
This is a repository copy of Stochastic and global sensitivity analyses of uncertain 
parameters affecting the safety of geological carbon storage in saline aquifers of the 
Michigan Basin.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/86250/

Version: Accepted Version

Article:

González-Nicolás, A., Baù, D., Cody, B.M. et al. (1 more author) (2015) Stochastic and 
global sensitivity analyses of uncertain parameters affecting the safety of geological 
carbon storage in saline aquifers of the Michigan Basin. International Journal of 
Greenhouse Gas Control, 37. 99 - 114. ISSN 1750-5836 

https://doi.org/10.1016/j.ijggc.2015.03.008

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

1 

Stochastic and Global Sensitivity Analyses of Uncertain Parameters Affecting 

the Safety of Geological Carbon Storage in Saline Aquifers of the Michigan 

Basin 

 

Ana González-Nicolás
1
*, Domenico Baù

1,2
, 

 
Brent M. Cody

1
, Ayman Alzraiee

1 

 

1
 Colorado State University, Civil and Environmental Engineering Department, Fort Collins, CO 80523-

1372, USA 

2
 Now at: University of Sheffield, Civil and Structural Engineering Department, Sheffield, S1 3JD, UK 

 

 

*Corresponding author: T: +1-970-4037858 

E-mail address: anagna@gmail.com (A. González-Nicolás) 

Postal address: Colorado State University, Campus Delivery 1372, Fort Collins, CO 80523-1372, USA 

 

Received 11 November 2014 

Received in revised form 9 March 201 

Accepted: March 10, 2015 

 

REFERENCE: International Journal of Greenhouse Gas Control, Volume 37, June 2015, Pages 99–114.        

doi:10.1016/j.ijggc.2015.03.008 

  



 

2 

Abstract 

Geological carbon storage (GCS) has been proposed as a favorable technology to reduce carbon 

dioxide (CO2) emissions to the atmosphere. One of the main concerns about GCS is the risk of CO2 

escape from the storage formation through leakage pathways in the sealing layer. This study aims at 

understanding the main sources of uncertainty affecting the upward migration of CO2 through pre-

existing “passive” wells and the risk of fissuring of target formation during GCS operations, which may 

create pathways for CO2 escape. The analysis focuses on a potential GCS site located within the Michigan 

Basin, a geologic basin situated on the Lower Peninsula of the state of Michigan. For this purpose, we 

perform a stochastic analysis (SA) and a global sensitivity analysis (GSA) to investigate the influence of 

uncertain parameters such as: permeability and porosity of the injection formation, passive well 

permeability, system compressibility, brine residual saturation and CO2 end-point relative permeability. 

For the GSA, we apply the extended Fourier Amplitude Sensitivity Test (FAST), which can rank 

parameters based on their direct impact on the output, or first-order effect, and capture the interaction 

effect of one parameter with the others, or higher-order effect. To simulate GCS, we use an efficient semi-

analytical multiphase flow model, which makes the application of the SA and the GSA computationally 

affordable. Results show that, among model parameters, the most influential on both fluid overpressure 

and CO2 mass leakage is the injection formation permeability. Brine residual saturation also has a 

significant impact on fluid overpressure. While influence of permeability on fluid overpressure is mostly 

first-order, brine residual saturation’s influence is mostly higher-order. CO2 mass leakage is also affected 

by passive well permeability, followed by porosity and system compressibility through higher order 

effects. 

 

Keywords: CO2 storage, semi-analytical algorithm, CO2 leakage, fluid overpressure, parameter 

uncertainty, stochastic approach, global sensitivity analysis. 
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1 Introduction 

The Earth’s atmosphere is experiencing global climate change caused by increasing greenhouse 

gas concentrations. Carbon dioxide (CO2) is the most important greenhouse gas produced by human 

activities (Solomon et al., 2007). In the last decade, geological carbon storage (GCS) has been identified 

as a promising technology for reducing CO2 emissions to the atmosphere. Candidate storage formations 

include depleted oil and natural gas reservoirs, unmineable coal seams, and deep saline aquifers (Bergman 

and Winter, 1995; Ruether, 1998; Bachu, 2003). The latter represent potential alternatives to the lack of 

petroleum fields and constitute 60% of the estimated storage capacity worldwide (International Energy 

Agency, 2008). GCS in saline aquifers involves the injection of supercritical CO2 into deep brine-

saturated formations. Supercritical CO2 is less dense and less viscous than the brine residing in saline 

formations, which causes gravity override as well as viscous fingering. Thus, supercritical CO2 tends to 

migrate upwards driven by buoyancy unless low-permeable layers, or caprock, stop its vertical 

movement. However, if the injected CO2 finds a potential leakage pathway through the caprock, it may 

adversely affect shallow fresh groundwater resources or even reach the land surface.  

Sealing features of the caprock overlying the injected formations are critical elements for the 

effectiveness and safety of GCS operations. Nevertheless, unlike petroleum reservoirs, saline aquifers 

have never contained oil or gas. Consequently, there are less data associated with saline aquifers than 

petroleum reservoirs. In addition, information about the sealing properties of the caprock might be scarce 

or nonexistent. Typically, physical properties of potential candidate GCS sites are highly uncertain. Host 

rock permeability, spatial distribution of potential leakage pathways, and increase of fluid pressure in the 

injected formations may directly influence CO2 leakage. Leakage pathways may also be created during 

the CO2 injection process due to caprock fracturing associated with increased pore pressure and the 

ensuing reduction in effective stress. Therefore, assessing the risk of CO2 leakage given the uncertainty 

on these parameters is vital prior to the implementation of GCS systems. 
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Carbon injection into deep saline aquifers involves complex processes of two-phase flow in 

confined geological formations, which make its modeling a demanding endeavor. Complexities 

associated with multiphase flow and transport processes, such as non-linearity, induced fingering and 

convective mixings, create the need for computationally efficient assessment approaches. Several 

analytical and semi-analytical solutions have appeared in the literature (e.g., Saripalli and McGrail 

(2002); Nordbotten et al. (2005a); Gasda et al. (2008); Dentz and Tartakovsky (2009); Vilarrasa et al. 

(2010); Mathias et al. (2011)), which rely on a number of simplifying assumptions. The main advantage 

of analytical and semi-analytical models is that they allow simulations to be performed in a very short 

central processor unit (CPU) time (of the order of seconds), which makes stochastic analyses (SAs) and 

global sensitivity analyses (GSAs) requiring on the order of thousands of model runs computationally 

viable. 

Risk assessment is an important tool for decision making during the initial stages of GCS 

projects. Some algorithms have been developed to predict performance and risk of GCS systems (e.g., 

LeNeveu, 2008; Stauffer et al., 2008; Oldenburg et al., 2009; Dobossy et al., 2011), in which potential 

candidate sites are selected for evaluation of their safety and effectiveness. Several studies have been 

published that statistically analyze the uncertainty of leakage associated with parameters of the injected 

aquifer in a GCS system. For example, Celia et al. (2009) investigated the influence of the injection depth 

on leakage risk and showed that this risk decreases when injection depth increases.  

CO2 injection performance and sequestration efficiency have also been investigated. For example, 

Celia et al. (2011) found that CO2 injection rates are reduced by higher brine residual saturations and are 

influenced by the relative permeability of CO2. Gupta and Bryant (2011) found that more CO2 trapping is 

achieved when the gravity number (i.e. the ratio between buoyancy and viscous forces) is low, leading to 

enhanced lateral displacement of the CO2 plume. On the other hand, high gravity numbers lead to stronger 

gravity override, resulting in both less trapping of CO2 and less contact between the CO2 plume and 

ambient brine. Middleton et al. (2012) showed that uncertainties from permeability, porosity, and 

formation thickness significantly affect capacity and cost calculations. 
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Studies that analyze the uncertainty of leakage associated with abandoned wells can also be 

found. Kopp et al. (2010) conclude that increased risk of leakage is produced by a longer injection time, 

smaller distance between injection wells and leaky wells, higher permeability anisotropy, higher 

geothermal gradient, and shallower depth. In order to show that potential leakage depends on formation 

properties, as well as the location and the number of leaky wells, Nogues et al. (2012) conducted a Monte 

Carlo simulation where the main uncertainty was the effective well permeability. 

Alternative methods for quantifying uncertainty by stochastic simulation can be found, for 

example, in the works of Oladyshkin et al. (2011) and Walter et al. (2011). Both studies used an 

integrative probabilistic collocation method (Wiener, 1938; Li and Zhang, 2007) to reduce the 

computational cost associated with stochastic approaches. Specifically, Oladyshkin et al. (2011) 

compared the probabilistic collocation method to a Monte Carlo approach as a risk assessment tool of 

CO2 storage. Walter et al. (2011) used this method to study the pressure increase in a channel system 

during injection of CO2.  

Mathias et al. (2013) applied a local a sensitivity analysis of permeability, porosity and relative 

permeability parameters based on data drawn from the literature on 25 formations. The sensitivity 

analysis addressed the impact of these parameters on the ratio between the CO2 injection rate and the 

down-hole fluid overpressure –or injectivety– at the end of a prescribed injection period that is likely to 

cause fissuring of the formation. They showed that relative permeability parameters have a significant 

impact on aquifers of large extent, whereas the impact of compressibility and porosity is more important 

in “closed” compartmentalized aquifers. A local sensitivity analysis on the long-term behavior of CO2 in a 

multilayered aquifer was conducted by Kano and Ishido (2011), who showed that, in the long-term, the 

most influential parameters are geothermal gradient, layer thicknesses, capillary pressure, relative 

permeability and permeability. Aoyagi et al. (2011) presented an example of a local sensitivity analysis of 

productivity index and fault permeability affecting the leakage of CO2 through wells or faults. They found 

that the fault permeability value is more relevant when leakage starts. Zhao et al. (2010) determined that 



 

6 

CO2 dissolution increased when the vertical-to-horizontal permeability ratio, critical gas saturation, or 

brine salinity are decreased, and when brine saturation is increased.  

GSA (Saltelli, 2008) differs from the local sensitivity analysis in that GSA explores the whole 

parameter space and is able to rank parameters according to their importance. GSA methods include 

methods such as Fourier amplitude sensitivity test (FAST) (Cukier et al., 1978; Saltelli et al., 1999; 

Saltelli, 2008), Morris analysis (Morris, 1991), and Sobol’s indices (Sobol', 2001). These last two 

methods have been applied recently by Wainwright et al. (2013) to investigate the complementarity of 

GSA and local sensitivity analysis in a hypothetical GCS site located in the Southern San Joaquin Basin 

in California, USA. Another option to compute sensitivity measures when observations are available is 

the Generalized Likelihood Uncertainty Estimation (GLUE) (Beven, 1993). One example of the use of 

GLUE to produce sensitivities measures for each parameter based on Kolmogorov–Smirnov statistic can 

be found in McIntyre et al. (2005). 

All these studies investigate uncertainties of multiple factors to aid the decision making of best 

injection strategies. The aim of this study is to provide an understanding of the main sources of 

uncertainty that affect leakage through potential escape pathways and fluid overpressure variability, 

thereby identifying where data collection efforts should be directed to improve the characterization of a 

candidate site for GCS. With this purpose, we conduct SAs and GSAs to investigate the effect of several 

parameters −such as permeability and porosity of injection formations, passive well permeability, system 

compressibility, brine residual saturation and CO2 end-point relative permeability − on (i) the maximum 

fluid overpressure produced by carbon injection and (ii) the mass of CO2 that migrates into overlying 

formations through passive wells in relation to the total mass of injected CO2. The main goal of the SA is 

to estimate the probability of fracturing the caprock, and the probability of leaked mass to exceed 

predefined threshold values. In carrying out the GSA, we apply the extended FAST method (Saltelli et al., 

1999), which captures not only the uncertain parameters having more influence on the model output, but 

also the interaction effect among these parameters. In all analyses, CO2 injection is simulated using 

ELSA-IGPS, a semi-analytical model developed by Cody et al. (2014), which builds upon the semi-
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analytical solution of Celia and Nordbotten (2009) and Nordbotten et al. (2009). These analyses focus on 

a potential GCS site embedded in the Michigan Basin. 

This paper is organized as follows. First, the multiphase flow model is presented, followed by a 

description of the methodologies used for stochastic analysis and global sensitivity analysis. Results of 

the application of these methodologies to the Michigan Basin test site are thus presented and discussed. 

Last, a summary and conclusions of this work are given. 

2 Multiphase Flow Semi-Analytical Model 

The algorithm used in this study is called ELSA-IGPS (Estimating Leakage Semi-Analytically- 

Iterative Global Pressure Solution) (Cody et al., 2014), and constitutes a modified version of the semi-

analytical model ELSA devised by Celia and Nordbotten (2009) and Nordbotten et al. (2009). 

By solving the partial differential equations for two-phase immiscible flow, Nordbotten et al. 

(2005b) developed a semi-analytical solution to estimate the leakage of brine and CO2 flux through 

permeable caprock locations resulting from GCS. In ELSA-IGPS, the domain is structured into a stack of 

𝐿 aquifers separated by 𝐿 + 1 caprock layers, perforated by 𝑀 carbon injection wells and 𝑁 passive wells. 

The model relies on the following assumptions: 

- Permeable caprock locations are segments of pre-existing, abandoned wells and represent 

cylindrical portions of the caprock layers having low, yet non-negligible, permeability. These are 

referred to as “passive” wells and are assumed to be the only pathways for fluid flux exchange 

between permeable layers. Consequently, diffusion leakage across the caprock is neglected. 

- Aquifers are assumed to be horizontal, homogenous, isotropic, and permeable formations of large, 

virtually infinite, extent, confined between impervious top and bottom layers. 

- Initially, fluid is not flowing through any of the passive wells as the entire domain is assumed 

saturated with brine under hydrostatic-pressure conditions.  

- Flow is perfectly horizontal. 
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- Dissolution and chemical reactions are neglected since the time scale at which these processes 

occur (centuries and millennia, respectively) is much greater than the time scale of the injection 

operations (decades) considered for this study.  

- Capillary pressure is neglected; therefore CO2 and brine pressures at the interphase are equal. 

- Pressure response from sources and sinks can be superimposed in each aquifer. 

- The CO2 plume thickness at any given location is the effect of all CO2 sources and sinks in the 

aquifer. For any position where there is an overlap of CO2 plumes, CO2 saturations are calculated 

by assuming the maximum plume thickness. This must lead to a loss of CO2 mass in the system. 

- Injection wells are theoretically able to inject into any of the L aquifers.  

- CO2 injection is constant during the injection period, even for low permeability formations, and no 

post-injection phase is simulated.  

Due to its significant amount of assumptions, this solution is adequate for pre-screening and risk 

analyses but not recommended for supporting the final design of GCS systems.  

ELSA-IGPS, as the original model, applies superposition of effects for the fluid flux across 

sources 𝑖𝑤 (injection wells, 𝑖𝑤=1,2,…,𝑀) and sinks 𝑗 (passive wells, 𝑗=1,2,…,𝑁) to solve the fluid 

pressure 𝑝!,! [ML
-1

T
-2

] at any given time 𝑡 [T] at the bottom of the generic aquifer l (𝑙=1,2,..,𝐿) and for 

each passive well 𝑗. Therefore, fluid pressure can be expressed as: 

𝑝!,! = 𝑝!! + 𝜌! − 𝜌! 𝑔𝐻! ∆𝑝! 𝜒!",!,!
!

!"!! + ∆𝑝! 𝜒!,!,!
!

!!!   (1) 

where: 𝑝!! is the initial fluid pressure [ML
-1

T
-2

] at the bottom of the aquifer 𝑙, 𝜌! is the fluid density [ML
-

3
] (𝛼 denotes the phase type, 𝑏 for brine and 𝑐 for CO2), 𝑔 is the gravitational acceleration [LT

-2
], 𝐻! is the 

aquifer thickness [L] of aquifer 𝑙, and: 

∆𝑝! 𝜒 =

  0                                                                                                                                                                      for  𝜒 ≥ 𝜓                  

    −
!

!!
ln

!

!
+ ∆𝑝! 𝜓                                                                                                   for  𝜓 > 𝜒 ≥ 2𝜆    

      
!

!
−

!

! !!
+ ∆𝑝! 2𝜆 + 𝐹 ℎ

!
                                                              for  2𝜆 > 𝜒 ≥

!

!

−
!

!!!
ln

!"

!
+ ∆𝑝!

!

!
                                                                                          for  

!

!
> 𝜒                      

 (2) 
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where: 

𝜒 =
!!"# !!!!

!"#
!
!

!"
       (3) 

Γ =
!! !!!!! !"!

!

!!!
      (4) 

𝜓 =
!.!!"#$ !!!!

!"!

!!!!""!
      (5) 

ℎ
!
=

!(!)

!
=

!

!!!

!!

!
− 1      (6) 

𝐹(ℎ′) =
!!

!!!
h′ −

!" !!! !"!!

!!!
     (7) 

where: ℎ is the CO2 plume thickness [L]; ℎ’  [/] is the CO2 plume thickness relative to the aquifer thickness 

𝐻; 𝑠!
!"# is the residual saturation of the brine [/]; 𝑘 is the aquifer permeability [L

2
]; 𝜇! is the dynamic 

viscosity of the brine [ML
-1

T
-1

]; 𝜑  is the aquifer porosity [/]; 𝑄 is the total volumetric well flux [L
3
T

-1
]; 

𝑐!"" is the effective compressibility of the fluid and solid matrix [M
-1

LT
2
]; and 𝑟 is the radial distance 

[L]. F(h’) is an offset term related to the vertical pressure distribution (Celia et al., 2011) and the mobility 

ratio 𝜆 [/] . The mobility ratio is defined as 𝜆   =   𝜆!/𝜆!, where 𝜆! = 𝑘!,!/𝜇! and 𝑘!,!   is the relative 

permeability of phase 𝛼. The 𝑘!,! is equal to one in areas where the CO2 plume has not reached, since the 

brine saturation is equal to one. In areas that have been invaded by the CO2 plume, the 𝑘!,! is given by the 

end-point CO2 relative permeability  𝑘!,!!, which depends on 𝑠!
!"#. The effective compressibility of the 

fluid and solid matrix is defined as (Nordbotten et al., 2009): 

𝑐!"" =
!!!!

!"#

!!

! !!!

!"
+

!!
!"#

!!

! !!!

!"
≅

!

!!

! !!!

!"
   (8) 

𝑐!"" is assumed to be equal to the brine compressibility since the domain is mostly filled with brine.  

 This derives to a system of equations where the unknowns are the fluid pressures 𝑝!,! at the 

bottom of each aquifer 𝑙 and at each passive well 𝑗, and the flow rates 𝑄!,! across each caprock for each 

passive well. 𝑄!,! is calculated using the multiphase version of Darcy’s law: 

𝑄!,! =    𝜋𝑟!"
!

!,!

!!,!!,!
!!"!,!

!!!!
𝑝!,!!! − 𝜌!𝑔𝐵! − 𝑔𝜌!𝐻!!! − 𝑝!,!!!!,!   (9) 
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where: 𝑟!"!,!
 is the passive well radius [L], 𝑘!,!!,!

 is the relative permeability of phase 𝛼 [/], and 𝑘!"!,!
 is 

the single phase passive well permeability [L
2
] for passive well 𝑗 and aquitard layer 𝑙, and 𝐵! is the 

caprock thickness [L] for aquitard layer 𝑙. 

The fluid pressure (Equation 1) at the bottom of each aquifer and at each passive well can be 

grouped into a 𝑁 ∙ 𝐿 ×1 vector. Similarly, the flow rates (Equation 9) across each aquitard for each 

passive well can be grouped into another 𝑁 ∙ 𝐿 ×1 vector. By combining these two vectors a set of 

2 ∙ 𝑁 ∙ 𝐿 non-linear equations with 2 ∙ 𝑁 ∙ 𝐿 unknowns is obtained. Domains having large numbers of 

passive wells (𝑁) and/or layers (𝐿) produce very large sets of equations; resulting in significantly higher 

simulation run times.  To solve this system of non-linear equations at a time 𝑡, a computational efficient 

fixed-point iterative scheme (Takahashi, 2000) is developed. For more details about ELSA-IGPS, the 

reader is referred to (Cody et al., 2014). The ELSA-IGPS algorithm (Cody et al., 2014) allows for 

drastically reducing the computational effort (a complete simulation takes CPU times on the order of 

seconds or minutes) making possible the application of this solution within a stochastic simulation (or 

Monte Carlo) approach or a global sensitivity analysis such as those described in the following sections. 

In this study, ELSA-IGPS is used to explore the uncertainty and sensitivity of the input parameters on the 

uncertainty and variability of two states variables of interest: i) the fluid overpressure nearby the injection 

well, and ii) the percentage of CO2 mass leakage into overlying formations. Fluid overpressure ∆𝑝!" is 

defined as the difference between the final (at final time 𝑡!"#) and initial fluid pressures in proximity of 

the injection well. In our analyses, the number of injection wells 𝑀 is set equal to 1, and injection occurs 

into the deepest aquifer (𝑙=1). Therefore, based on Equation (1), the fluid overpressure nearby the 

injection well at final time is calculated as: 

∆𝑝!" = ∆𝑝!,! 𝑟!"
!
, 𝑡!"# = 𝜌! − 𝜌! 𝑔𝐻! ∆𝑝

! 𝜒!,!,! + ∆𝑝! 𝜒!,!,!
!

!!!  (10) 

where 𝑟!"
!  is a radial distance nearby the injection well. The total CO2 mass leakage is given by:  

𝑀!"#$ 𝑡!"# =    𝜌!𝑠!,!,! 𝜏 𝑄!,! 𝜏
!

!!! 𝑑𝜏
!!"#

!
   (11) 
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where 𝑠!,!,! is the CO2 saturation at passive well 𝑖 and layer 𝑙=2. Thus, the percent of CO2 mass leakage 

%𝑀!"#$ is defined as the ratio between the mass of CO2 that escapes from the injected aquifer into 

overlying formations and the total mass of injected CO2 at time 𝑡!"#: 

%𝑀!"#$ =
!!"#$ !!"#

!!!!,!!!"#
100   (12) 

3 Stochastic Analysis 

Stochastic, or Monte Carlo, simulation is a mathematical method that allows for the analysis of 

complex systems while accounting for uncertainty in quantitative terms. Values of the uncertain 

parameters are sampled randomly from their respective probability distribution functions (PDF), which 

are meant to reproduce the uncertainty of the parameter. In the stochastic analysis (SA) presented here, 

the uncertain input parameters that may affect the state variables of interest, that is, ∆𝑝!" (Equation 10) 

and %𝑀!"#$ (Equation 12) are: permeability and porosity of injection formations, passive well 

permeabilities, system compressibility, brine residual saturation and the CO2 end-point relative 

permeability. These uncertainties are modeled conceptually using a series of independent PDFs 

representing typical ranges of parameter uncertainty. In the case of passive well permeability, three  PDFs 

are considered. Ensembles of uncertain parameters are used within the mathematical model (see Section 

2) to simulate how parameter uncertainty affects the uncertainty in the state variables of interest. Output 

ensembles of the state variables are used to produce cumulative distribution function (CDF) plots. The 

CDF of the generic state variable 𝑌, either ∆𝑝!" or %𝑀!"#$, is obtained from the output of 𝑁!"  model 

simulations, where 𝑁!"  is the size of the ensemble. After ordering the 𝑌 values in ascending order, 

𝑌! < 𝑌! < ⋯ < 𝑌!!"
, the corresponding CDF values are calculated as 𝐶𝐷𝐹(𝑌) = (𝑖  –   0.5)/𝑁!"  

(𝑖=1,2,…,𝑁!") (Hahn, 1967). By analyzing the statistics of the output ensembles (𝑌! < 𝑌! < ⋯ < 𝑌!!"
) 

the information that can be drawn is, for example, PDF type and its parameters, ensemble spread, 

quantiles, confidence bounds, and percentile values. In the case of state variables such as ∆𝑝!" (Equation 

10) and %𝑀!"#$ (Equation 12  (12)), percentile values can be used to estimate the probability of 
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fracturing the caprock formations and the probability of leaked mass to exceed predefined threshold 

values. 

4 Global Sensitivity Analysis 

In this study, we apply the extended FAST introduced by Saltelli (1999). Extended FAST is a 

GSA variance-based method, which allows ranking input parameters according to its importance. In 

addition, extended FAST method allows uncovering the interaction among different parameters (higher 

order sensitivity index) and its contribution to prediction uncertainty, a situation that cannot be achieved 

with typical sensitivity analyses or stochastic simulation. Therefore, extended FAST improves the 

understanding of the complex dynamics between input parameters and output prediction. This 

understanding might be exploited, for example, to perform post-GSA uncertainty analyses, in which 

uncertainty is restricted to the most important parameters obtained with the extended FAST analysis, and 

to guide data collection and focus limited resources on the most sensitive parameters. 

For each uncertain parameter 𝑍!, the extended FAST method provides two sensitivity measures: 

the first-order index and the total effect index. The first-order index 𝑆! represents the main effect 

contribution of each model input parameter   𝑍! to the variance of the generic model output 𝑌 (∆𝑝!" or 

%𝑀!"#$). In practice, 𝑆! quantifies how much the variance of 𝑌 would be reduced if the uncertain input 

parameter   𝑍! was fixed. This index is calculated as (Saltelli, 2008): 

𝑆! =
![! ! !! ]

!(!)
   (13) 

where 𝑉(∙)  indicates the variance operator and 𝐸 𝑌 𝑍!  indicates the expected value of 𝑌 conditioned to 

  𝑍!, and 𝑉[𝐸 𝑌 𝑍! ] is the first-order effect.  

Two or more input parameters present interaction when the sum of their first-order indices cannot 

explain their effect on 𝑌. 𝑉(𝑌) can thus be decomposed into first-order and higher-order effect terms:  

𝑉 𝑌 = 𝑉! + 𝑉!"
!

!!!!!
!

!!! + 𝑉!"#
!

!!!!!
!

!!!!!
!

!!!

!

!!! +⋯  (14) 
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where 𝑉! = 𝑉[𝐸 𝑌 𝑍! ] is the first-order effect of 𝑍!, and 𝑉!" = 𝑉 𝐸 𝑌 𝑍! ,𝑍! − 𝑉[𝐸 𝑌 𝑍! ] −

𝑉[𝐸 𝑌 𝑍! ] is the second-order effect between parameters   𝑍! and   𝑍!, etc. It is possible to show that the 

total number of terms at the right-hand side of Equation (14) is 2! − 1, which increases exponentially 

with 𝑛. This makes the calculation of higher-order indices computationally intensive. As an alternative to 

compute higher-order indices, GSA computes the total effect index 𝑆!! (𝑖=1,2,…, 𝑛), which detects the 

interaction of the parameter   𝑍! with all other parameters and represents its total contribution to the model 

output. In other words, 𝑆!! is equal to the first-order index  𝑆!   plus the interaction of 𝑍!   with other 

uncertain parameters, and is calculated as (Saltelli, 2008): 

𝑆!!
= 1 −

! ! ! 𝒁~!

! !
    (15) 

where 𝒁~! is the vector including all input parameters but 𝑍!. Consequently, the sum of higher-order 

effects 𝑆!! (𝑖=1,2,…, 𝑛) can be defined as 𝑆!! = 𝑆!!
− 𝑆!. The index 𝑆!!   quantifies the importance of the 

interaction of parameter   𝑍! with the all other input parameters. Consequently, if 𝑆!! is negligible, then the 

interaction of the uncertain parameter   𝑍! with other parameters is non-relevant (𝑆!! ≈ 0 and 𝑆!! ≈ 𝑆!). On 

the other hand, the value of 𝑆!! provides information concerning the relevance of the input parameter   𝑍!. 

If 𝑆!! is zero or close to zero, then the parameter   𝑍! can be set to any value of its range of variability 

without having any impact on the output variance of the model. 

Extended FAST is a Monte-Carlo based numerical procedure, where the variances and the 

conditional variances of the model response with respect to uncertain input parameters are estimated from 

the output of an ensemble of model runs. To apply the extended FAST and compute first-order and total 

effect indices of each parameter the SIMLAB package (SIMLAB, 2007) is employed. The total number 

of executions that the extended FAST method requires is equal to 𝐷(2 + 𝑛), where 𝐷 is the size of the 

ensemble used for each input parameter, which can range from a few hundreds to a few thousands. For 

example, for a number of 5 input parameters and an ensemble size of 1,000, extended FAST would 

require 7,000 runs. Inevitably, for a model with a large number 𝑛 of input parameters, this method 
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requires large ensembles of executions, and is viable only for simulation models that are not 

computationally intensive, as is the case of the multiphase flow simulator presented in Section 2.  

5 Application to the Michigan Basin Test Site 

5.1 Site description 

The SA and GSA introduced in Sections 3 and 4 are applied to a geological test site located near 

the town of Thompsonville, MI. The storage formation proposed for GCS is embedded in the northern 

reef trend of the Michigan Basin. These reefs are evaporate-encased and, up until a few decades ago, 

significantly contributed to the production of hydrocarbons in Michigan. Most of these formations are 

associated with the reef buildups of Middle Silurian age. Figure 1 shows a cross-section of the Michigan 

Basin in the area of interest with available log-wells. The Gray Niagaran formation, highlighted in yellow, 

lies below the Brown Niagaran pinnacle, a depleted oil reservoir currently used by Michigan 

Technological University for geophysical research (Figure 1). This formation is chosen as a candidate to 

store supercritical CO2 because it lies underneath the Brown Niagaran pinnacle, and thus the sealing 

capacity in that region is almost certainly assured. In addition, the Gray Niagaran formation is already 

perforated by two exploration wells (Burch 1-20B and Stech 1-21A), which could possibly serve as CO2 

injection wells. The top and the bottom of this formation lie at a depth of 1,500 m and 1,619 m below 

ground, respectively. These characteristics make this formation a good candidate for storage of CO2 in 

supercritical state. 

 

[ Figure 1  here ] 

Figure 1. Cross-section of the Michigan Basin test site (adapted from Turpening et al. (1992)). The Gray 

Niagaran formation highlighted in yellow, is selected as potential candidate for GCS. 

 



 

15 

The information available on the Gray Niagaran formation in the Michigan Basin indicates that 

no lateral boundaries are present within the regions affected by fluid pressure variations due to GCS 

during the considered simulation periods. Therefore the assumption of infinite lateral boundary can be 

assumed as valid in the analyses. To simplify the simulation of CO2 injection, the system is modeled as an 

aquifer (the Gray Niagaran formation) confined by one sealing caprock (Evaporites), and another aquifer 

with lower permeability (Carbonate formation) located above the sealing caprock. Supercritical CO2 is 

injected within the lower aquifer from a single well. The thicknesses of the Gray Niagaran formation and 

the overlying aquifer are 119 m and 35 m, respectively. The caprock has a thickness of 17 m and is 

assumed impermeable except where there are passive wells. The area of interest covers a horizontal extent 

of about 9,000 m ×	
 9,000 m around the Brown Niagaran pinnacle and comprises a total of 80 potentially 

leaky wells drilled across the Gray Niagaran formation. The locations of these wells have been obtained 

from the Michigan Department of Environmental Quality Oil and Gas Database (MDEQOGD, 2014). If 

these wells are deteriorated or not well cemented, they may represent a pathway for upward leakage of 

both brine and CO2 from the Gray Niagaran formation. In this study, all formations are assumed initially 

saturated with brine under hydrostatic pressure conditions.  

In the analyses presented here, a reference case is considered with the hydro-geomechanical 

parameters provided in Table 1. Wells logs (SCH, 1983; Halliburton, 1990; SCH, 1991) are available for 

the two boreholes shown in Figure 1. Log-porosity values are extracted from neutron porosity hydrogen 

index from the available logs. Given the lack of data, permeabilities 𝑘, in millidarcy (mD; 1mD ≡ 1×10
-15 

m
2
), for the candidate formation and the overlying aquifers are estimated from porosity 𝜑 as (Trebin, 

1945): 

𝑘 = 2𝑒
!".!!

         if 100𝜑  < 12%        (16) 

𝑘 = 4.94 100𝜑 !
− 763   if 100𝜑 > 12% 

 

Table 1. Hydro-geomechanical parameters of the reference case. Parameters of this table remain 

unchanged (deterministic) unless the parameter of interest is considered uncertain. 
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[ Table 1 here ] 

 

These relationships have been deemed fairly adequate for low porosity reservoir rocks, 

carbonates and sandstones (Aschenbrenner and Chilingar, 1960), and are used here to assign permeability 

values of 𝑘! and 𝑘! in the reference case (see Table 1). The relative permeabilities of CO2 and brine at the 

passive wells are calculated using the Van Genuchten model (Van Genuchten, 1980), with a fitting 

parameter of 0.41 and a brine residual saturation equal to 0.3 (Zhou et al., 2009). The brine residual 

saturation at the injection formation, 𝑠!
!"#, is assumed to be equal to 0.3 for the reference case of Table 1. 

In this study, fluid properties, density and viscosity, of CO2 and brine are considered constant and 

independent of pressure and temperature. The effects of variability in fluid properties have also been 

commented in works of Celia and Norbotten (Nordbotten et al., 2005a; Nordbotten and Celia, 2006; Celia 

and Nordbotten, 2009), who indicated that changes in these fluid properties are not important when CO2 

injection occurs for pressures and temperatures much greater than CO2 critical point. The depth of the 

injection formation (below 1,500 m) assures that pressure and temperature are beyond the critical point. 

The radial distance 𝑟!"
! , where the fluid overpressure is evaluated, is equal to 5 m. The choice of such 

value is driven by considerations on the accuracy of the semi-analytical model, which is likely to give 

unreliable results for smaller distances, where high pressure gradients make the system divert 

significantly from the conditions of laminar flow required to apply Darcy’s law. Previous calculations 

indicate that using values of the parameters in Table 1 and for average pore size values of the order of 5 

µm, which are considered realistic for the investigated site, Reynolds’ numbers for laminar flow are easily 

exceeded at radial distances less than 5 meters.  

The uncertain parameters of interest are: permeability 𝑘! and porosity 𝜑
!

 of the injection 

formation, passive wells permeability 𝑘!", system compressibility 𝑐!"", and brine residual saturation 

𝑠!
!"#. A PDF is prescribed for each of these parameters to represent their uncertainty for the candidate 

formation. These PDFs are given in Table 2. Note that permeability 𝑘! and porosity 𝜑
!

 are treated as 
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independent stochastic variables during the analyses and Equation (16) is only used to estimate the 

median value of the 𝑘! PDF. Thus permeability 𝑘! follows a lognormal PDF with a median permeability 

of 2.8×10
-14

 m
2
 and a log-standard deviation of 0.5 log-m

2
. Porosity 𝜑! follows a uniform PDF with 

minimum and maximum values of 0.05 and 0.35 respectively. To characterize the permeability of passive 

wells, three different PDFs sharing the same median (i.e. the mean in the log-transformed space) are 

considered (see Table 2). In Case 1, a lognormal PDF with a median permeability of 1.0×10
-14

 m
2
 and a 

log-standard deviation of 1 log-m
2
 is adopted (Nordbotten et al., 2009). For Cases 2 and 3, binary 

distributions are assigned, in which each passive well permeability may assume two values corresponding 

to a well-sealed passive well and to a leaky passive well, each with a 50% probability of occurrence. In 

Case 2, the value of permeability assigned to well-cemented passive well is 1×10
-17

 m
2
 (corresponding to 

the minimum value in Table 2), and the value of permeability assigned to a poorly cemented passive well 

is 1×10
-11

 m
2
 (corresponding to the maximum value in Table 2). In Case 3, the permeabilities for a well-

cemented well and a leaky passive well are 1×10
-16

 m
2
 and 1×10

-12
 m

2
, respectively. In both cases, the 

permeability corresponding to a cemented well never exceeds the maximum permeability recommended 

for a well-sealed passive well, which is 2×10
-16

 m
2
 according to Kutchko et al. (2009). The PDFs of Case 

1, Case 2, and Case 3 are shown in Figure 2. System compressibility 𝑐!"" follows a lognormal PDF with 

median equal to 4.6×10
-10

 and a log-standard deviation of 1 log-Pa
-1

. Brine residual saturation is 

represented by a uniform PDF with a minimum value of 0 and a maximum value of 0.6. 

 

Table 2. Probability distribution functions (PDFs) for uncertain parameters. 

[ Table 2 here ] 

 

[ Figure 2 here] 

Figure 2. PDFs of passive well permeability assigned to Case 1, Case 2, and Case 3. Details of these 

PDFs are in Table 2. 
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The residual brine saturation 𝑠!
!"# is implicitly related to the CO2 relative permeability 𝑘!,! and 

affects its “end-point” value at the brine residual saturation, 𝑘!,!!. To account for this dependency, for 

each 𝑠!
!"# value considered in the analyses, a 𝑘!,!! is introduced. Since there are no data available for the 

GSC candidate formation at hand, data from the literature are used to derive a statistical correlation 

between 𝑠!
!"# and 𝑘!,!!. While 𝑘!,!! is considered uncertain in our analyses, its impact on the model 

outputs is not addressed explicitly. For this purpose, 𝑠!
!"# and 𝑘!,!! data corresponding to 

carbonate/dolomite formations are retrieved from the works of Bennion and Bachu (Bennion and Bachu, 

2008; Bennion and Bachu, 2010). With these data, a non-linear exponential regression between 𝑠!
!"# and 

𝑘!,!! is hypothesized: 

𝑘!,!! = 𝑒
!!!

!

!"#

    (17) 

where 𝑎 is the coefficient obtained by running the exponential regression, and 𝑘!,!! is the median value of 

𝑘!,!!. Also, a half amplitude confidence interval for 𝑘!,!!   is calculated and applied around 𝑘!,!!: 

𝑘
!,!!
±

= 𝑒
!!!

!

!"#
±!!!

!

!"#
!!!

!

!"#

   (18) 

where 𝛿 is the standard deviation of the natural-log transformed 𝑘!,!! data. Substitution of Equation (17) 

into Equation (18) results in: 

𝑘
!,!!
±

= 𝑘!,!! ∙ 𝑒
±!!!

!

!"#
!!!

!

!"#

   (19) 

Therefore in the analyses, as 𝑠!
!"# is sampled from the uniform PDF given in Table 2, 𝑘!,!! is generated as 

𝑘!,!! = 𝑘!,!! ∙ 𝑒
!∙!, where 𝑠 = 4𝛿𝑠!

!"#
1 − 𝑠!

!"#  and 𝑧 is a randomly generated value fitting to a standard 

normal PDF. Figure 3 represents the of 𝑘!,!! and 𝑠!
!"! data obtained from Bennion and Bachu (Bennion 

and Bachu, 2008; Bennion and Bachu, 2010) together with the exponential regression and the half 

amplitude confidence intervals. 

 

[ Figure 3 here ] 
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Figure 3. Representation of 𝑘!,!! and 𝑠!
!"# data of carbonates/dolomites (Bennion and Bachu, 2008; 

Bennion and Bachu, 2010), exponential regression (in black), and the half amplitude of confidence 

interval (in grey). 

 

Preliminary tests are run to estimate the minimum ensemble size beyond which CDFs remain 

substantially stationary. Based on the results of these tests sample sizes of 𝑁!"=1,000 and 𝐷=1,000 are 

selected for the SA and the GSA, respectively.  

In the SA, the 80 passive wells are considered individually in the semi-analytical model. In the 

GSA, these wells are clustered into 20 equivalent leakage pathways. Clustering of the 80 passive wells 

reduces the number of input parameters 𝑛 in the GSA, which includes four system parameters 

(permeability 𝑘!  and the porosity 𝜑! of the injection formation, compressibility 𝑐!"", and brine residual 

saturation 𝑠!
!"#) and the permeabilities of 80 passive wells. Consequently, the computational cost of the 

extended FAST procedure (which requires 𝐷(2 + 𝑛) model simulations, see Section 4) is reduced from 

1,000×(2+84)=86,000 to 1,000×(2+24)=26,000 after well clustering. This clustering is performed by an 

optimization procedure that minimizes the sum of the Euclidean distances of the passive wells forming a 

cluster and the cluster centroid. When the cluster configuration is identified, each cluster of wells is 

substituted by an “imaginary” well located on the cluster centroid and having an equivalent circular area 

given by the sum of the cross-section areas of the passive wells within the cluster. From the cluster 

equivalent area a radius is derived and used in Equation (9) to calculate flow rates through them. The 

clustering of passive wells is not expected to affect significantly the results of the GSA. The presence of 

passive wells has little influence on fluid pressure at the injection well and thus the impact of passive-well 

clustering on this state variable is negligible, unless these wells were located in close proximity of the 

injection units. On the other hand, the intensity of CO2 mass leakage might be affected by clustering, 

since it depends on the distances of the passive wells from the injection well. However, when clustering is 

applied, the increased leakage associated with the passive wells that are “moved” closer to the injection 
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well, is somehow offset by the decreased leakage associated with the passive wells that are “moved” 

away from the injection well. For this reason, the difference of CO2 mass leakage due to the clustering 

can assumed negligible. 

Figure 4 shows the position of the 80 passive wells (MDEQOGD, 2014) located in the area 

under consideration and the position of each cluster of wells. The GSA is applied to study the impact of 

these 24 parameters on the maximum fluid overpressure reached around the injection well ∆𝑝!" (Equation 

10) and on the percent of CO2 mass leakage %𝑀!"#$ (Equation 12). The input parameters are 

characterized by the PDFs given in Table 2. With regard to passive well permeability, this follows the 

PDF of Case 1 according to results of Section 5.2.2.  

 

[ Figure 4 here ] 

Figure 1. Location of the 80 passive wells (indicated as crosses) that reach the Niagaran formation and 

location of the 20 equivalent leakage pathways (indicated as circles) used in the GSA and obtained after 

clustering the 80 passive wells. The injection well is located at the center of the domain. 

 

5.2 Results and discussion 

This section includes first a preliminary analysis carried out to select the CO2 injection rate and 

the duration of CO2 injection. Next, we present and discuss the results of the SA and the GSA for the 

Michigan Basin deep saline aquifer introduced in Section 5.1. 

5.2.1 Selection of CO2 injection rates 

To choose an appropriate injection rate, a set of multiphase flow simulations is performed for a 

hypothetical system representative of the Michigan Basin. This hypothetical system consists of the same 

permeable formations and caprock considered for this study plus two overlying aquifers of thickness 

equal to 37 m and 75 m, underlain by two 18-m and 109-m thick aquitards, corresponding to the 

formations illustrated in Figure 1. Deterministic values of porosity are assigned to each layer based on 
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values from available log-wells (SCH, 1983; Halliburton, 1990; SCH, 1991). Permeability values are 

calculated with Equation (17). The aquifers are named L1, L2, L3 and L4, from the deepest to the 

shallowest. Aquitards are assumed impermeable except where passive wells are present. Twenty-four 

hypothetical leaky passive wells and one injection well are included in this analysis. The 25 wells are 

distributed over the nodes of a 5-rows by 5-columns regular grid. The spacing between extreme nodes 

along the coordinate directions (x and y) is 5 km. The injection well is positioned at the center node of this 

square grid. The distances between wells in the same row or in the same column are of 1 km. Three main 

scenarios with different CO2 mass injection rates 𝑄! and durations are simulated. Table 3 summarizes 

these scenarios. Note that the final injected mass of CO2 is the same in all scenarios and equal to about 63 

Mt. 

 

Table 3. CO2 injection rates and duration of injection of the multiphase flow simulations of the 

hypothetical system representative of the Michigan Basin. 

[ Table 3 here ] 

 

Fluid overpressure values ∆𝑝!"   nearby the injection well at final time 𝑡!"# (Equation 10) 

resulting from multiphase flow simulations for the three scenarios of Table 3 are reported in Figure 5. 

Scenario S1 produces the greatest overpressure around the injection well with a value of 78 bar (1 bar ≡ 

1×10
5 
Pa) at 𝑡!"#= 20 years. On the other hand, scenario S3 produces the lowest overpressure nearby the 

injection well with a value of 33 bar at 𝑡!"#= 60 years. Scenario S2 produces intermediate results between 

S1 and S3, with a ∆𝑝!"= 46 bar at 𝑡!"#= 40 years. 

In Figure 5, the vertical dashed line represents the maximum admissible overpressure, ∆𝑝!"#, 

that is, the overpressure threshold beyond which the caprock is likely to fissure. This threshold value is 

calculated as
 
(Teatini et al., 2010): 

∆𝑝!"# =
!

!!!
𝜎!
′   (20) 
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where: 𝜐 is the Poisson ratio and 𝜎!
′ is the estimated effective vertical stress at the caprock depth under 

pressostatic undisturbed conditions. Assuming a Poisson ratio of 𝜐=0.25, 𝛥𝑝!"#   is estimated to be equal 

to 72 bar. The results in Figure 5 show that the maximum overpressure allowed is exceeded only in 

Scenario S1. In practice, these results indicate that for a prescribed CO2 mass injection target, lower 

injection rates over longer injection periods represent - in terms of caprock fracturing risk - a safer storage 

strategy than higher injection rates over shorter injection periods. Therefore S2 and S3 would be the safest 

for the GCS system not to fissure the sealing formation.  

 

[ Figure 5 here ] 

Figure 5. Fluid overpressure results nearby the injection well from the multiphase flow simulations of the 

hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 (Table 3). The vertical 

dashed line represents the maximum overpressure allowed at the injected formation. 

 

Figure 6 shows results concerning the amount of CO2 mass leaked into the overlying formations 

(L2, L3, and L4) estimated by multiphase flow simulation of the considered hypothetical system. This 

figure presents the %𝑀!"#$ that escapes from the injected formation L1 and is stored into the overlying 

formations, L2, L3, and L4. Scenario S1 produces the lowest total percentage of CO2 leaked from the 

injection formation with %𝑀!"#$=0.014% at 𝑡!"#= 20 years, while S3 produces the highest leakage with 

%𝑀!"#$=0.020% at 𝑡!"#= 60 years. Although scenario S1 produces the highest fluid overpressure nearby 

the injection well (Figure 5), it has the lowest CO2 leakage. It is, however, important to observe that the 

resulting values of %𝑀!"#$   for the three scenarios are generally small. From Figure 6, it can also be 

noticed that in all scenarios S1, S2, and S3, most of the leaked CO2 tends to be stored in the lower aquifer 

L2. 

 

[ Figure 6 here ] 
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Figure 6. Percent of CO2 mass leaked to overlying formations (L2, L3, and L4) from the multiphase flow 

simulations of the hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 (Table 

3). 

 

The fact that scenario S3 produces greater leakage than scenario S1 can be explained by 

observing that the CO2 leakage mass depends directly on the product between: (a) the “exposure time”, 

during which the carbon plume is in contact with the passive wells; and (b) the pressure gradients across 

these passive wells (Equations 9 and 11). Numerical tests (not shown in this study) indicate that for lower 

injection rates (i.e. scenario S3) the pressure gradients are generally smaller, while the exposure time is 

significantly longer, so that their overall product is larger than in the case of higher injection rates (e.g. 

scenario S1). However, a more consistent comparison for scenarios S1 and S3 would have been a 

comparison that considerers the CO2 leakage at the same 𝑡!"# (e.g. 60 years), where 𝑡!"# also includes a 

post-injection phase in scenario S1. Scenario S1 would have been composed by 20 years of injection 

followed by 40 years of post-injection and thus scenario S1 would have included the mass leakage that 

might occur during the post-injection. This could likely have led to a higher %𝑀!"#$ for scenario S1 than 

scenario S3. Due to the restrictions of the multiphase-flow used here (see Section 2), this comparison 

cannot be carried out. 

In summary, these tests show that scenario S3 produces significantly lower fluid overpressure 

nearby the injection well than the other two scenarios. At the same time, the differences in %𝑀!"#$ over 

all scenarios at the end of the injection time may be considered negligible. Therefore, scenario S3 is the 

only one investigated in the following analyses. 

5.2.2 Stochastic Analysis Results 

In this section, we present results obtained from the SA. We study the effects of uncertainty on 

injection aquifer permeability 𝑘!, injection aquifer 𝜑!, passive well permeability 𝑘!", system 
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compressibility 𝑐!"", brine residual saturation 𝑠!
!"! and the CO2 end-point relative permeability 𝑘!,!! on 

the two state variables of interest: ∆𝑝!"   (Equation 10) and %𝑀!"#$ (Equation 12). 

Results from stochastic flow simulations are used to derive CDFs (see Section 3) for these state 

variables. These CDFs may be used to estimate the probability of fracturing the caprock, and the 

probability of CO2 mass leakage not to exceed given threshold values. To analyze the risk of fracturing 

the caprock formations we consider “safe” conditions when the 95
th

 percentile of ∆𝑝!" is below ∆𝑝!"# as 

estimated by Equation (20). To investigate the risk of CO2 mass leakage, we consider “safe” conditions 

when the 95
th

 percentile of %𝑀!"#$ does not exceed limits derived from maximum CO2 leakage rates of 

1% per one year as suggested by Pacala (2003). It is important to emphasize that this estimate is rather 

conservative since the limit proposed by Pacala (2003) represents CO2 leakage rates back to the 

atmosphere, whereas we consider the mass of CO2 that escapes the target storage formation as leaked and 

do not account for the processes of storage and attenuation that CO2 may undergo within the overburden 

formations.  

Effect of aquifer permeability. The permeability of the aquifer is expected to have a significant 

influence on the fluid overpressure, with low permeability values producing large overpressure. SA 

results for aquifer permeability as the uncertain input parameter are shown in Figure 7. Figure 7a shows 

the CDF of ∆𝑝!" obtained by sampling the aquifer permeability from the PDF described in Table 2. 

Aquifer permeability uncertainty affects significantly the spread of the CDF. Its range varies between 1 

bar and 450 bar (more than two orders of magnitude). This agrees with Mathias et al. (2013), who showed 

that the variability of formation injectivity was quite high in open aquifers. Figure 7b shows the CDF of 

%𝑀!"#$   obtained by assuming uncertain aquifer permeability (Table 2). This figure shows that 

uncertainty on 𝑘! has also a significant influence on CO2 leakage, with a CDF whose spread spans over 

more than two orders of magnitude, from a minimum value of 0.02% to a maximum value of 0.72%.  

 

[ Figure 7 here ] 
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Figure 7. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on aquifer permeability. 

 

Figure 8 shows the percent of CO2 mass leaked as a function of aquifer permeability. In general, 

lower permeability values correspond to increased mass leakage since higher fluid overpressures are 

obtained, which drive higher CO2 flow rates through passive wells. On the contrary, the CO2 plume 

advances faster through injection formations with higher permeabilities, increasing CO2 storage in the 

injection aquifer.  

 

[ Figure 8 here ] 

Figure 8. %CO2 mass leakage as a function of aquifer permeability. 

 

Effect of aquifer porosity. SA results for uncertain aquifer porosity (Table 3) are presented in 

Figure 9a for ∆𝑝!" and Figure 9b for %𝑀!"#$, respectively. The CDF in Figure 9a shows that uncertainty 

on formation porosity has a weak impact on the statistical variability of the maximum fluid overpressure 

at the injection well. Figure 9a reveals that ∆𝑝!" varies between approximately 30 and 41 bars, resulting 

in a very small spread of the CDF. In general, larger porosities produce larger values of overpressure. 

Propagation of the overpressure pulse depends on porosity (Equation 2), in such a way that the same 

amount of CO2 occupies a smaller region of the aquifer, hence retarding the attenuation of the 

overpressure pulse.  

 

[ Figure 9 here ] 

Figure 9. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on aquifer porosity. 
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Uncertainty on formation porosity has also a minor effect on the variability of CO2 mass leakage. 

Smaller porosities are generally expected to result in larger leakage rates. Indeed, the shape of the plume 

depends on porosity (Equation 6) and lower porosities result in faster plume propagation and a higher 

likelihood of encountering leakage pathways. However, Figure 9b shows that the variability of CO2 mass 

leakage is relatively contained since the CDF spread is less than one order of magnitude. Comparison of 

Figure 7 and Figure 9 indicates that uncertainty on porosity 𝜑! has a much lower influence on fluid 

overpressure and CO2 mass leakage than the uncertainty on injected formation permeability 𝑘!. 

Effect of passive well permeability. Stochastic simulation results indicate that the fluid 

overpressure nearby the injection well is rather insensitive to passive well permeabilities 𝑘!". The CDF 

of ∆𝑝!" is consequently not presented here. This result can be easily explained by noting that, for the 

geological setting investigated here (Section 5.1), fluid overpressure depends upon “local” conditions 

around the injection well, such as injection rate and formation permeability, rather than on conditions in 

regions of the domain “away” from the well.  

On the other hand, the SA shows that uncertainty on leakage passive well permeability has a 

strong impact on CO2 mass leakage. Figure 10 displays the CDFs of %𝑀!"#$ corresponding to the three 

PDFs for the passive well permeability 𝑘!"   given in Table 2.  

 

[ Figure 10 here ] 

Figure 10. CDF of %CO2 mass leakage associated with the uncertainty on passive well permeability. See 

Table 2 for descriptions of Case 1 – Case 3. 

 

Although the three PDFs have the same median value of 𝑘!"  , the CDFs for CO2 mass leakage 

are substantially different. In Figure 10 one may observe that in Case 1 (Table 2, lognormal PDF) the 

probability of CO2 leakage is typically the smallest except for values of 𝑘!"  sampled from the upper tail 

of its distribution. Case 1 also presents the largest CDF spread (more than one order of magnitude), 
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whereas in Cases 2 and 3 the spread of the CDF is hardly noticeable. In Cases 2 and 3, 𝑘!"  is sampled 

from binary distributions (Table 2) characterized by two equally likely values, 1×10
-17

 m
2
 and 1×10

-11
 m

2
 

in Case 2, and 1×10
-16

 m
2 
and 1×10

-12
 m

2
 in Case 3. Figure 10 shows that CO2 mass leakage is 

probabilistically larger in Case 2, which indicates that the intensity of leakage is largely affected by the 

presence of highly permeable passive wells. Influence of the assignment of permeability at the passive 

wells on the amount of CO2 leakage was identified in Celia et al. (2011). 

Effect of system compressibility. The system compressibility is expected to have an impact on 

the fluid overpressure and mass leakage, with low values of 𝑐!""   producing greater values of fluid 

overpressure ∆𝑝!" ,  and consequently higher %𝑀!"#$. SA results under uncertain 𝑐!""   (Table 2) are 

presented in Figure 11. Figure 11a shows the CDF of ∆𝑝!", which varies between 1 and 68 bar.  

The CDF of %𝑀!"#$   shown in Figure 11b, indicates that system the compressibility has a 

significant impact on the variability of CO2 mass leakage (about two orders of magnitude). However, the 

comparison of Figure 7b and Figure 11b reveals that the spread of the CDF is smaller than that obtained 

with uncertain aquifer permeability. 

 

[ Figure 11 here ] 

Figure 11. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on system compressibility. 

 

Figure 12 shows fluid overpressure and percent of CO2 mass leakage as functions of system 

compressibility, suggesting that lower values of system compressibility lead to larger fluid overpressure 

and larger leakage. In general, larger values of 𝑐!""   results in lower values of ∆𝑝!"   since the propagation 

of the pressure pulse depends on system compressibility (Equations 2 and 5), and the outer boundary of 

the pressure pulse will be smaller (Equation 5). Hence, a smaller region of the aquifer accepts the same 

amount of CO2 given the larger storage capacity deriving from the deformability of the porous medium.  
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[ Figure 12 here ] 

Figure 12. Fluid overpressure (left vertical axis) and %CO2 mass leakage (right vertical axis) as functions 

of system compressibility. 

 

Effect of brine residual saturation. SA results for uncertain brine residual saturation are 

presented in Figure 13a for ∆𝑝!" and Figure 13b for %𝑀!"#$, respectively. In these tests, both 𝑠!
!"# and 

𝑘!,!! constitute uncertain variables, which are linked together by the relationship of statistical correlation 

derived in Section 5.1 (Figure 3). According to this correlation, as the brine residual saturation increases 

the 𝑘!,!!  decreases. The CDF in Figure 13a shows that uncertainty from brine residual saturation 𝑠!
!"# has 

an effect on the ∆𝑝!", which varies between 35 and 146 bar. This is in agreement with Celia et al. (2011), 

in which the maximum injection rate is limited to the maximum pressure allowed in the aquifer and it 

decreases when s
!

!"#
   is greater. However, the spread of the CDF is less than one order of magnitude. 

Figure 13b exposes that the impact of 𝑠!
!"# on %𝑀!"#$ is less important. The spread of its CDF is 

contained in half order of magnitude. In general, greater 𝑠!
!"# values result in greater fluid overpressures 

and slightly larger leakage rates. Certainly, the extension of the CO2 plume depends on brine residual 

saturation and greater values of 𝑠!
!"#
  result in a more pronounced plume propagation and a higher 

likelihood of encountering leakage pathways Celia et al. (2011). 

 

[ Figure 13 here ] 

Figure 13. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on brine residual saturation. 
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If uncertainty of brine residual saturation is increased to 0.85 (maximum 𝑠!
!"# value in Figure 3), 

so that its uniform PDF varies between 0 and 0.85, the effect of 𝑠!
!"# on ∆𝑝!" is increased. CDF of ∆𝑝!" 

spreads from 35 to 235 bar. When increasing 𝑠!
!"#, the effective porosity available to store CO2 is 

reduced, which results in an increment of the fluid overpressure of the injection formation. If uncertainty 

on 𝑠!
!"# is increased, then %𝑀!"#$  increases, however the impact on its CDF is less noticeable. 

Figure 14 shows the fluid overpressure and percent of CO2 mass leaked as a function of 𝑘!,!!. 

Lower values of 𝑘!,!! corresponds to higher values of ∆𝑝!" and %𝑀!"#$. However, uncertainty of ∆𝑝!" 

and %𝑀!"#$ caused by 𝑠!
!"# (and consequently also by 𝑘!,!!) is less significant than uncertainty caused, 

for example, by 𝑘! or 𝑐!"". The tendency of the fluid pressure to increase for lower 𝑘!,!! values and the 

fact that its impact is less important than the produced by injection formation permeability is in agreement 

with the observations of Mathias et al. (2013). 

 

[ Figure 14 here ] 

Figure 14. (a) Fluid overpressure nearby the injection well, and (b) %CO2 mass leakage as a function of  

CO2 end-point relative permeability. 

 

General considerations from the SA applied to the Michigan Basin test site. In order to make 

general considerations on the feasibility of GCS for the Michigan Basin test site, a SA under Scenario S3 

is carried out considering all parameters of Table 2 uncertain at the same time. For passive well 

permeability, the PDF of Case 1 (Table 2) is considered since is the situation that produces the greatest 

CDF spread as well as the largest values of %𝑀!"#$. The CDFs of ∆𝑝!" and %𝑀!"#$   calculated from this 

SA are given in Figure 15. 

 

[ Figure 15 here ] 
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Figure 15. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on all uncertain parameters for scenarios S3 and S4. The vertical dashed 

line in (a) represents the maximum overpressure allowed at the injected formation and in (b) the %CO2 

mass leakage threshold. 

 

The solid black line in Figure 15a represents the CDF of ∆𝑝!" under Scenario S3. In the same 

graph, the vertical dashed line represents the maximum fluid overpressure ∆𝑝!"#=72 bar allowed in the 

formation to avoid fracturing of the caprock (Equation 20). The intersection of this vertical line with the 

CDF of ∆𝑝!" shows that in scenario S3 there is a 65% probability of not exceeding ∆𝑝!"#. Likewise, the 

solid black line in Figure 15b represents the CDF of %𝑀!"#$ under Scenario S3. The 1% CO2 mass 

leakage threshold defined by Pacala (2003) is represented by the vertical dashed line. Based on the CDF 

of %𝑀!"#$, there appears to be a 87% probability of not exceeding such threshold. 

In order to increase both the 65% probability of not fissuring the caprock and the 87% probability 

of not exceeding the 1% CO2 mass leakage threshold to 95%, a new injection scenario S4 is investigated. 

In this scenario, the total amount of injected CO2 is reduced by 76%, with an injection rate 𝑄!= 8 kg/s 

and an injection period 𝑡!"#= 50 years.  The SA for Scenario S4 leads to the CDFs of ∆𝑝!" and %𝑀!"#$ 

represented by the dotted profiles in Figure 15a and Figure 15b, respectively. Under this new scenario, the 

probabilities of not exceeding both ∆𝑝!"#= 72 bar and %𝑀!"#$= 1% are increased to 95%. 

The need to reduce the total mass injected from Scenario S3 to S4 in order to meet the prescribed 

safety constraints on ∆𝑝!" and %𝑀!"#$ is due to a “conflict” existing between these constraints when 

injecting a given mass of CO2 (𝜌!𝑄!𝑡!"#). Indeed, increasing the CO2 injection rate 𝑄! and decreasing 

the injection time 𝑡!"# is beneficial towards reducing %𝑀!"#$, but also increases the probability that ∆𝑝!" 

exceeds ∆𝑝!"#. Vice versa, decreasing 𝑄! and increasing 𝑡!"# reduces the probability of fracturing the 

caprock, but increases the probability of violating the 1% threshold for %𝑀!"#$. Therefore, in order to 

comply with the requirement of both safety constraints, ∆𝑝!"#= 72 bar and %𝑀!"#$= 1%, the total mass 
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of injected CO2 must be necessarily reduced by adequately decreasing both the injection rate 𝑄! and the 

injection time 𝑡!"#. 

5.2.3 Results of Global Sensitivity Analysis 

In this section, we present results of the application of the extended FAST methodology to the 

Michigan Basin deep saline aquifer. The sensitivities of the 24 uncertain parameters (aquifer 

permeability, aquifer porosity, permeability of 20 potential passive well pathways, system 

compressibility, and brine residual saturation) on the variability of the outputs ∆𝑝!" (Equation 10) and 

%𝑀!"#$ (Equation 12) are studied. For the permeability of passive wells, the PDF of Case 1 (Table 2) is 

chosen since, in the SA, this has been shown to produce the largest spread of the %𝑀!"#$ CDF (see 

Section 5.2.2). 

The GSA results are presented in Figure 16 and in Table 4. Figure 16 shows pie charts for 

∆𝑝!"   and %𝑀!"#$, where each total effect index 𝑆!! (Equation 15) is represented by the “normalized” 

percentage: 

%𝑆!! =
!!!

!!!

!

!!!

100   (21) 

where 𝑛 is the total number of uncertain input parameters, in this case equal to 24. In this figure, the 

combined effect of the 20 leakage pathways is grouped and denoted as 𝑘!"!!!". Table 4 displays the 

first-order sensitivity indices 𝑆! as a percentage of the total effect indices 𝑆!! for both ∆𝑝!" and %𝑀!"#$. 

 

[ Figure 16 here ] 

Figure 16. Extended FAST normalized total effect indices for: (a) maximum fluid overpressure in the 

vicinity of the injection well, and (b) %CO2 mass leakage. 

 

Table 4. Extended FAST First-order effects as a percentage of the total effect for fluid overpressure at the 

vicinity of the injection well, and %CO2 mass leakage. 
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[ Table 4 here ] 

 

Fluid overpressure nearby the injection well. Figure 16a illustrates the normalized total effect 

indices %𝑆!! for the fluid overpressure nearby the injection well. The variability of ∆𝑝!" is mainly 

influenced by only two parameters, that is, the aquifer permeability 𝑘! and the compound effect of 

passive well permeabilities 𝑘!"!!!", which altogether account for about 73% of the overall ∆𝑝!" 

variance. Of this 73%, 42% is due to 𝑘! and 31% is due to 𝑘!"!!!". However, the maximum total effect 

of one individual passive well permeability is only 3%. The prominent influence of 𝑘! is somehow 

expected since the propagation of the pressure pulse is mainly governed by the aquifer permeability 

(Equations 2 and 5). When 𝑘! has a large value, the overpressure pulse can propagate easily through the 

injected formation moving away from the injection well and producing lower ∆𝑝!" values and vice versa. 

Residual saturation accounts for 18% of the total variance (%𝑆!
!
!
!"#

= 18%). When 𝑠!
!"# increases, both the 

end-point relative permeability 𝑘!,!! (Figure 3) and the effective volume of porosity available to store 

CO2 decrease, resulting in an increment of the fluid overpressure. Figure 16a indicates that the porosity 

and system compressibility have small impacts on the variability of ∆𝑝!", with a %𝑆! equal to 4% and 

5% respectively. These results indicate that the total effect indices of porosity, system compressibility, 

and pathway permeability are negligible, so that their uncertainty has a limited impact on the variability 

of the fluid overpressure nearby the injection well. 

In Table 4 one may observe that only aquifer permeability 𝑘! affects the variability of ∆𝑝!" 

mostly through the first-order index with 𝑆!!= 63.1% of the total effect index. The contribution of brine 

residual saturation 𝑠!
!"# to the variability of ∆𝑝!" derives from the interaction with other parameters 

(𝑆
!!
!"#= 30.0% < 𝑆!

!
!
!"#

= 70.0%). The contribution of porosity 𝜑!, system compressibility 𝑐!"", and 

passive well permeabilities 𝑘!"! (𝑖=1,2,…,20) is less than 3.5% from the first-order effect, most of their 

effects come from higher-order effects (>97%) or interaction with other parameters.  
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CO2 mass leakage. Figure 16b illustrates results of total effect index normalized on %𝑀!"#$ 

variance. This figure shows that the spread of the CO2 mass leakage output is mainly influenced by the 

passive well permeability as a group with %𝑆!!!"!!!"
= 66%. However, the maximum total effect index 

coming from an individual pathway permeability cluster is 8%. The total effect index normalized of the 

aquifer permeability is %𝑆!!!= 12%, followed by the aquifer porosity with %𝑆!!!= 10%, and system 

compressibility with %𝑆!!!""
= 9%. Therefore, the aquifer permeability has a larger total effect index than 

the pathway permeability of any of the 20 clusters has. The brine residual saturation contributes to the 

%𝑀!"#$ variability for about 4%. The contribution of 𝑠!
!"# (and 𝑘!,!!)  to the %𝑀!"#$ variability is lower 

than the contribution to the ∆𝑝!" variability. The total effect index for 𝑠!
!"# can be considered negligible. 

In other words, any value of 𝑠!
!"# selected from the PDF presented in Table 2 seems to produce a small 

variability of CO2 mass leakage.  

Table 4 lists the first-order sensitivity index for each of the 24 uncertain parameters as a 

percentage of the total effect on %CO2 mass leakage. One can observe that the main contribution to the 

%𝑀!"#$ variability comes from higher-order effects. Aquifer permeability, aquifer porosity and system 

compressibility have the largest contribution from the first-order index with a value of about 20%. 

Pathway permeability of clusters 6, 11 and 16 also present a large contribution from the firs-order index 

in comparison to the other pathways. The leakage pathway permeability that presents the greatest 

contribution from the first-order sensitivity index is 𝑘!"_!" with a value of 24%. Indeed this is the passive 

well cluster closest to the injection well, which shows that the location of leakage pathways is an 

important component on the contribution to %𝑀!"#$   variability. Higher-order effects from all uncertain 

parameters have a larger impact on the variability of %𝑀!"#$ than their respective first-order effects.  

General considerations from the GSA applied to the Michigan Basin test site. GSA results 

for fluid overpressure confirm some of the observations already made in the SA and also provide new 

insights. A large portion of the ∆𝑝!" variability is attributed to only two parameters: aquifer permeability 

and brine residual saturation. Notice that in the SA, aquifer permeability, brine residual saturation 
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together with system compressibility are the most uncertain parameters of the ∆𝑝!". By far, aquifer 

permeability is the most influential parameter as it ranks in first position with a normalized 𝑆! equal to 

42%. In order to significantly reduce the prediction of ∆𝑝!", acquiring accurate data of aquifer 

permeability is of primary importance. 

From the GSA results for %𝑀!"#$, one can conclude that aquifer permeability, aquifer porosity, 

system compressibility, and pathway permeability have the most significant impact on the variability of 

the output. Brine residual saturation also shows an impact, although this is minor in comparison to the 

other parameters. Location of leakage pathways closer to the injection well shows a significant effect on 

%𝑀!"#$ with significantly higher first-order indices respect to passive wells located farther away. 

Therefore, when interested in studying uncertainty and risk of CO2 leakage, an effort to acquire data 

concerning aquifer permeability, aquifer porosity, system compressibility, and location and permeability 

of potential leakage pathways is essential to reduce the uncertainty in the simulation of %𝑀!"#$. 

6 Summary and Conclusions 

In this work, we have analyzed the variability of fluid overpressure in proximity of injection wells 

and CO2 mass leakage of a candidate site for GCS located within the Michigan Basin. This study relied 

on a stochastic analysis and a global sensitivity analysis accounting for the uncertainty on the following: 

permeability and porosity of injection formation, permeability of passive wells, system compressibility, 

brine residual saturation and the CO2 end-point relative permeability. From the investigation of potential 

injection scenarios, it was observed that lower injection rates with longer injection times reduce the 

probability of producing excessive fluid overpressures in the injection aquifer. As far as CO2 mass 

leakage is concerned, there was a small difference among these scenarios. Therefore, injection of CO2 at 

low rates and protracted for a longer period of time appears to be the most convenient policy for the 

safety of the GCS system. 
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The stochastic analysis showed that the most influential parameter on both fluid overpressure and 

CO2 mass leakage is the aquifer permeability. Fluid overpressure in proximity of injection well was also 

affected by system compressibility and brine residual saturation, and it seems unaffected by uncertainty 

on porosity. On the other hand, CO2 mass leakage is shown to be particularly sensitive to passive well 

permeability and the type of statistical distribution used to characterize uncertainty in it. CO2 mass 

leakage is also affected by the system compressibility. The stochastic analysis also revealed that 

constraints on maximum overpressure and maximum leakage are competing against one another when 

injecting the same mass of CO2. This resulted in a reduction of the CO2 injection rate and injection time, 

so that 95% of the cases do not exceed both maximum thresholds of fluid overpressure and CO2 mass 

leakage. 

Results from the extended FAST global sensitivity analysis confirmed some of the outcomes of 

the stochastic analysis, however providing more detail. Injection formation permeability and brine 

residual saturation combined with CO2 end-point relative permeability had the greatest impact on fluid 

overpressure. The influence of the injection formation permeability on pressure buildup is due mostly by 

first-order effect and about one third is due to its interaction with the other parameters. On the other hand, 

the impact of brine residual saturation and CO2 end-point relative permeability on pressure buildup 

variance is mostly due to their interaction with other parameters (higher order effects). CO2 mass leakage 

is mainly influenced by passive well permeability and aquifer permeability, followed by the aquifer 

porosity and system compressibility. The influence of these parameters on CO2 mass leakage is mainly 

produced by higher order effects. The important interaction of higher order effects of these parameters on 

the CO2 mass leakage has been revealed by the GSA. When studying the variability on the fluid 

overpressure, individual permeability of the leakage pathways, aquifer porosity and system 

compressibility resulted to have a low impact. On the other hand, the effect of leakage pathways with 

respect to the variability on CO2 mass leakage is significant and cannot be neglected, especially for 

passive wells located closer to the injection well. This analysis also showed that influence of passive well 

permeability on CO2 mass leakage mostly is produced by the interaction of passive well permeability with 
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other parameters. Interestingly, the GSA provided more information about the system compressibility 

parameter. It showed that its influence on the outputs is not as important as the SA indicated. 

From these analyses, we can conclude that efforts to obtain further information about influent 

parameters, such injection formation permeability is necessary when studying their impact on fluid 

overpressure and CO2 mass leakage for the Michigan Basin test site. In addition, recollection of leakage 

pathway information, especially from pathways located closer to the injection well is needed for 

quantifying potential CO2 mass leakages with higher degree of confidence. Additionally, this study aims 

at being a role model to be followed when considering the selection and appropriateness of other potential 

GCS candidate sites. The approach to sensitivity analysis founded on SA and GSA is based on solid 

statistical tools that can highlight and quantify aspects of uncertainty in unique ways; thus similar 

methodologies should be followed to study GCS feasibility at other sites. However, one should bear in 

mind that formation parameters and the position and quantity of passive wells to analyze will vary from 

site to site. SA can provide information about the output spread, which is an indicator of the parameter’s 

impact on the output. Also, SA can provide information about the probability of exceeding predefined 

threshold values, such as the maximum fluid overpressure allowed at the caprock formation and the 

maximum amount of leaked CO2 to overlying aquifers. The large numbers of parameters required by 

modeling CO2 injection into a deep saline aquifer are often difficult to obtain and consequently present 

large uncertainties. GSA can separate the most significant input parameters from the less important and 

assess their relative contributions to the overall output uncertainty. This can be extremely helpful to 

allocate resources effectively. 
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Table 1. Hydro-geomechanical parameters of the reference case. Parameters of this table remain unchanged 

(deterministic) unless the parameter of interest is considered uncertain 

 

Parameter Symbol Value Units 

Brine density 𝜌! 1,045 kg m
-3

 

CO2 density 𝜌! 575 kg m
-3

 

Brine viscosity 𝜇! 4.5×10
-4

 Pa s 

CO2 viscosity 𝜇! 4.6×10
-5

 Pa s 

System compressibility  𝑐!"" 4.6×10
-10

 Pa
-1

 

Injection aquifer porosity 𝜑! 0.084 / 

Overlying aquifer porosity 𝜑! 0.05 / 

Brine residual saturation 𝑠!
!"# 0.3 / 

End-point CO2 relative permeability 𝑘!,!! 0.42 / 

Injection aquifer permeability 𝑘! 2.8×10
-14

 m
2
 

Overlying aquifer permeability 𝑘! 9.6×10
-15

 m
2
 

Passive wells permeability 𝑘!" 1.0×10
-14

 m
2
 

 

 

Table 2. Probability distribution functions (PDFs) for uncertain parameters 

Parameter (unit) Distribution 
Median 

value 

Log standard 

deviation 

Minimum 

value 

Maximum 

value 
Realizations 

Aquifer permeability 

(m
2
) 

lognormal 2.8×10
-14

 0.5 - - 1,000 

Aquifer porosity (/) 
uniform - - 0.05 0.35 1,000 

Passive well 

permeability 

(m
2
) 

Case 1 
lognormal 1.0×10

-14
 1 - - 1,000 

Case 2 
binary 1.0×10

-14
 - 1.0×10

-17
* 1.0×10

-11
* 1,000 

Case 3 
binary 1.0×10

-14
 - 1.0×10

-16
* 1.0×10

-12
* 1,000 
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System compressibility 

(Pa
-1

) 

lognormal 1.0×10
-9

 1 - - 1,000 

Brine residual saturation 

(/) 

uniform - - 0.00 0.6 1,000 

*Single value with 50% of probability. Minimum value corresponds to a well-cemented well and maximum value 

corresponds to a poorly-cemented well.   

 

 

Table 3. CO2 injection rates and duration of injection of the multiphase flow simulations of the hypothetical system 

representative of the Michigan Basin. 

Scenario 𝑄! (kg/s) 𝑡!"# (years) 

S1 100 20 

S2 50 40 

S3 33.33 60 

 

 

 

 

 

 

Table 4. Extended FAST First-order effects as a percentage of the total effect for fluid overpressure at the vicinity of 

the injection well, and %CO2 mass leakage. 

Uncertain 

parameter 

%𝑆! of 𝑆!" 

∆𝑝!" 

%𝑆! of 𝑆!" 

%𝑀!"#$ 

Uncertain 

parameter 

%𝑆! of 𝑆!" 

∆𝑝!" 

%𝑆! of 𝑆!" 

%𝑀!"#$ 

k1 63.1 22.4 𝑘!"! 0.4 4.9 

φ1 3.2 18.6 𝑘!"!" 0.4 0.4 

ceff 28.0 21.8 𝑘!"!! 0.1 17.9 

𝑠
!

!"#and kr,c0 30.0 4.2 𝑘!"!" 1.6 1.2 

𝑘!"! 1.1 0.6 𝑘!"!" 0.3 2.9 

𝑘!"! 0.5 0.6 𝑘!"!" 0.4 2.7 
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𝑘!"! 0.3 1.4 𝑘!"!" 0.6 3.7 

𝑘!"! 0.9 0.7 𝑘!"!" 0.8 24.0 

𝑘!"! 0.9 0.1 𝑘!"!" 0.6 2.3 

𝑘!"! 1.3 10.5 𝑘!"!" 0.2 1.9 

𝑘!"! 1.2 0.8 𝑘!"!" 2.1 2.6 

𝑘!"! 0.2 3.5 𝑘!"!" 0.6 0.8 
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Figure 1. Cross-section of the Michigan Basin test site (adapted from (Turpening et al., 1992). 

The Gray Niagaran formation highlighted in yellow, is selected as potential candidate for GCS. 



 

44 

Figure 2. PDFs of passive well permeability assigned to Case 1, Case 2, and Case 3. Details of 

these PDFs are in Table 2. 
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Figure 3. Representation of 𝑘!,!! and 𝑠!
!"# data of carbonates/dolomites (Bennion and Bachu, 2008; 

Bennion and Bachu, 2010), exponential regression (in black), and the half amplitude of confidence 

interval (in grey). 
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Figure 4. Location of the 80 passive wells (indicated as crosses) that reach the Niagaran formation and location of 

the 20 equivalent leakage pathways (indicated as circles) used in the GSA and obtained after clustering the 80 

passive wells. The injection well is located at the center of the domain. 

  



 

47 

 
 

Figure 5. Fluid overpressure results nearby the injection well from the multiphase flow 

simulations of the hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 (Table 

3). The vertical dashed line represents the maximum overpressure allowed at the injected formation. 
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Figure 6. Percent of CO2 mass leaked to overlying formations (L2, L3, and L4) from the multiphase flow 

simulations of the hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 (Table 3). 
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Figure 7. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage associated with 

the uncertainty on aquifer permeability. 
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Figure 8. %CO2 mass leakage as a function of aquifer permeability. 
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Figure 9. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage associated with 

the uncertainty on aquifer porosity. 
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Figure 10. CDF of %CO2 mass leakage associated with the uncertainty on passive well permeability. See Table 2 for 

descriptions of Case 1 – Case 3. 

 

 



 

53 

 

Figure 11. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage associated with 

the uncertainty on system compressibility. 
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Figure 12. Fluid overpressure (left vertical axis) and %CO2 mass leakage (right vertical axis) as functions of system 

compressibility. 
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Figure 13. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage associated with 

the uncertainty on brine residual saturation. 

 

 

  



 

56 

 

Figure 14. (a) Fluid overpressure nearby the injection well, and (b) %CO2 mass leakage as a function of  

CO2 end-point relative permeability. 
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Figure 15. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage associated with 

the uncertainty on all uncertain parameters for scenarios S3 and S4. The vertical dashed line in (a) represents the 

maximum overpressure allowed at the injected formation and in (b) the %CO2 mass leakage threshold. 
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Figure 16. Extended FAST normalized total effect indices for: (a) maximum fluid overpressure in the vicinity of the 

injection well, and (b) %CO2 mass leakage. 

 

 

 

 


