (10). 

The eddy viscosity assumption is used to model the SPS turbulence stress   as 

2
(2 )

3ij t ij ijS k     ,
 

(13) 

where 
t  is the turbulence eddy viscosity, 2/)( ijjiij xuxuS  is the strain rate 

k  is the turbulence kinetic energy, ij  is the Kronecker delta function. The turbulence 

eddy viscosity 
t  is calculated by a modified Smagorinsky model as follows: 

,)( 2
0 SdCSt   (14) 

where 
SC  is the Smagorinsky constant (=0.1), 

0d  is the particle spacing representing 

the characteristic length scale of the small eddies, and ijij SSS 2  is the local strain 

rate.  

In the ISPH model the two-step projection method is used to solve the N-S Eqs. (11) 

and (12) which is composed of two steps. The first step is an explicit integration of ve-

locity in the time, resulting in a temporary non-zero divergence velocity field that 

should be corrected in the next step. Because of the spatial variations of Eq. (9) in the x 

direction, the momentum source term mf  will generate additional divergence in the 

momentum equation that needs to be corrected in the end of computational time cycle. 

Similar situation also applies to the wave absorbing term bAu . Thus both of them 

should be considered in the first prediction step, represented as follows without consid-

ering the pressure and gravity terms: 

2
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* *tr r u t   , (16) 

where tu
  and tr


 are the particle velocity and position at time t, *u


 and *r


 are the 



 

temporary particle velocity and position, and t  is the time increment. 

Assuming **u
  is the changed particle velocity contributed by the remaining 

pressure and gravity terms, there is 

1 * ** * 1

1
( )t tu u u u g p t

         .
 

(17) 

By taking Eq. (17) into the mass conservation Eq. (11), the Pressure Poisson Equa-

tion (PPE) is obtained as follows (Liu et al., 2014): 

*
1

1
( )t

u
g p

t 


    


.
 

(18) 

The solution of PPE produces the required pressure to correct the non-zero diver-

gence velocity fields including those contributed by the momentum source term. After 

obtaining the pressure field, the particle velocity is updated by Eq. (17) and the position 

of particle is centered in the time as 

1
1 ( )

2
t t

t t

u u
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


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(19) 

2.3 ISPH formulas and boundary conditions 

Following Liu et al. (2014), the viscous and turbulent stress terms in Eq. (12) are 

given as follows: 
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(20) 
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(21) 

where i and j are the reference particle and its neighbor, m is the particle mass, W  is 

the kernel function,   is the dynamic viscosity equal to 0 . jiij rrr
  , 



 

jiij uuu
  , ijiW  is the kernel gradient, and   is h1.0  to keep the denominator 

nonzero, where h  is the smoothing length. In present 2D ISPH model, the 5th order 

Quintic kernel function is used. 

The gravity, momentum source and wave absorbing terms are directly calculated in 

the arithmetic form. The pressure term is expressed as follows, as Khayyer and Gotoh 

(2008, 2009) have suggested: 

2 2
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i j i ij
j i j
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(22) 

Also by following Liu et al. (2014), the velocity divergence term on the right hand 

side of PPE Eq. (18) is discretized as 

* * *( ) ( )j
i i j i ij
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(23) 

and the left hand side of PPE (Eq. 18) is expressed as 

22 2
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(24) 

where jiij ppp  . 

As for the numerical boundary conditions, the general principle is that the mirror 

particles are used to treat the solid boundaries and a symmetric free surface judgment 

criterion is used to identify the free surface particles in the ISPH computation. For fur-

ther details see Liu et al. (2014) and these are not repeated here. 

2.4 Implementation of internal force in source region 

The detailed procedures of adding the internal force are presented in this section. 

The internal wave maker is located in the middle of the numerical flume with its width 

being smaller than a wave length. The momentum source term which is essentially an 



 

internal force is imposed on every particle in this region. Following the Boussinesq 

equations, this internal force does not change in the z direction from the flume bottom to 

the free surface. Inside the source region, the force function has the form as shown in Eq. 

(9), which changes in the x direction and thus results in symmetric force pointing to 

both sides. The internal force is calculated by Eq. (9) with an amplitude of 

  22 exp( ) /g x x D     and a periodic term of sin( )t . The amplitude and direc-

tion of the force source term are illustrated in the black curve on top of the source re-

gion as shown in Fig. 1. The vectors in the source region denote the distributions of in-

ternal force acting on the fluid particles. The forces increase from the outside to inside 

areas and decrease again when approaching to the middle region (x = 0.0). 

 

Fig. 1: The internal momentum source region. 

For a still water flume without the momentum source term, a zero velocity field 

appears at the prediction time step, and the pressure obtained from the PPE has a hydro-

statics distribution that keeps the velocity being divergence free. With the presence of 

momentum source term in Eq. (12), there is additional force acting on each fluid particle. 

During the wave generation, the internal force points to both sides to push the water out 

of the source region. Due to the non-uniformity of the momentum source force as 

shown in Fig. 1, the intermediate velocity divergence at the prediction time step is nega-

tive near the source region boundary and positive in the middle area. As a result, this 
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increases the pressure laterally and decreases the pressure centrally, and deviate it from 

the hydrostatic state. In the first half period, the free surface rises on the two sides and 

falls in the middle, while in the next half period, it goes the opposite way. Accordingly, 

a periodic wave is generated. As this force is added into the N-S equations in form of 

the momentum source term to generate waves, the proposed internal wave maker is not 

affected by the reflected waves. In this sense, the ideal non-reflection wave generation 

condition is achieved. 

As shown in Fig. 1, the wave absorbing regions are also placed on both sides of the 

flume to absorb the wave near the two lateral solid boundaries. So the incident waves 

can be fully dissipated without any numerical shock. The above system should be able 

to run for quite a long time without the interference between the incident and reflected 

waves. It has been found that the momentum source term is very simple to implement in 

the SPH model so as to make it more durable for the practical purpose. 

3. Model Verifications and Applications 

In this section, the efficiency and accuracy of the ISPH internal wave maker will be 

investigated through some benchmark wave simulations and wave-structure interac-

tions. 

3.1 Periodic wave generations 

Here the proposed internal wave maker simulations will be verified by the analyti-

cal solutions of linear wave theory and the sensitivity of relevant parameters in the mo-

mentum source term will be investigated. The test problem was carried out in a numeri-

cal flume with the still water depth 0.4 m. The flume length was adjusted by following 

the designed wave parameters to avoid unnecessary CPU waste. The initial particle dis-



 

tance was 0.01 m and totally 200,000 water particles were used in the simulations. In 

the first case, the wave period used was 2.0 s with the internal wave generator region 

width being 1.0 m, which was about 25% of the wave length. The generator region was 

located from 10.0 m to 11.0 m (as shown in Fig. 2), within which the internal forces 

were added on the fluid particles. Two wave absorbing regions were placed near two 

sides of the flume with the length of 8.0 m, which was about twice of the wave length. 

(a) t/T = 0.25 (b) t/T = 0.5 

  

(c) t/T = 0.75 (d) t/T = 1.0 

  

Fig. 2: Velocity field in the source region during internal wave making. 

The SPH computed flow velocity fields are shown in Fig. 2 and the velocity values 
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were obtained through the liner interpolation of individual particle velocities for clarity. 

For the first half period in Fig. 2 (a), the non-zero velocity field discussed in Section 2.4 

is generated from the still water and an outward velocity field is applied to the particles 

near the two lateral sides of the source region. Thus the water in the source region goes 

out and the free surface falls down to keep the velocity field divergence free. In com-

parison, in Fig. 2 (c), the water converges in and this results in the rising up of water 

surface. This alternation of increase and decrease in the water surface levels in the 

source region generated a continuous and stable periodic wave series. The velocity dis-

tributions in Fig. 2 demonstrated that the fluid incompressibility is largely ensured ex-

cept on some individual surface particles after the correction step of ISPH projection 

method. It should be noted that more strict incompressibility could be achieved by using 

the error compensating term proposed by Khayyer and Gotoh (2011) and used by Gotoh 

et al. (2014) in the ISPH simulation of sloshing flows. 

For quantitative verification, five wave gauges were placed in the flume at the posi-

tion x = 14.695 m, 18.39 m, 22.085 m, 25.78 m and 33.17 m, with the distance from the 

source region being about 1.0, 2.0, 3.0, 4.0 and 6.0 times of the wavelength, respectively. 

The ISPH computed time histories of the water surface are illustrated in Fig. 3, com-

pared with the analytical solutions of the linear wave theory. The numerical water sur-

face profiles were obtained by averaging the locations of nearest four surface particles 

from the ISPH computation. In the simulations, a tiny phase lag was observed since the 

target wave was generated from a narrow region instead of a vertical line. In the com-

parisons, this phase lag was corrected by adjusting all of the theoretical wave phases so 

as to match the first wave gauge recordings. Then other simulation results could match 

this with one or more wave period delays according to the wave gauge position. 
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(e): x=33.17 m 

 

Fig. 3: Surface elevation of periodic wave generated by ISPH internal wave maker (sol-

id line: theory, dashed line: ISPH). 

In Fig. 3, it can be found that there is a flat wave trough for the result in the first 

gauge, which is an indication that the ISPH generated wave is still not stable. However, 

for the second wave gauge, the difference between the theoretical and ISPH results is 

relatively small. Similar phenomena are also observed on the rest three gauges, which 

showed that a stable wave train has been formed. The discrepancy in the first wave 

gauge is within expectation. As evidenced in the internal wave maker theory (Choi and 

Yoon, 2009), the wave parameters are usually not very accurate in the areas close to the 

source region. Similar issues have also been found in SPH simulations using a fixed 

wave paddle. 

For further verification purpose, similar to the test of Choi and Yoon (2009), the 

time (s)

su
rf

ac
e

el
ev

at
io

n
(m

)

0 5 10 15 20 25 30-0.04

-0.02

0

0.02

0.04

 

time (s)

su
rf

ac
e

el
ev

at
io

n
(m

)

0 5 10 15 20 25 30-0.04

-0.02

0

0.02

0.04

 



 

computed u – v velocity profiles were presented in Fig. 4, compared with the theoretical 

results of linear wave theory. The measurement sections were chosen by their distances 

from the center of the source region at xmid = 10.5 m and contained four nearby sections 

(x' = x-xmid = 0.4 m, 1.2 m, 2.0 m and 2.8 m, i.e. x'/h = 1.0, 3.0, 5.0, 7.0) and two distant 

sections (two and three wavelengths from the source region, i.e. x'/h = 19.725, 28.962). 

From the results in Fig. 4, it is found that the discrepancies from the theoretical values 

are very obvious near the source region for x'/h = 1.0 and 3.0. However, for the other 

four measurement sections further away, the present internal wave maker solutions 

agree quite well with the linear wave theory at each x'/h. 
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Fig. 4: Section velocity at different positions by ISPH (solid), compared with the linear 

wave theory (circle). 

Due to the depth-averaged characteristics of the present wave maker, the evanes-

cent wave mode could appear near the source region, but it should decay quickly away 

from the wave maker. This fact can be seen in the sections far away from the source re-

gion in Fig. 4, especially at x'/h = 19.725 and 28.962, where the effect of evanescent 

wave mode was completely eliminated and the accuracy of velocity field was ensured. 

Similar phenomena have been found in the piston wave maker theory (Dalrymple and 

Dean, 1991), and also reported by Lin and Liu (1999) and Choi and Yoon (2009) in the 

internal wave maker theory using the grid-based models. Here it should be pointed out 

that in Fig. 4 the evanescent wave mode influences a range of 3h ~ 5h, while it is 2h ~ 

3h in Choi and Yoon (2009). The discrepancy could be attributed to the different com-

putational conditions. Since the present ISPH wave maker employs the Boussinesq 

model in which the fluid parameters do not depend on the flow depth, it is not applica-

ble for the deep water conditions. In the following section, the limitations of the method 

will be further investigated. 

3.1.1 Sensitivity test on different source region widths 

In Wei et al.'s theory (1999), there was no strict requirement on the source region 

width and thus the intensity distribution of input source momentum can be in any shape. 

In the present ISPH model, this intensity distribution is only affected by the source re-

gion width but with the total input momentum being kept constant. To test the source 

region effect, different region widths of W = 0.5 m, 1.0 m and 7.4 m (which is about 

13.5%, 27% and 200% of the wavelength) are compared in the numerical simulations 

and the results of free surface elevations are given for the selected two gauging stations 



 

in Fig. 5. 

(a): x=22.085 m 

 

(b): x=33.17 m 

 

Fig. 5: Free surface elevations for different source region widths. 

From the figure, it is seen that for the small source region width W = 0.5 m and 1.0 

m, the target wave height and wave length are in good agreement with the linear wave 

theoretical values. This has indicated that the total input momentum does not change 

with the source region width. There is no obvious difference observed in the simulations 

by using either W = 0.5 m or 1.0 m, but a smaller source region could impose a larger 

momentum input on each fluid particle and result in a larger velocity and smaller time 

step. For example, for the case of W = 1.0 m, the minimum time step was about t  = 

0.004 s, while for W = 0.5 m the time step was reduced to t = 0.002 s. On the other 

hand, as for the results using W = 7.4 m in Fig. 5, the generated wave height is obvious-
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ly larger than the theoretical solution. This may be due to that for the wide source region 

the required momentum is generated in a relatively larger space domain with more time 

delay, thus leading to incorrect wave parameters. By carrying out a series of additional 

tests, it has been found that the optimal source region width is about 20% ~ 50% of the 

wave length in this study, by balancing both the target wave accuracy and the computa-

tional efficiency. 

3.1.2 Sensitivity test on different wave lengths 

Relatively accurate results have been obtained for the above case with T = 2.0 s that 

represents the medium length wave. In this section, the sensitivity tests of numerical 

result on different wave lengths will be studied. Similar setup as employed in the previ-

ous section is used, except that two different wave periods T = 0.7 s and 3.0 s are con-

sidered, which represent the short and relatively long waves. In order to eliminate the 

influence of source region width on the computational results, the region width is fixed 

as 0.228 m and 1.73 m for these two additional runs, respectively. Also, it has been 

checked that this dimension falls within the optimal source region range (30% of wave-

length) as mentioned before, thus the interpretation of numerical results can objectively 

disclose the wave length effects. Several wave gauges were placed at different locations 

using the multiples of the wave length to measure the free surface elevations, and the 

results are presented in Fig. 6. 

(a) T = 3.0 s 



 

 

(b) T = 0.7 s 

 

Fig. 6: Free surface elevations for different wave periods (wave lengths). 

From the figure, it is found that for the long wave generation (T = 3.0 s), the surface 

elevation on the wave gauge at x = 2L is much higher than the theoretical value. At x = 

4L and 5L, the generated wave profiles approach to the theoretical solutions and also 

become stable. The reason can be explained as follows. In the wave propagation region 

within x = 4L, the source region velocity field needs time to gradually adjust to the real 

target wave velocity field. For the long wave generation in a constant water depth, larg-

er input momentum is generated than that under the short wave condition, so the ad-

justment distance becomes relatively longer as a result. In comparison, for the short 

wave with T = 0.7 s, the generated waves can become stable very quickly within 2L 

distance but the mean wave height is much smaller than the target wave height. The sit-
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uation becomes worse further away from the source region. This may be due to that the 

present internal wave maker theory is based on the Boussinesq equations so all of the 

flow variables are assumed to be depth-averaged. For the short wave in a real water 

flume, since the velocity near the free surface is always larger than that near the flume 

bottom, the accuracy of wave generation theory based on the depth-averaging concept 

deteriorates. In the following case studies, we will focus on the long wave simulations, 

although further work on the short waves should also be carried out in details. 

3.2 Wave reflection from a vertical wall 

In this part, the ISPH internal wave maker model will be applied to the problem of 

wave reflections from a vertical wall. In this simulation, the periodic waves are gener-

ated in the middle of the flume and then propagate to both lateral directions. The still 

water depth is 0.5 m and initial particle distance is 0.01 m. The source region is from x 

= 10.0 m to x = 11.0 m, and the wave damping zone is placed on the left side of the 

flume from x = 0.0 m to x = 6.0 m. The right side of flume is a solid vertical wall to ful-

ly reflect the incident waves. If there is no interaction between the reflected wave and 

the momentum source region and also the wave damping zone can absorb the wave se-

ries as efficiently as like a single wave train, we may expect the following scenarios: the 

total internal reflection will only happen on the right wall and a standing wave should 

be generated between the source region and the right wall. Besides, in the region be-

tween the source region and the damping zone, a wave group composed of two mono-

chromatic wave trains, should propagate in the same direction with the same wave 

height and frequency but in a different phase. 

As shown in Fig. 7, the black points represent the free surface particle trajectories 

from 45 s to 50 s when the stable waveform has been formed. The wave form on the 



 

right (standing wave) and left (propagating wave) sides of the source region can be ex-

pressed by using the linear wave theory as 

0 0
right 0cos( ) cos( ) cos( )cos( )

2 2i r

H H
kx t kx t H kx t           

, 
(25) 

0 0
left cos( ) cos( )

2 2

H H
kx t kx t       

, 
(26) 

where right  and left  are the wave surface elevations in two different regions, respec-

tively. i  and r  represent the incident and reflected wave profiles, and   is the 

phase difference between two waves in the left region. In this case, the phase difference 

can be obtained by assuming that the wave is generated in the middle of source region at 

x = 10.5 m. So the reflected wave arrives at the middle line after propagating a distance 

of 2× (30.0-10.5) = 39.0 m, which contains 9.614 wavelengths, i.e. 9.614 period lags. 

Based on this, the theoretical results of surface profile (envelope lines) in the standing 

wave region (right) and propagating wave region (left) can be obtained and employed to 

verify the ISPH simulation results. The envelope lines are shown in Fig. 7 in the form of 

dashed and solid lines, respectively, for the two different regions. 

 

Fig. 7: ISPH computed wave reflections from a vertical wall, and solid and dashed lines 

represent theoretical surface envelops in two wave regions. 

x (m)

su
rf

ac
e

el
ev

at
io

n
(m

)

0 5 10 15 20 25 30-0.1

-0.05

0

0.05

0.1





 

From the figure, it is found that in the area between the source region and right wall, 

very good agreement between the theoretical values and ISPH simulation results has 

been achieved, with the exception of a very few number of individual particles being 

outside of the envelope line. Besides, in the area on the left side of source region, 

equally good agreement is found outside the damping region from x = 6.0 m to x = 10.0 

m. The efficiency of wave absorbing layer is also demonstrated by the fact that the wave 

height decreases to nearly zero in front of the left wall due to the wave damping effect. 

The above comparisons showed that the present internal wave maker has on influence 

on the reflected waves passing through the momentum source region. Here it is worth 

mentioning that the present internal wave maker may not give more accurate results 

than the traditional wave making methods by using a numerical wave paddle. However, 

by using the momentum source term, satisfactory non-reflection wave generation tech-

nique can be achieved for the ISPH model which enables longer time wave simulations. 

3.3 Wave decomposition on a trapezoid breakwater 

There are many trapezoid breakwaters in the ocean engineering field, which main-

tain a steady water surface for the port or other coastal structures. The interaction be-

tween the wave and breakwater is also a popular topic among the SPH researchers 

(Rogers et al., 2010; Suwa et al., 2013; Altomare et al., 2014; Ren et al., 2014). Har-

monic generation or decomposition occurs above the breakwater and this phenomenon 

results in the energy being transferred from the first harmonic to the higher bound har-

monics of the incident wave (Mei and Ünlüata, 1972). On re-entering the deeper water 

on the downstream side of the breakwater, these higher harmonics are released as the 

free waves. This has a significant impact on the transmitted wave energy, which cannot 

be simply predicted by the linear wave theory. With an increase in the steepness of the 



 

incident wave, this highly nonlinear phenomenon can become more significant (Chris-

tou et al., 2008). 

In this section, the experimental data of Beji and Battjes (1993) is used to validate 

the present ISPH model with the proposed internal wave maker. The wave decomposi-

tion case is generally used as the critical test for a numerical wave model due to the 

complicated wave-wave and wave-structure interactions. 

(a) 

 

The problem setup 

(b) 

 

snapshots at t = 43.0 by present model 

Fig. 8: Wave decomposition on a trapezoid breakwater. 

The numerical setup of the problem is shown in Fig. 8 (a) by following the experi-

ment of Beji and Battjes (1993). The bottom of the 2-D numerical flume is horizontal 

with a total length of 36 m. The momentum internal wave maker is located in the region 

from x = 10.0 m to 11.0 m and the wave absorbing region is placed on both sides of the 

absorbing regionabsorbing region

source region fa b c d e


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flume with the length of 8.0 m. The transmitted and reflected waves are absorbed by 

these damping regions so the whole simulation can run for a long time without the in-

fluence of the secondary reflection. The trapezoid breakwater is located in the region 

from x = 14.0 m to 25.0 m with a front slope 1/20 and a back slope 1/10. The water 

depth on the top of breakwater is 0.1 m and the still deep water depth in the flume is 0.4 

m. Six wave gauges (a) - (f) were used in the experiment at x = 18.5 m, 20.5 m, 21.5 m, 

22.5 m, 23.7 m and 25.3 m to measure the free surface elevations. In the ISPH simula-

tions, the initial particle distance is 0d  = 0.005 m and totally 520,000 (half million) 

fluid particles are employed. The incident wave period is 2.02 s and the wave height is 

0.02 m. 

Prior to the numerical simulation of wave-structure interaction, we removed the 

breakwater and tested the wave generation and propagation on a flat bottom. The ISPH 

computed wave surface elevations at the six wave gauges were observed to be very 

close to the theory values from the linear wave theory, which proved the accuracy of the 

model under specified wave conditions. The formal simulations were then carried out 

up to 50 seconds although the stable waveforms had been developed at all wave gauges 

after 10.0 s. The target wave was generated in the source region and it propagated to-

wards the breakwater. The waveform in this region is the direct superposition of the in-

cident and reflected waves as shown in Fig. 8 (b), which also shows the wave decompo-

sition snapshots on the onshore side of the breakwater. 

The ISPH computed wave surface profiles at six wave gauges are compared with 

the experimental data of Beji and Battjes (1993) in Fig. 9 (a) - (f). When the main wave 

begin to climb the slope, the wave height increases slightly as shown in Fig. 9 (a) due to 

the effect of wave shoaling. Also a slight increase of the wave steepness is observed in 



 

Fig. 9 (a) - (b) for the same reason. At the wave gauge (c) on the top of the breakwater, 

the high-order harmonic wave begins to develop and a secondary wave appears. During 

this process, the wave energy is redistributed and part of it is taken away by the har-

monic waves with a different phase velocity, as shown in Fig. 9 (c) - (d). Behind the 

breakwater, the secondary wave mode gains more energy from the main wave and the 

harmonic effect becomes stronger, which can be seen at the wave gauge (e). The predic-

tion of wave transformation in the region where wave gauges (e) and (f) are located is 

the most difficult one because of the complicated flow separations and nonlinear wave 

energy transfers. Generally speaking, the comparisons between the ISPH simulations 

and experimental results of Beji and Battjes (1993) are quite good in the first two gaug-

es (a) - (b), while there exist some kind of differences in the wave trough for the other 

four gauges (c) - (f). The overall good agreement with the experimental data on the sur-

face elevations at all wave gauges is an indication that the proposed non-reflection wave 

generation process by using the internal wave maker works quite well for the ISPH 

model. To further evaluate the ISPH model performance, the numerical results of Cha-

zel et al. (2011) by using a grid model are also shown in Fig. 9 (e) and (f) for a compar-

ison. It is shown that the ISPH results agree better with the experimental wave crests 

while the Chazel et al.’s (2011) results agree better with the experimental wave troughs, 

and two numerical models can equally predict the wave decomposition and deformation 

processes in a satisfactory manner. 
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(e) 

 

(f) 

 

Fig. 9: Free surface elevations on six wave gauges (a) - (f), computed by ISPH inter-

nal wave maker model, compared with experimental data (Beji and Battjes, 1993) and 

grid based method (Chazel et al., 2011, at e and f). 

 

To demonstrate the stability of the computational waveforms, the long time simula-

tion results are presented in Fig. 10, in which the recorded data are taken from 10 s to 

45 s for the selected wave gauges (b), (d) and (e) (marked with b, d and e in Fig. 10). It 

should be noted that the experimental data are only presented for 3 wave periods for a 

comparison. In theory, without the use of the internal wave maker and the wave absorb-

ing region, the secondary reflection waves will reach the breakwater after about 28.0 s 

and then lead to unrealistic wave deformations. In the figure, due to the use of the in-

ternal wave maker, the stable waveforms can be observed from 10.0 s to 45.0 s in that 

both the wave shapes and wave amplitudes are almost the same during this time. This 

has proved that the secondary reflection wave is nearly eliminated and the ISPH model 
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can run for any arbitrarily longer time depending on the simulation interest. 

 

(b) 

 

(d) 

 

(e) 

 

Fig. 10: Long time ISPH simulations of wave surface profiles using internal wave mak-

er at wave gauges (b), (d) and (e), compared with experimental data of Beji and Battjes 

(1993). 

4. Conclusion 

In this paper, the non-reflection wave maker theory originated from the mesh-based 
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method is introduced into the mesh-free ISPH model. The proposed internal wave mak-

er algorithm employs an internal force to generate the periodic waves using a momen-

tum source term and thus does not cause the secondary wave reflection which is inevi-

table when a solid numerical wave paddle is used. The internal force equation is derived 

from the Boussinesq equations based on the momentum conservation, which is 

straightforward to implement in the ISPH algorithms. 

Through a series of sensitivity tests on the propagating wave, it has been found that 

the present ISPH wave maker model is more efficient under the relatively medium and 

long wavelength conditions and the optimal momentum source region width is 20% ~ 

50% of the wavelength. Furthermore, the wave reflection from a vertical wall has been 

simulated and a stable standing wave train is formed with the computed wave surface 

profiles being consistent with the theoretical envelop lines. In the last case, 520,000 par-

ticles are employed for the simulations of wave decomposition on a trapezoid breakwa-

ter. The ISPH computations have been carried out for a long time and quite stable wave 

profiles have been obtained, which shows that the secondary wave reflection effect is 

eliminated and the accuracy of internal wave maker model is satisfactory for the 

non-reflection wave generation. In conclusion, the proposed internal wave maker algo-

rithm provides an alternative way to study the long-time wave propagations and 

wave-structure interactions using the particle-based method.  

However, it should be realized that the present model can only generate linear 

waves in a vertical 2-D domain. Future work needs to be carried out to develop the 

depth-resolved momentum source function so that some nonlinear waves, such as the 

higher-order Stokes wave, can be generated by the ISPH internal wave maker model. 

Besides, 3D wave generation should also be possible based on the present internal wave 



 

maker algorithm as long as a 3D ISPH solver is available. 
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