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Abstract

With the philosophy that many physical multivariable systems can,
for the purposes of control systems design, be approximated by much
simpler forms and that the analysis of such models can provide valuable
insight into the time and frequency domain characteristics of the system,
the paper provides an analysis of two types of multivariable structure
and derives closed-form solutions for proportional and proportional plus
integral feedback controllers. The structures considered are shown to
be direct multivariable generalizations of the classical first order lag

and the classical unity rank, minimum phasejoverdamped second order

system.
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1% Introduction

The success of single-input, single-output linear feedback control theory
can be partly attributed to the insight available from the time and frequency
domain analysis of simple models such as the classical second-order system,
and the observation that many high order systems can, for the purpose of
coﬁtrol systems design, be approximated by such low order models. Hence, a

=i, 2)
surprising feature of most frequency domain techniques for the design of
multivariable feedback control systems is the absence of particular results
for simple multivariable structures analogous to the classical second order
system.

With the philosophy that many physical multivariable systems(5-7) can
be approximated by much simpler forms, this paper presents an analysis of two
types of multivariable structure and gives derivations of closed-form solutions
for proportional and proportional plus integral controllers. The controllers
are easily and directly calculated from the system transfer function matrix
G(s) and can provide arbitrarily fast and accurate closed~loop transient
responses. The structure considered in section 2 is a multivariable
generalization of the classical first-order system. The structure considered
in section 3 is a multivariable generalization of the single-input, single-
output, unity rank, minimum-phase, over—damped second-order system.
Illustrative examples of the application of the results are described in
each section. An interesting feature is the systematic nature of the
synthesis procedure and the absence of direct frequency response considerations

(3,8) (L

such as the use of characteristic loci or the inverse Nyquist array R
These are not required due to the proven guarantee of closed~loop stability
and accuracy and the strong intuitive link between time-domain dynamics and

interaction effects and the transfer function matrix analysis at each stage

of the design.
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9.  TFirst-order Type Multivariable Structures

This section considers a unity feedback system for the control of a

class of systems described by NxN transfer function matrices of the form

+4

] a.B. L (D)

s +b.
i J 1]

N b.
G(s) = .E

j=l

; +
is a set of non-zero real numbers and{a.p. }

where |G(o)| # O, {bj}lstN i85 T1gien

is a set of real dyads (unity rank matrices). Such a transfer function
matrix arises in the analysis of systems whose input-output dynamics can be
approximately described by a completely controllable state space model with

N inputs, N outputs, state-dimension'N and a system matrix A having a diagonal
canonical form with real eigenvalues. An example of such a system is the

(3)

pressurized flow-box of a paper-making machine

2.1 Proportional Control

The following result is proved in appendix 6.

RESULT 1
Defining
G, = 1im s G(s) e (21
g=>
then G_ is a non-singular matrix. If K(s) is an NxN forward path controller

transfer function matrix of the form

1

K(s) = k Gw_ - g

(o) i 13)

where k is a real number, then the closed loop transfer function matrix

{I + 6()K(s)} La(s)k(s) = ;%§-Mﬂk) s ()

where M(k) is a frequency independent matrix satisfying the relation

lim M(k) = I_ (the unit matrix) e .0 (5)
ko0 N
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Also, the return-difference determinant |T(s)| = |I+G(s)K(s)| of the system
is
N N
|T(s)| = (s+k) '/ T (S+bj) i 5 5(6)
Jel '

The proposed controller replaces the open-loop poles {_bj}lsjsN by N
identical simple poles at s = -k (eqn. (6)). The closed-loop system (eqn.(4))
is represented by a single scalar transfer function multiplying a constant
matrix (dependenﬁ on the choice of k) which represents closed-loop interaction
effects and steady state error. As k increases, the speed of response of the

system increases and equation (5) indicates that the closed-loop interaction

effects and steady state error can be made to be arbitrarily small. For
~
practical applications, this implies that k must be much greater than the
- maximum of ]bj], 1gjgN.
The physical relationship between the system and the proposed controller
can be obtained by noting that (eqn.(3)),
lim K IR(s) = 6 " D)
koo
so that, for large values of k, the controller tends to diagonalize the plant
at high frequencies. Such a type of controller has been previously used
intuitively. The above analysis provides some theoretical justification for
the approach.
2.2 Proportional plus Integral Control
% In this section the controller of section 2.1 is augmented by an integral
term. The following result is proven in Appendix 7.
i RESULT 2
s With the notation of Result 1, the use of the forward path controller
=L =1
K(s) = {ite + 55} 67 - 67 (0) el (8)

generates a feedback system with return-difference determinant




N
ey = ()N (s+e)V/sN @ (s+b,) 2 )
j=1

That is, the closed-loop poles are simple poles at -k and -c, each with

algebraic multiplicity N. If R(k) and R(c) are the residues of the closed-

loop system at s =-k and s = —c respectively, then
; &)
lim k = R(k) = IN s GLO)
koo i
and
lim R(e¢) = 0 I
ko0 ‘

The dynamic behaviour of the closed-loop system can be assessed by
examining relations (10) and (11), from which it folloﬁs directiy that, for
large values of k, the systeﬁ responds rapidly to step inputs and transient
interaction effects can be made to be arbitrarily small. Steady state error

is always zero due to the presence of integral action on each loop.

2.3 Summary and Relationship to Classical Theory

Given a system that can be approximated by the structure of equation (1),
the previoﬁs sections provide a straightforward approach to the design of
proportional or proportional plus integral feedback controllers which yields
physical insight into closed-loop dynamics at each stage in the design process.
A typical procedure could be,

STEP ONE:  Calculate G_ - and G (o).

STEP TWO: If step responses of the form fog are required from each
channel, set the proportional controller to be as in equation (3).
Simulate the closed-loop system to check the acceptability of the

closed-loop interaction effects and steady state error. An

increase in k will reduce any unacceptable transient characteristics.
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STEP THREE: 1If integral action is required, choose an appropriate integral
time c_l, set the controller to be as in equation (8) and
simulate to check the step response characteristics.

Finally, the form of the transfer function matrix (eqn(l)) for N =1
implies that the system can be regarded as a mulpivariéble generalization of

the classical first order system. The relationship can be strengthened by

considering the forms of the proposed controllers. For example, consider the
proportional control of the single~input system G(s) = ba/(s+b). In order to
move the closed-loop pole to s = -k, the controller must be K(s) = (k—-b)/ab

which, by direct analogy with equation (2) can be written as

K(s) = (k/G)) - (1/G(0)). The response speed increases as k increases
and the steady state error becomes smaller. By comparing this controller
with the multivariable controller of equation (3), it can be seen that the

proposed structure is a direct generalization of the single-variable form.

2.4 Application to Gas—turbine Control System Design

The application of the results obtained in the previous sections can be

illustrated by a consideration of the gas-turbine model discussed by

(9

McMorran 77, The system is described by the transfer function matrix

1.496(s+1.7) 951.5(s+1.898) Sigo 0
G(s) = i Sk L2)
Ay (8) 100
8.52(5"‘1.44) 1240.0(S+2-037) 0 m

with outputs yl = ANH = high-pressure-spool speed, Yy = ANL = low-pressure-spool

speed and inputs u = AAd = demanded jet-pipe-nozzle area, u

fuel-flow rate. Also

g = AQd = demanded

A1(s) = (s+1.33)(s+1.89) ins (15

The pole at s = -100 is extremely fast and will not affect closed-loop system
dynamics if the closed-loop gain is not too high. The phase lag introduced

by the pole at s = -10 could however cause closed-loop oscillatory behaviour
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even at low gains. This suggests synthesizing a controller as the product

of two factors

K(s) = Kl(s)Kz(s) el (18)

where Kl(s) introduces phase advance into loop one,

140.1s 0
1+0.01s
Kl(s) = san i)
0 1

That 1is

1.496(s+1.7) 951.5(s+1.898) 100

s+100

G(S)Kl(s) = i kb))

A1(8) | g 50(s+1.44) 1240.0(s+2.037)

The term 100/(s+100) can now be approximated by unity over the frequency range

of interest and the controller factor Kz(s) designed using the approximate
model for G(s)Kl(s) which is a multivariable first order system in the sense

defined in previous sections. Using Result 2, the controller structure

becomes
Ko ~0.1983 0.1522
KZ(S) = {k +¢c + —
0.001363 =0.000239
=0.4054 0.2898
= a5 £13D
0.001969 - 0,000408

Choosing k = 30 to ensure a fast closed-loop response with small interaction
effects, and ¢ = 5 for a reasonably short reset time, the responses of the

closed-loop system to step demands in loops one and two are as given in Fig.l.
It is seen that the system responds rapidly to demands with 8% overshoot and

less than 4% interaction.
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3 A second-order Type Multivariable Structure

The majority of systems will, in general, have a more complex interaction
structure than that discussed in section 2.  This section takes a step
towards the analysis of more complex structures by considering the feedback

control analysis of systems described by an NxN transfer function matrix of

the form
N+1 b__.| +
G(s) = ;Ll s+bj aij ...(18)

where 1G(o)[ + 0, {bj}1<j<N+1 is a set of non-zero, positive real numbers,
w Jw

+ ;
i 1 dyad d th 1 1
{aij }16jsN+1 is a set of real dyads an e polynomia
N+1
P.(s) = |G(s)|] m (s+b.) ... (19)
G i i
j=1
has a zero in the open left-half of the complex plane. Such a transfer

function matrix can arise in the control analysis of systems whose dynamics
can be approximated by a completely controllable and completely observable
state-space model with N-inputs, N outputs, state dimension N+l and a system
matrix A having a diagonal form with negative real eigenvalues. Closed-form
solutions are obtained for suitable proportional and proportional plus
integral controllers and a comparison indicates that the system G(s) is a
direct multivariable generalization of single-input, single—output systems

of the form

(s+11)
g (s+A2)(5+A2)

G(s) s (200

where Al’Kz’A3 are non-zero, distinct, positive real numbers.

3.1 Summary of the Design Procedure
In this section the design procedure is stated in the form of a result,

the proof of which is outlined in Appendix 8. The idea underiying the

technique is the design of the control based on a first order type ceduced




model of G(s).

Result 3

For the system defined by equation (18), it is possible, for the purposes

"of control system design, to replace G(s) by a reduced multivariable first

order system of the form

N
G, (8) = %
A el

where |GA(D)‘/|C(O)| > 0 (see Appendix 9). Defining

R
€, = Iyt Puyfebusl Ca
K(s) = kG i G _1(0) (c.f. section 2.1)
Aw A
£ =1

Py L+ Doi1Buel Cae  Onel

2 on (1b e Medag. )
Py N+1 N+1 A N+1
()i = kp, + 2oy - By

5 2 v, < -1
g5 (k) kPy = DyypByar Ca (9CxCy (004
then,

(a) Pioe 0, P, > 0 and —p2/p1 is a zero of PG(S).

. (21)

. (22)

(23)

. (24)

i (25}

. (26)

« C27)

(b) The return difference of the closed-loop system using the controller

K(s) is
2
|T(s)| = |I+G(s)R(s)| = (s+k)N“l {s +Cl;k)s+c2(k)}
E (s+b,) i N+1) g
=1

(c) The closed~loop system is stable (eqn.(28)) if, and only if,

Cl(k)>0 and Cz(k)>0. This is always possible to obtain by using large

(28)

enough values of k and the closed-loop poles are s = -k (N-1 times) and, for

large values of 1o




-P
2 =T
= — 0(k
ul(k) 5 +0(k )
Py -1
uz(k) = _kpl * EI - 0(k ) i v (29)

so that N closed-loop poles tend to —-= as k+>+w, The other pole tends to the

zero of PG(S).
e ~1
(d) lim lim (s—ul(k))T (s) = O ... (30)
koo s+ul(k)
so that, at high gains, the pole at ul(k) is insignificant in the closed-loop
response and the system will behave very much like a first-order type multi-

variable structure.

(@Yt lim -k Leg(e)R(a) = ©

ko0 g-roo S

Finally, if integral action is required, the controller of equation (23)
can be augmented by an integral term, based on the first order approximation

GA(S), (c.f. section 2.2)

) ke -1 =1 :
K(s) = {k + ¢ + - 1 GAoo GA (o) 5 (31
Closed loop stability is maintained if
c >0 . cl(k)cz(k) > kcp2 a3 2)

The use of large values of k will ensure small steady state errors and
(see (c)) a fast response with interaction effects confined to a time interval
of length of order k‘l. Some insight can be obtained into the degree of
interaction by examining the matrix CA (eqn., (22)). That is, using the
proposed controller, the normalized initial derivative of output j in response
to a step demand in output & is (CA)jQ (see (e)). In general (Appendix 9),
the reduced model is non-unique and hence GA(S) can be chosen to ensure a

most nearly diagonal or diagonally dominant C,, representing small closed—-loop

A!




effects.

The application of the above results is illustrated in section 3.3.

using an example.

3.2 Relationship to Classical Theory

By considering the case of N = 1, equation (18) immediately takes the
form of equation (20). In this case, the closed-loop system is stable for

arbitrarily high proportional gains, the response speed increases as gain

increases and the steady state error becomes arbitrarily small. The closed-
loop poles tend to —Al and - at high gains and the closed-loop system behaves
very much like a first order system. These observations are remarkably

similar to the results obtained in section 3.1 for the multivariable structure
(eqn (18)) and leads directly to the classification of the structure as a
multivariable generalization of equation (20).

The approximation method of section 9 has a direct interpretation in
terms of single-variable concepts. Using a partial fraction expansion of

eqn (20)

6(s) = By(sh) "t + By(stp) T 2 (33)

and, as both ),,\, are positive, at least one of B

ALE) B3 (say Bz) has the same

2!
sign as g. Defining GA(S) = Bz(s+A2)_1, it is easily deen that a proportional
controller based on the first order approximation GA(S) to G(s) will lead to

a stable feedback configuration.

3.3 Illustrative Example

The straightforward nature of the techniques described in section 3.1
and the direct insight gained into the design process for the class of systems
considered is illustrated in this section by a consideration of the feedback

control of a system whose input-output dynamics can be approximated by the

transfer function matrix




— 11 i
1 2782+77s+48 -32—35
G(s) =
(BHL} (B (B43) 1 g sinnas 3524138412
1 -1 10
il 2 3
= s+l [l 1] * s+2 Yl 1] L3 s+13 []- O—J e )
1 1 6
Applying the procedure of appendix 9, define
iar] ™ (11
u - = % o o s (35)
1 1 =1 1
L) o 1
V = = P (36)
1= 0 1 =i
so that
1 0
PR | 2
0 1
8
3
* ey - {0 1} ‘ w5 C37)

and hence

j i -2+8

UG(o)V vais (38)

and (-l)|UG(o)V]

8>0, Noting that =-(l)x(-2)>0, 8>0, -2<0, it follows that

the only acceptable approximations are

1 1 3 10} .
GA(S) b _(‘-S—:]—-S— . [‘1 11 + W ; [1 0-1 ...(39)
and
B [10] .
GA(S) = "‘(‘g'%?)— [1 l] + : [ [}. 0:1 ... (40)

To choose between the two options consider the expression for the closed—-loop
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interaction effects as given in eqn. (22). For system (39), interaction

effects are represented by the matrix

1 11 =14
C, = 3 oo (41)
» 3 -8 17
and, for the system (40)
1 74 26
€s = 96 ce o (42)
-22 122

An examination of these matrices indicates thai interaction effects will be

smaller for the choice of approximation (40), Lut the choice of approximation

(39) will, for a given value of k, produce a faster response. As speed of

response can alwafs be increased by increasing the chosen valuzs of ke, the

design requirement of low interaction leads to the choice of approximation (40).
The design of a suitable proportional controller can now proceed using

the analysis of section 3.1 and GA(S) as an approximation to G(s). From

equations (24), (34), (40), (as) .

pl = EZ{- » p2 - 1 nll(43)

from which, using equations (26), (27),

25
cl(k) oA k +2 il
cz(k) — k - (__é) -nu(liél-)
so that the closed-loop system will be stable provided k>0. Choosing k = 20

for a reasonably fast response, the proposed controller is (eqn.23)
28 -2\t (o -1\ 7T

20 -

20 2 7 ¥

K(s)

. oo (45)
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The closed-loop responses of the approximate closed-loop system
{I+GA(S)K(S)}“1GA(3)K(S) are given in Fig.2 where it is seen that steady-state
errors are predicted to be of the order of 157 and interaction negligible.
The responses of the actual closed-loop system are given in Fig.3, where it
is seen that interaction effects are greater than predicted by the approximation
(but still acceptable) and steady state errors in channel one in rasponse to
a step demand are increased to approximately 207%.

Residual errors can now be removed by the application of integral action.
Using equations (3%), (44) and (43), closed-loop stability will be retained if

0<% g <20 sis (46)

]

Choosing ¢ = 5, the proportional plus integral controller becomes (eqn(3l))

; lo0o |28 -2 4 g =3¢
K(s) = %25+ ~§~§ -
20 2 L'i 14
s 2 ™ 1 |
a7 il v : cidun QL)
-229 323 -10 14

The closed-loop responsesof the system {I+G(S)K(s)}_lG(s)K(s) are given in
Fig.4.

In summary, the analytical techniques discussed in section 3 has provided
a straightforward and efficient procedure‘for the design of a proportional plus
integral controller for the given system. The controller structure is easily
calculated from the transfer function matrix G(s) and, at each stage in the
design process, insight can be obtained into the required proportional gains

and integral times required to attain desired response characteristics and

interaction effects. An important observation is the absence of any frequency
; e 3,8

response analysis analogous to those of the characteristic Towas e bs and

i : ; 1 e i ; :

inverse Nyquist array teahnlques( )q These are not explicitly required in

the synthesis procedure duc to the guarantee of stability and the strong

intultive link between the time-domain dynamics and transfer function matrix

analysis,




_14_.

4. Conclusions

Using the observation‘that many physical multivariable systems can, for
the purposes of control systems design, be approximated by much simpler forms,
and that the analysis of such‘structures can provide a valuable link between
the time and frequency domain analysis of such systems, the paper has provided
a theoretical control analysis of two such simple structures. The first
(eqn. (1)) has been shown to be a direct multivariable generalization of the
classical first order system and can be suitably controlled using a PIL
controller (eqn.(8)) which is a direct generalization of the equivalent
classical controlier. The second structure (eqn.(18)) is a m:ltivariable
generalization of the classiéal unity rank, minimum phase, overdamped second
order system and can be controlled by firstly reducing the system to a first
order type using the procedure of appendix 9 and then applying a multivariable
feedback control based upon this approximation. In both cases the analysis
provides closed-form solutions for controllers capable of ensuring closed-loop
stability, accuracy and low interaction effects.

The analysis of section 2 is easily extended to incorporate the use of
complex conjugate poles in G(s), but the model reduction philosophy inherent
in the proposed analysis of second-order type structures, in general, precludes
its application to systems with complex poles unless bN+1 is real (when GA(S)
is then a physically realizable transfer function matrix). Despite this
limitation, the success of the approach used in the paper indicates that the
analysis of more general multivariable structures could be a useful tool in
practical applications and that such results could suggest trial controllers

to initiate the analysis of more complex systems using general design techniques.
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Appendices
6. Proof of Result 1
As |G(o)I # 0, then {uj}lsjsN and {Bj}lsjsN are sets of linearly

independent vectors and hence it is possible to define sets of vectors

; ! h that, lgj, kgN,
{Yj}lsjsN and {wj}lstN suc a <3, kg
+ o + _
gy = Bj Y = 6jk ces (48)
N + N $ B +
Writing (eqn.(2)) Gm = I bjuij = I a.B. b3 bkkak then (eqn. (48))
j=1 j=1 33 x=1
N ‘
|6 | = |G(e)| TI b, # 0 and hence G is invertible, and
o j=1 ]
N
=L =1 +
G_ = 3 bj lb.yj oo (49)
j=1 ’
In a similar manner,
N ¥
=l &
G “g) = LY.y . o v (DO)
jaj d 4
so that (eqn,3)
N kb, N
K(s) = 'E —'E'—""‘- lp_]Y_'[ swe (1)
=1L ]
4 +
Noting that ¥ ajyj = IN’ eqns (1),(51) and (48) give
j=1
N k=b. "
G(s)K(s) = 1 —L q,y. s (B2)
s_a S+b, T3]
3=1 j
N k=b. :
T(e) = I +G(s)K(s) = 5 {1 +—=L }a.v. . (53)
. s+b. 1]
J=1 :
-1 N s+b, ;
T = S Y
(s) jil s ujyj wie (54&)

and the return difference determinant |T(n)[ is
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N

IT(s)| = (s#)N/ T (s+b,)
ju -

The closed-loop transfer function matrix is (eqns(54),(52))

= _ k
T (s)G(s)K(s) = Pt M(k)
where
N k~-b. i
M(k) = T & J oY s
j=1 J']
o +
and hence 1lim M(k) = % o.y. = 1.
: i N
le-ron i=1
fio - oor 0k Reault 2
From eqns (8), (49), (51)
-1
N . (k+c=b.) keh, " 5
K(s) = E E g _*}:)“.,,,;J,.f. + _:;JI_ : : i e
j=1 j .

and hence

N {(k+c-b.)s + ke}
G(s)K(s) = I J

i=1

s(s+bj)

so that the return-difference matrix is

2 a1 - +
T(s) = {s" + (k+c)s + ke} © {s(s+b.)} ]G»Yv
j=]_ ] J
and the closed-loop transfer function matrix
T (s)G(s)K(s) . i ' ’
§8) = e ¥ w+e—b.)s + kela,y,
stk) (s+c j:l Hiiedn bJ} R

The return-difference determinant is (equs (60), (48&,)

swal(D3)

i o0 (56

o »n (57)

s« (58)

... (59)

wren £60)
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N
N N, N
|T(s)| = (s+k) (s+c) /s T (s+b,) ... (62)
a Sl 3
so that the closed-loop poles are simple poles at s = -k, s = —¢, each with
algebraic multiplicity N. From eqn.(6l), if the residue at the pole s = =k
is R(k), then
N
= ; =1, +
KIRK) = 5 (k=b.) (k-¢) Ta.y.
N b
> ¥ w.v. = I (k<o) ...(63
ey 373 N (63)
J
and, in a similar manner,
N »
=1 +
Re) = & (b,=c)(k~a) “a.,y.
- 3]
J.—-
- 0 (k<) s 64)
8. Analysis of Second-order Type Multivariable Structures: Resuit 3

8.1 Relationship between lG(s)|, |Gh(s)| and PGj§2

Using the result of appendix 9, construct GA{E) (eqn(21)) such that

]GA(0)|/|G(0)I>O. Hence

b
" N+1 +
6] = 16,() + gp = ayu1Byan |
= 1G ( )I. 1 bN+I_ ~I +| 65
= 18 @ T+ o= 6y e By e
N+1
(5)

so that, using a well-known determinental identity and equat.ons (21), (48),

(49)4 (50),
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b N (s+b.
]LEELL[ e 2 e ———le.Y.+}a
GA(S) s+bN+l N+ ¥ bj i3 N+1
e B B "se, 1+ ¢ Loy}
;- * s+by o TN+l 5% peo A 0%

or, using equation (24) and (25),
Que - Pt TRy
Gy (8) 5+

As !GA(0)|/|G(0)|>O and b .>0, it follows that p,>0.

N+1
Using the relation (eqns(48), (21))
le.(s)| = |G, (o)|* T b,(s+b,) "
A A §sl ] ]

then (eqns(19),(67))

By
1

==

Pale) "= {pjs +p,} iGA(o)J- j

By assumption PG(S) has a zero in the open left-half complex plans at

z = —pz/p1<0 and hence p1>0.

8.2 Proportional Control Analysis

. (66)

. (67)

. (68)

« £69)

If TA(S) =1 + GA(S)K(S) then the return difference determinant of the

system |T(s)| is

b
T(e)| = [T, (s) + L

N+1

so that, after some manipulation

* b

|T(5)|/|TA(S)| = 1 + BN+1+K(S)TA_1(S)G N+1

N+1

Using equations (54),(23)

+
s+b aN+1BN+1 KCS)' =

N+l s+b s

. (70)

. (71)
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N (s+b.) b
T(s) SR R +{ 56 —1_G —1(0)} ik R N Py
TA(S)l Byal Ax A Folt s+k 373 N+l s e (72)
: + "
or, using equations (26),(27) and noting that I (s+b.)a.y. = sT +G, G 1(0)
j=1 0 N CAm A
(eqns (2), (48) and (5D)) then
2
lT(s) | 8" # e, (k)8 + g,(k)
) . (73)
[T, ()] (s+K) 5+, )

Relation (28) now follows by substitution for TA(S) from equation (55), ;nd
relations (29) follow by expanding the roots of the numerator of eqn.(73) as
a Taylor series.

Insight can be gained into the closed-loop transient response by a residue
analysis of the error matrix |

b

-1 & N+1
N+ 1
= {I o bN+1 ) }_1 _l
3 s+b C Os1Brag KT, (8)
N-+1
b
N+1
o, Ta () By RO
= - N+1 -1
= {T i i (s) =
1+ —Eﬁii— B +K(S)T (S)U A
S+bN+1 N+1 N+1
which, using equations (71),(73),(29),(54),(23) becomes
5 + -1_. -1
T-l(s) S g (s+bj)anj Ora1 Prat {kGAm -G, (o)} :
N+1 j=1 (g =~ Ul(k))(s = pz(k))
N (s+h.)
] +
R e N L IR L
Yo R (75)

Equation (30) follows directly from eqns (75) and (29).
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Closed-loop interaction effects can be established by using the well-
known initial value theorem to evaluate the output derivatives at t = O+ in
response to step demands in output. These are represented by the matrix,

normalized with respect to Kk,

. . =], L <1 + =1 =l
lim lim k s G(s)K(s) = lim k "{G, + by o B 4 }{kGAm =G, (o)}
k>0 g-roo ke
= C (see eqn (22)) v v {76)

A

This matrix is non-diagonal in general so closed-loop interaction effects will
be present, but, bearing in mind the result of eqn (30) and the fact that all
closed-loop poles tend to - as k++= (except ul(k)), the interaction can only

be of significance in an interval of length of order k-l.

8.3 Proporticnal plus Integral Control

In a similar manner to the analysis of section 8.2, the return difference

determinant is given by equation (71) which using equations (31),(60) becomes

| =1,
()| _ ., , DNel g LICEHE B =0y BLIBEEE,, ] - G
TA(S) s+by ., N+l (s+k) (s+c) sl i fhe B B L
< 5 (GHE)
N + =1
Simple manipulations, the use of the identity X (s+bj)ujyj = sI+GAmGA (o)
i=1
and equations (26),(27) yields the form
53 +C (k+c)52 + {kep, + c,(k+c)}s + kep
O RS 1 17 %2 2 (78)
|TA(S)| (s+bN+1)(s+k)(s+c)
0 0 L2 : (]-0) 2 -
Hence, if |TA(S)| 1s stable, elementary stability tests imply that the
system is closed-loop stable if, and only if,
cl(k+c){kcp1 + cz(k+c)} - kcpz >0 s CT9)
cl(k+c) >0 ... (80)

kcp2 >0 s (BIL)
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Equation (81) is equivalent to c>0 and hence, if the closed-loop system is
stable with proportional control only, equation (80) is automatically
satisfied as cl(k+c) > cl(k) > 0. Relations (36) follow directly by noting

that cl(k+c){kcpl+c2(k+c)} > cl(k)cz(k).

9, Result 4
Given a transfer function matrix of the form of equation (18) where
]G(o)| # 0 then, by suitable reordering of terms, it is possible to define’

a reduced model

GA(S) =

o=
o

+

a.B. ...(82)
; s+b.
i g 44

where |GA(0)|/|G(0)] > 0.

Proof

Note firstly that, using simple column operations and extraction of

scalar factors, if Sj # 0, lgjgN-1,

Gy By wmmoa 2y Ty
Sl 0 & &b i t2
0 52 P
: " 0 tN—l
O & w oa . ‘0 SN"I tN
N-1 N t.q.

N=- -

= (=1) A fag + £, = I —%—lml }

j=1 j=2 %3-1

N-1 N-1 N N=-1
= (-1) {{qN+t1} I s, = I t.q, . i Sk} v (83)
j=1 - i=2 3 d k=l
k#i-1

and, by continuity arguments, the result still holds if any of tho {sp}: eti-1
L L KE

are Zero.
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gjen *98 18%y o

are sets of linearly independent vectors and hence to define non-singular

As |G(s)| # 0, it is possible to assume that {uj}1

i . + ik 2 .
matrices U,V such that Uaj = ej, 15jgN and Bj vV = ej_1 , 28j&N+1, Hence, if

T
+ N
B, V = [dl’qz""qN— and Uog . = [tl,tz,..,tN]

+ i T T
UG(o)V = e BV + j§2 eseiy * Udyqey
S g Gy v
1. 0 0 ty
... (84)
0 1
0
0 . 0 1 s,
and, by comparison with (83),
N-1 , &
lugo)v| = (-1)" “{q+t, - I t.q, .} s waCBE)
N "1 j=2 7 9~1

Without loss of generality, take (—l)lelG(o)|>0 so that at least one of the

terms qN,tl,-tqu,...,-thN_1 must be strictly positive,

{(1)If qN>O, define GA(S) by eliminating the pole of G(s) at s = —bN+1' The
value of |UGA(0)V| is obtained directly from (85) by setting tl = t2 = aes = by
That is |UGA(o)v] = (-1)N"lqN or |UGA(0)V|/|UG(0)V] - |GA(o)!fEG(o)1 > 0 as
required.
s (119 TE t1>0, define GA(S) by eliminating the pole of G(s) at s = Hbl. The
value of |UGA(0)V| is obtained from (85) by setting 4y =4y = .. = Qg = 0 so

that |Ug, (0)v| = (-1)"'t, and hence |¢,(0)|/]c(0)] > 0.

(iii)If “t£q2_1>0, define GA(S) by eliminating the vole of G(s) ar s = -b
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|UGA(0)V| is obtained direcfly from (83) by setting s, =1, i # 2;1, 8,1 = 0.
That is IUGA(O)Vl = (—l)N_l(-tqu_l) and hence [GA(o)[/IG(o)| S

QED
The proof of the result provides a direct method for the construction of GA(S).

In practice however, the most practical technique is probably simple trial and

error.
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