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Abstract

The paper considers the use of a pole/zero canonical form
in the investigation of the absolute stability problem for
nonlinear feedback systems. The canonical form is easily
computed and has an interpretation in terms of a nested system

feedback structure.




1. Introduction

The derivation of stability criterion for the nonlinear multi-
variable feedback system illustrated schematically in Fig. 1 is an
important theofetical and practical problem. A particularly
important problem is that of absolute stability (Narendra and
Taylor 1973) and the derivation of sector-type conditions on the
nonlinear characteristic No that guarantee the global asymptotic
stability of the system. Several absolute stability criteria are
available and can be derived using functional analytic methods
(Cook 1979b) , Lyapunov methods and frequency domain conditions
based on positive realness concepts (Narendra and Taylor 1973).

It can however be difficult to check such conditions, particularly
in the case of large scale systems. = In such cases it can be very
useful to have easily checkable sufficient conditions.

It is anticipated that stability conditions will be most easily
expressed in terms of a suitable system structural model and, as
the absolute stability problem is intuitively related to the root-
locus of the linear part of the system, it is anticipated that the
structure should reflect the system pole-zero configuration.

Cook (1979a) has examined stability using modal/pole type concepts.

It is expected however that the zero structure must play a fundamental
role and hence that the geometric definition and construction of
system zeros (Owens, 1977) will be an important theoretical tool.

This paper presents the results of an investigation into pole-
zero effects on absolute stability for scalar and multivariable
systems possessing a certain symmetric nested feedback structure.

In such cases, stability conditions can be easily deduced by operations




e

equivalent to sequential inversion operations on the linear system
transfer function matrix. The approach taken is based on the use
of quadratic Lyapunov functions and a careful choice of basis in
the system state space. The elementary general stability criteria
are described in section 2. The simplifying effect of the nested

feedback structure is described in section 3.

2. General Stability Criteria

The foundation of the results presented are obtained by

considering the differential system

k() = Ajx() + £(x(),0) x(t)ER" a]

where Al is a constant, real nxn matrix and f is a real vector

function that is sufficiently well-behaved for unique solutions of

the equation to exist for all initial conditions. The following

‘simple lemma provides sufficient conditions for the global asymptotic

stability of this system:

Lemma 1: The system of equation (1) is globally asymptotically stable
if
X V't s 0 (2)

(b) An < 10 i3)

A
o
<C

(a) x£(x,t) <

where Al < A2 < .. < An are the (ordered) eigenvalues of (A1+A1T)/2.

Proof: Choosing the Lyapunov function V(x,t) = %XTX and multiplying

(1) by xT(t) yields

T
. (A +A_7)
- *—-12# (D # £ OB )
T
(A +A. ")
2 % () e w(E) (by (a))
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< 2An v o ()

e L -
and hence that V(x(t),t) < V(x(o),0)e = by (b). In particular

I e

|0l , < Ix©] , e J )

and the result follows trivially.

Considering now the configuration of Fig. 1 with linear part

L0 defined by the linear, time-invariant invertible system S(Al,Bl,Cl)

]

k(t) = A x(t) + Boe(t) . elternt

y(t) = Cox(e) y(BER" .o (6)

and nonlinear part defined by the map n : R" B
e(t) = -n(y(t)) : Gy

It is trivially verified that the closed-loop system takes the form
of equation (1) with

f(x(t) ,t) = —Bln(Cx(t)) .0 (8)

The problem arises as to the conditions on n(y) that ensure that
equation (2) is satisfied. The following lemma characterizes these

conditions in the most general case of practical interest:

Lemma 2: Suppose that, for each yOEERm, there is a scalar n and a
vector yER" such that ¥ ™ nn(y). Then a necessary condition for
xTBln(Cx) to be positive for all xE€R" is that C1 = I..BlT for some
choice of mxm matrix L.

(Note: the condition on n(y) intuitively reflects the practical

situation when its range 'fills' the whole of the output space.)




Proof: Invertibility guarantees that rank C1 = m and, without loss

of generality, we can use the orthogonal transformation of state
. T . T T, -} .
variables x(t) » U x(t) defined by U = [Cl (Clc1 ) ,ﬁ] where M is

an orthonormal basis matrix for the kernel of C In this basis

1
(c.c.Ty-%c.B X
C1 = [(CICIT)é 0] and B1 = 11 ﬁz 11 for suitable choice of B2.
x1 m
Writing x = with x. ER yields
xz 1
T T T~
x Bln(Clx) =y ClBln(y) *+ X, an(y) ves(9)

1
where y = (ClclT)le is independent of the choice of X, The result
will follow if 32 = 0. Suppose that 32 # 0 when, by assumption, we
can choose y (and hence xl) such that an(y) # 10, A contradiction

is easily obtained by considering x, = uan(y) and suitable choice

2
of scalar p < - chlBln(y)/ HBZH(Y)”zz-

(Note: A comparison with the work of Anderson (Anderson 1967,

Narendra and Taylor 1973) indicates that the condition is connected

with the idea of the positive real property of G(s) = Cl(sIn~A1)—1B1.

The two conditions are not however identical.)

In fact we are lead to the following stability theorem underlying

the remainder of this paper:

Theorem 1
The system defined by equations (6) and (7) is globally
asymptotically stable if there exists a nonsingular mxm matrix L

such that




T

(a) c1 . 1 il 10)
® vah e >0 ¥ yer” ... (1D)
() A <0 &L

where A, < A f sy & An are the (ordered) eigenvalues of (A1+A1T)/2.

1 2
Proof: The proof is a straightforward application of lemma 1 noting
that

$oelait) = —XTBln(y) - —xTclT(LT)_ln(y)

sEaN TG 4 b

]

for all y and hence for all x.

The problem now arises as to the existence of a suitable L
matrix. We note in particular that ClB1 = LBlTB1 must be nonsingular.
This condition is not sufficient however to guarantee, for example,
that there exists L satisfying equation (10). This situation can be

enormously improved by judicious choice of basis in the state space

as illustrated by the following result:

Proposition 1: Let [CIB # 0 and define the nxn matrix

.|

-} =], f . ‘ %
T1 = [Bl(chlBl) n Nﬂ where K1 is any real, nonsingular mxm matrix

and the columns of M form any basis for the kernel of Cl. Then
=1 i 1

|T1| # 0 and, if A1 = Tl AlTl’ B1 = T1 Bl and C1 = ClT are the

1

matrices of the transformed system S(Al,Bl,Cl), we have C1 = LBlT
PRI, e | T, -1

where L = (K1 Kl) ((ClBl) ¥

Proof: The nonsingularity of T1 is easily proven. In the defined

basis it can be verified that




. . -1
B, = . ¢, = [k ",0] va(13)

and the result follows by inspection.

It would appear therefore that there is great benefit to be
obtained by expressing the state—space model in a suitable basis.
Using the above basis equation (11) reduces to

T

T m
y K 'K,C.B.n(y) > 0 Y yER s (1)

For a given nonlinearity the matrix K, provides a degree of flexibility

1
in assessing stability, although it is important to recognize that
An is a function of K1 and hence equation (12) must always be

checked for each choice of Kl'
A slightly weaker form of theorem 1 is obtained in terms of the
'matrix gain' of the nonlinearity, by considering nonlinearities of

the form

n(y) = N(y)y e )

where N(y) is bounded in the vicinity of y = 0. A sufficient
~condition for equation (11) to hold is obtained by checking the
positive semi-definiteness of a (low-order!) mxm matrix. More
precisely, condition (11) will be satisfied if

ahH ) >0 V yer® AR

or, in the case when the basis defined by Proposition 1 is used,

it is sufficient that

4 - T
K, K,C;B.N(y) > 0 \/ yER oo o 17D




Both conditions are matrix generalizations of the infinite sector
bounds so well-known in the absolute stability problem, They can
be used directly for a given nonlinearity or, conversely, the
relationships can be used to derive bounds that the nonlinear

gain matrix must satisfy in order to guarantee that equation (11)
holds, and hence the possibility of asymptotic stability. More
precisely, if we compute the set

& xeR™ ; ah s ool e (18)

then a sufficient condition for equation (11) to hold is that

N(y) € I, Y yer® : e (19

where Zd is any subset of £, This idea is illustrated by the
following example.

Consider the two-input-two—output linear system defined by the

matrices
A . B = L] C i "'(20)

with a "diagonal' feedback nonlinearity of the form

N..{y.)¥ M ly.) « O
s ot i | F1 W " ... (21)
sz(yz)yz 0 sz(yz)

satisfying the sector bounds, i = 1,2,

K, = Nn(yl) <K, Y v; (22)

We pose the absolute stability problem of determining constraints on

Ei’ Ei’ i = 1,2 that guarantee the global asymptotic stability of the

feedback system.




Comparing (20) with (13) it is seen that the system is in the

form defined by Proposition 1 with K1 = 12. As our nonlinearity is

diagonal, we can restrict our attention to the subset EdC:Z of diagonal

matrices ie

r, & (x = |1 : K.K.CBX>0}
d 171711” =
0 k
2
k, 0
={x = f k. >0, 0.I3k, <k, <138k ]
1= 1-"2-~- 1
0 k,
.oo(23)

In particular N(y) & Zd for any nonlinearity satisfying equations (22)
if, and only if,

0 < 0.13K, <K

] Sk, <K, < 18K oo (24)

2 1

3 P -3, 12 = =1<0, It follows

directly from theorem 1 that the closed-loop system is absolutely

The eigenvalues of (A1+A1T)/2 are A

stable in the "'sector' defined by equation (24).
More information can be obtained by the use of a state-space

transformation of basis as defined by Proposition 1. Choosing

1 0
Kl = ...(25)
0 v2
yields the set Bl {X = dlag{kl,kz} i klzo, 0.27k1§k2§3.73k1}.
The required transformation T1 = K1_1 leads to
o i -2 V2
A, = K AK = ve2(26)
1 iy & s

whose symmetric part has eigenvalues Al = -2-v2, Az = -2+/2<0,

Theorem 1 indicates that the closed-loop system is also absolutely




stable in the 'sector!

X <K, =3:73K G k2D

0 < 0.27K 5 2K,

S 1

Other choices of K1 will, quite obviously, provide other sectors

possessing the absolute stability property.

3. Choice of Basis and the Inverse System

The benefits of a judicious choice of basis in the state space
has been demonstrated by Proposition 1 (and by example) in the last
section. More precisely, it reduces the stability conditions of
theorem 1 to the checking of a low-order positivity condition (eqns
(11), (14), (16) or (17)) plus the (numerical well=conditioned)
calculation of the largest eigenvalue of a real symmetric matrix.
Considering the basis class defined.by Proposition 1, it is noted
that there is a large freedom in the choice of both K1 and M, It
has been seen that the choice of chan be useful in providing
alternative sector condition on the nonlinearity. Intuitively it
might be expected that a judicious choice of M and Kl could provide
a simple means of computing An. This possibility is explored in

this section,

3.1 A Nested Feedback Structure for System Representation:

Suppose that the basis change defined by Proposition 1 has been

implemented yielding
-1
MO . R SNG By
1

BZKl A2 0

: o |
e = 0] ...(28)




= 10 -

where ClBl’ All’ CZ’ BZI’ A2 are independent of the choice of K

The physical significance of this system representation is

1°

illustrated in Fig. 2(a) or, defining the system transfer function

matrix G(s) = Cl(sIn-Al)_lB1 and the transfer function matrices

Gl(s) and HZ(S) by the inverse system

Bl = Gl—l(s) + H,y(s) S5 (29)
where
-1 -1 -1
Gl (8) = s(ClBl) - (ClBl) All
& _ «1
Hz(s) = CZ(SIn—m Az) B, g veie(30)

by the configuration of Fig. 2(b). That is, a forward path system
with a strictly proper dynamic output feedback system. It is

easily verified that

sI - A -C.B
Ay Sy c,3, | ea(BI)
I 0
m
sI - A -B
n 1 1 4 o
= [ClBl lsIn_mA22 )
c, 0

and hence that (a) the forward path system has no zeros and (b) that
the poles of the feedback system (Owens 1977, 1978a) are the zeros
of S(Al’BI’C1)° If we note (Owens, 1978a,b) that the asymptotic

directions and pivots of the root-locus of S(Al,B Cl) are governed

1°
completely by the structure of GI(S), it can be seen that the system
decomposition has a direct relationship to the root-locus plot.

Consider now the possibility of continuing with this decomposition
by induction. More precisely, suppose that ]Cij| # 0 for some j>1

and, applying Proposition 1 to S(Aj’Bj’Cj)’ a suitable choice of

basis yields a representation of the form




- T

K:A. K. —K.C.B.C. k.C.B.
e B RS P30t glw | 3
] 3 j
ety 341 ‘
Sl
¢, =[x, , o ] ti(a3)

where Kj is an arbitrary real, nonsingular mxm matrix. In algebraic

terms, taking Ho(s) & G(s), this operation is equivalent to inversion

of Hj(s)

-1 .
Hj (s) = GE (s) + Hj (s) i25(34)

+1

where Gj(s) is a system with polynomial inverse of the form

-1 i | -1
o s) = s(C.B.) = {C:B.) “As.
| (s) ( J ( J 3 1]

(and hence with no zeros) and Hj+1(s).is strictly proper of the form

_]_B

- A, } j+1

Hip(8) = Gy GT o £vs (35)

In generic terms these operations can be continued up to any gq < n/m
but this is not always the case. Suppose therefore that these
operations are valid for 1<j<q, then the system has the nested
Alternatively, in state-

feedback structuré illustrated in Fig. 3.

space terms, the system can be expressed in the form

. o b -1 \
KA Ky K,C,B.K, & 5 os SN P R
% -1 -1 -1
A = |K,C,BK, K,A, K, K,C,B,K, o SRR e
-1 -1
o K4C4B4K, KAk,
0
0
¥ 0B C
qqqq+l
-1
| 0 0 o 0 Bq+1Kq Aq+1,
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chlBl
0 _ -1
B, = . e B = B 0 g wws O liae)
0
where Al has a partial block band structure. Although this structure

gives a formal simplicity to A (and hence to its symmetric part) it

does not allow an explicit simplification of the calculation of An

except in very special cases, namely when there exists real nonsingular

mxm matrices Kj’ 1<j<q, and a suitable state space basis for

S(A ) such that

q+l’Bq+1’Cq+l

1.T

. )", 12j<q-1

Kon1CragByan® ~ &

C.B.E, =
1.1 1t

Bq+lxq'1 - (chqucq+1)T s (3
when it is easily verified that
An =max {A : A is an eigenvalue of the symmetric part of one
of the mxm matrices KjAijjul, 1<j<q, or the (n—qm)x(n-qm)
matrix Aq+1} < wsX38)
Equations (37) are of a fairly complex form and, most certainly, do

not always have solutions. There are however a case when an

explicit solution can be constructed, as in the following section.

3.2 Symmetric Systems

Consider now the case of symmetric systems satisfying the

constraint

a(s) = G (s) Y s . (39)

Although a rather restrictive assumption for multivariable systems
it does occur in practice and, in particular, encompasses the

important case of scalar systems quite trivially.




The assumption of symmetry emsures that Gj(s), 1<j<q, and

(s) are all symmetric and hence that CﬁBj’ 1<j<q, (Cij)_lAjj,

Hq+1

lfij, and C are symmetric. Suppose now that the system

q+1Bq+1

is positive (loop-wise) in the sense that

Cij >0 3 1<j<q+l .o (40)

and that S(A ) is in the form defined by equation (33)

q+1’Bq+1’Cq+l
with j = q+l.

Write
K .8, a j<q+l (41)
. = .B. - K, 1<j<q+ i,
i 47 i ¢ 234
It follows immediately that
-1 -1 -1 -1, T
o 8. B KR, . = {K.C.B.K,
KJ+1 it M KJ+1 KJ (KJ 33 ¥l )
1<j<q oo (42)
Bl 0™ = KR E e B = (kY
g bk j -] 1d 1 ddd
1<izq ... (43)

Using this notation, we deduce the following result concerning

absolute stability from theorem 1:

Theorem 2
The system defined by equations (6) and (7) is globally
asymptotically stable if
@ yam >0 Y yer" o (4)
(b) the linear system is symmetric and positive (loop-wise)
in the sense defined above
(c) O>J\n = max{) : A is an eigenvalue of one or more of the

- \
mxm symmetric matrices KjAijj 1, 1<j<q, or the (n-gux(n-qm)

. T
matrix (Aq+ Aq+1 Yi/2}

.
(Remark: we can obviously replace the matrices KjAijj_l, 1<j<q,

by Ajj’ 1<j<q, in the calculation of ln).
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Proof of Theorem 2

The definitions of Kl’ equation (44) and Proposition 1 imply
equations (10) and (11) of theorem 1. Also, equationms (42) and

-1 -1
seeesK A ’(Aq+1

s T ;
(43) yield (A1+A1 )/2_— block diag{K 2 quq

T
141151 g 22

which implies equation (12) of theorem 1.

The following special case follows trivially:

Corollazz

With the assumptions of theorem 2, the closed-loop system is
globally asymptotically stable in the presence of any 'diagonal'

: : - T 4
nonlinearity of the form n(y) = (nl(yl),...,nm(ym)) 3 nj(yj) = ij(yj)yj,

l<j<m, where N..(y.) > 0 .s 1<ji<m.,
<j<m, JJ(yJ > VyJ, S |

It is interesting to note that the stability conditions can be
expressed in terms of the 'positivity' of the loops in Fig. 3 (as
expressed by equation (40)), the stability of the q loops Gj(s),
1<j<q, and the stability of the 'symmetric part' of the (q+1) th loop.
A particularly interesting case occurs when S(Aq+1,Bq+1,Cq+1) has a
realization of the required form with A = A T. In this

g+l g+l

situation theorem 2(c) reduces to the requirement that all loops

in Fig. 3 are asymptotically stable. Conditions for this are

stated below:

Proposition 2: If the symmetric system S(Aq ) is both

+1’Bq+lscq+1

controllable and observable, then there is a choice of basis in the
tate space such that C = [(C B )é Q] =B y d
Aot a% I8k i q+1 q+1 el 2B

T-. ;
Aq+1 = Aq+1 if, and only if, Hq+1(s) takes the form
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(s) =

. (45)

I o~
[y

H R.
q+l 1 S7M: ]

where the system poles {uj} are real and the mxm real, constant
'residue' matrices are symmetric and positive semi-definite.

Proof: Necessity is obvious. To prove sufficiency, note that

e o e S o
Hq+1 has a minimal realization of the form Cq+1 = [Pl’PZ""PEJ = Bq+1 5
A e block diag{u.I } where r. = rank R. and R, = P.P.T,

q i 1<i<e J ] Al g

1<j<% where the matrices Pj are mxrj, 1<j<e. The controllability

and observability assumption ensures that the two realizations

S(A ) and S(Aq ) are related by a state

q+1’Bq+1’Cq+l +1’Bq+1’

= - =1
i e -3 ;
transformation To' Let T0 [Bq+1( q+qu+l) S @] where M is a

matrix with columns defining an orthonormal basis for the kernel of

> . i e

Cq+1' Note that T is orthogonal and write A.q+1 T0 Aq+1To’
=~ = 2 s T-v = T—

Coe1 €410 [( 41 q+1) 0] and Bq+1 T, Bgsl (Cq+1TD)

Cq+lT' This proves the propositiomn.

To illustrate these results, consider the symmetric invertible
system of state dimension n = 4 with inverse transfer function

matrix factored into polynomial and strictly proper form as follows

& Ulene 3. ;i 9 3 3 i 4s+8 2s+h e
1.2 g g} o D) o 2esa :
Mg i, LG Ml
& ) H, (s)
By inspection
(C.B) " = s (€.B) a = st oo C47)
11 _— . 1Y THC | s

from which it is easily verified that ClBl = C1B1T>0 and All has

eigenvalues of -4,-6. Note also that HZ(S) has the form defined




_16_
in Proposition 2,
T e T b
B, (8) = e k [2+ 1] Py : [o 1] ... (48)

with eigenvalues -1, -2, and that,

4 2 . _
C.B, = lim s H.(s) = = (C.B,) >0 .. (49)
3 e 2 _ 22

The system is hence symmetric and positive (loop-wise) with
A4 = max{-4,- 6 ,-1,-2} = -1 < 0. The system is hence absolutely

stable with respect to all negative feedback nonlinearities of the

form defined by equation (44).

3.3 Scalar Systems

- As might be expected, there is further simplification to be
obtained for the case of m = 1 (ie single-input/single—output systems)
if we work directly in terms of the system transfer function. In
particular, the sequential inversion operation defined by equation

(34) is easily undertaken and we obtain the following result,

Theorem 3
If m = 1, the system defined by equations (6) and (7) is
globally asymptotically stable if it can be decomposed into the
form shown in Fig. 3 and
(a) yn(y) 20 V y
(b) each Gj(s) is a stable first order lag of the form
Gj(s) = aj/(5+bj) with aj>0, bj>0, 1<j<q

(¢) H (s) is a stable first order lag of the form

q+l

(s) = aq+1/(s+bq+1) with aq+l>0’ b .>0 or a stable

Hq+]_ q+l
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transfer function of the form

k(s~z.)(s-2,)...(s-2 )
= 1 2 n-q-1
(s-pl) (s—pz) o (S—pn_q) .« (50)

Hq+1(s)

with k>0 and real poles and zeros with the 'interlacing'

property Pl<zl<p2<22<'"<zn—q—I<Pn—q<o sk Ol)

Proof

GT(s) trivially.

m

Note that Cij = aj, 1<j<q and that G(s)
. = e
Note also that the form of Hq+1(s) yields Cq+qu+1 k>0 and that
the interlacing property guarantees that Hq+1(s) has an expansion
of the form given in Proposition 2. In particular we see that
An = max{—al,—az,...,—aq,-pl,...,-pn_q}<0. The theorem follows
directly from theorem 2.

To illustrate the application of the result consider the system

with transfer function

3
a(s) = (er2) L5
(s+1) (s +6s8 " +245+38)
Sequential inversion with q = 2 yields
- Gl I ¢
Gl(s) ~ (s+1) i Gz(s) ~ (s+2)
_0.1(s+2)
B389 A D w3elad)

, are stable with positive gain and H3 is stable with

a positive gain and possesses the interlacing property. The system

Both G1 and G

is hence absolutely stable in the presence of all first and third

quadrant feedback nonlinearities.
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4. Discussion

The stability criteria presented in this paper are based on
the search for a suitable basis in the state space and suitable
constraints on system structure such that the elementary Lyapunov
function V(x) = %xTx can be used as a basis for absolute stability
studies, This leads naturally to the structural constraint
expressed by lemma 2 and hence to the basic and easily applied
result of theorem 1. The logical consequence of this result is
(Proposition 1) the idea of decomposing the system into the feedback
representations illustrated in Fig. 2. The intuitive justification
of this step is the observation that the decomposition has a direct
connection with the pole-zero or root-locus structure of the system
(Owens 1978a,b). Extension of these considerations does lead to
some simplification of the stability ériteria in quite general cases,
the real advantages being seen in applications to the (defined)
symmetric, positive (loop-wise) systems and the special case of
scalar systems. In these cases the nested feedback representation
illustrated in Fig. 3 is seen (theorems 2 and 3) to be a natural
and particularly simple tool for the determination of absolute

stability properties.
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Fig. 1 Nonlinear Feedback System
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